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The interference of nuclear shell structure on rotational spectra of light nuclei is considered. N = Z nuclei are chosen because the absence of pairing makes shell effects transparent even for relatively low-spin states. The rotational spectrum of 
2 0Ne is taken as an example and numerics evaluated. 

1. lntroduction
The nuclear structure and the dynamics of motion of light nuclei have received much attention. lt is now an accepted fact that many of these nuclei are ellipsoidally deformed in their ground and (or) excited states (e. g. 1 2C, 2 0Ne or the 6.02 MeVexcited state of 1 60). This has led to many investigations from the early Nilssonmodel 1 >, an SU 3 classification scheme 2> through deformed Hartree-Fock calculations3>, the application of the generator co-ordinate method4>, the a-cluster picture 5>, to the full-scale shell-model diagonalizations with realistic Kuo matrix elements6> . The complex shell-model calculations are able to reproduce experimental data, but the very complicated wave function does not allow a simple physical picture of the underlying dynamics. The other above mentioned approaches tacitly assume adiabaticity of the nuclear rotational motion. Because of the low-spin content of shells involved in the description of light nuclei, relatively low-spin states in these nuclei are to be considered as high-spin states. This implies that both the centrifuga! and Coriolis forces affect the shape of the rotating nucleus. 
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Light nuclei may be considered in the framework of the simple model of rotated harmonic oscillator, because spin-orbit eff ects in these nuclei are negligible. Choosing N = Z nuclei further simplifies the problem, for in these nuclei the pairing is absent. The cranked harmonic oscillator model can be exactly solved s> ,  whereas the solution given in Ref. 7 is only approximate. The magnitude of shell effects 7> depends strongly on the frequencies characterizing the principal axis of an ellipsoid. The largest shell effects appear when the ratios of frequencies are ratios of small integers. Any departure from such ratios diminishes shell corrections. 
2. The model

Assuming an independent particle motion, the total Hamiltonian H O can bewritten as a sum of single- particle Hamiltonians : 
H0 = !, h (i). (I ) 

i= l For a harmonic oscillator 
(2) 

where co 1 , co2 and co3 define the shape. In the frame rotating with anguiar velocity co around the intrinsic axis 1., the Hamiltonian obviously becomes 
Hw = Ho - li w L1 = !, hw (i) (3) 

i= l where 
(4) 

Expressed in the occupation-number representation with creation and annihilation operators ct _and c, satisfying the usual commutation relations 
[c1, ej] = �u, 

(5) 
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Equation (5) represents a system of coupled harmonic oscillators. The approximation made in Ref. 7 neglects the last term in expression ( 5), arguing its smallness due to the N + 2 coupling (large energy denominators). Following Ref. 8, hw can be exactly diagonalized by means of the canonical transformation9 > 

ak = L ( U! Cm + V! cl) (k = 2,3),
m = 2,3 

where the coefficients U and V are determined by 

yielding equations of the RPA type. 
The Hamiltonian ( 5) becomes 

with 
Q2 =

ro! + ro; + ro2 ± _!_ [(ro2 - ro2) 2 + 8ro2 (ro2 + ro2)] 112 (6) 2 , 3  2 2 2 3 2 3 : 

The eigenvalue of Hw is 

where Lt = f {n, + -2
1 ) is the number of quanta of the filled oscillator or-

k= t k bits in the i direction. For ro = O, D2•3 becomes ro2 • 3, as can be seen from expression (6). All the required quantities can be immediately found provided the self-con -sistency condition is fulfilled. The usual Bohr-Mottelson 7> condition 

is equivalent to the requirement of isotropic velocity distribution, which in the rotated frame yields 
The conservation of volume requires that 

< 2 >  < 2 < 2 li 3 L 1  L2 L3  x x ) x ) = - -- - - = const.
• 2 J m 3 ro 1 D2 !J3 
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Clearly, 
2 8E<» /8H<», mw, (x, ) = -. - = , -_ : '\. ow, '\. aw, / and 

so that the acquired angular momentum is 
(8) 

and the energy of the system (i. e. the eigenvalue of H = H(i) + liro L1) is

It is important to note that the self-consistency condition implies the constancy of fJ2 and fJ3, allowing the expressions for ro2 and ro3 as functions of ro. This means that the initial shape (ro = O) will change with acquired angular momentum (due to the action of the Coriolis force on the nucleonic motion), thus showing the non-adiabaticity of the problem. The maximum value of the acquired angular _ momentum for a given set of :E i, :E 2 and :E 3 is a consequence of the self-consistency requirement. Shell structure represents non-uniformity in the distribution of stationary states. When Fourier-analyzed, the density of states can be represented to the lowest order 7> as a cosine of energy with a period suitably chosen. Fig. "I shows the degeneracy of the single-particle energies of the harmonic oscillator. lt can be noted 7> that whenever the ratio of frequencies (linked to the shape) is that of small integers, the shell structure becomes prominent. Any departure from the integer ratio (as illustrated in Fig. ·o diminishes the shell structure.Therefore, the shell-structure energy correction can be parametrized as 
I C.0 1  C.02 W 1  IđEshcll = - liwsbcll COS 2n- COS 2n - COS 2n - ,

W2 W3 W3 where (see Ref. 7) 
(IO) 

and denotes intershell spacing. Thus the total energy including the shell correction for the model considered is 
(10 
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Fig. 1 .  The change in shell structure of a harmonic oscillator potential due to the change in frequency Wz, 

3. Numerical results and conclusion
The 2 0Ne spectrum has been calculated to illustrate the change in shape (and consequently the difference in shell-structure corrections) as the nucleus is cranked with increasing angular velocity. 
2 0Ne is prolate in its ground state, so that the. oscillator orbits (nx, ny, nz) to be filled include (O, O, O), (O, l, O), (O, O, I), ( 1 ,  O, O) and (O, O, 2). It follows that 

L 1 = L2 = I 4; L3  = 22. 
The mean oscillator frequency is chosen such as to fit the mean square raqii .of light nuclei : 
so that hro 1 = 15.18 MeV = 1i.Q2 !ifJ3 = 9.66 MeV. 

The band cut-off occurs at (L1 ) = L3 - l:2 :.._ 8 and the nucleus acquires an oblate shape, axially symmetric about the rotation axis I .  
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Fig. 2 shows the energy of the rotated oscillator including shell corrections (l l.) (full circles) as a function of acquired angular momentum, and the energy of the cranked oscillator model without shell corrections (9) (open circles). f5Eshcll (full line in Fig. 2) shows a strong oscillatory behaviour. It is seen that the largest shell-structure effects are present in the state with (L1 ) = 4/i, forwhich <.01 : <.02 '.::::'. l : 1 and <.0 1 : w3 � <.02 : <.03 '.::::'. 3 : 2. 
E ( MeV ) 

L ( L + 1 ) 

Fig. 2. The ground-state rotational spectrum of 2 0Ne. The experimental spectrum (taken from 
Ref. 10) is marked with crosses for L = 2, 4, 6, 8/i. The energy of the rotated oscillator model (see

Eq. (9)) {open circles) and the energy including shell corrections (Eq. (11)) (full circles) is 
drawn. The full line represents the calculated «IBsbel l •  

The experimental spectrum (taken from Ref. IO, marked with crosses in Fig. 2 of this paper), also shows oscillations around the straight L (L + I) line and these closely follow the f5Eshcl l pattem. The discrepancy between the experimental and calculated spectrum is due to the simplicity of the model ( e. g. as a consequence of the isotropic distribution of velocities (7), the moment of inertia is that of the rigid body). 
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Moreover, it should be pointed out that given the occupation of oscillator orbits and the adjustment of the mean oscillntor frequency to the r. m. s. radius there are no parameters in the model. In conclusion, the importance of the shell correction in understanding the rotational motion with high frequencies is clearly demonstrated. ln heavier nuclei, however, such a simple model is not expected to be adequate; namely, the shape of the potential is of the Woods-Saxon type rather than of the harmonic oscillator type and the l-s coupling plays important role.Even so effects of shell structure should be clearly seen only at very high angular velocities because of the presence of proton and neutron pairing in lower-spin states. This means that when the rotating nucleus becomes normal through the disappearance of superconductivity (the nuclear Meissner effect), it is still at sufficiently low temperature for a giv-'c!n angular momentum to exhibit shell-structure eff ects in the rotational motion. 
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LJUSKASTA STRUKTURA I STANJA VISOKIH KUTNIH KOLIČINA GIBANJA JEZGRI 
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Originalni znanstveni rad 

Razmatra se utjecaj nuklearne ljuskaste strukture na rotacione spektre lakih jezgara. U jezgrama sa N = Z efekti ljusaka su jasno uočljivi i za stanja relativno niskih spinova, zbog odsutnosti sparivanja. Za ilustraciju je izračunat rotacijski spektar 2 0Ne. 
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