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Abstract: This paper investigates the advances in Flexible AC Transmission System (FACTS) technology and its application in enhancing transient stability in power systems. 
FACTS devices are becoming increasingly popular due to their ability to improve power system performance by controlling power flow, voltage, and stability. Various FACTS 
technologies are reviewed, including Static Var Compensator (SVC), Static Synchronous Compensator (STATCOM), and Static Synchronous Series Compensator (SSSC), 
among others. The impact of these technologies on power system stability is examined and a comprehensive analysis of their effectiveness in mitigating transient stability 
issues is provided. Recommendations for future research in the field of FACTS technology for improving the reliability and stability of power systems are given in the 
conclusion. 
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1 INTRODUCTION 
 

Integrating renewable energy sources into the 
electrical grid is one of the challenges that arise from the 
world's transition to cleaner and more sustainable energy 
sources. As more wind and solar power are used as 
renewable energy sources (RES), the electrical grid will 
face significant challenges regarding system stability. 
Renewable energy is different from traditional power 
sources because it can be intermittent and variable, so the 
grid must be able to handle sudden changes in supply of 
electricity. Furthermore, the inertia of power systems 
additionally decreases as more and more converter-
interfaced generation (CIG) units are connected to the 
power system [1]. The intermittent nature of RES requires 
a re-evaluation of grid control strategies and methods, as 
current traditional communication and control strategies 
are better suited to handle traditional power systems. 
Optimal integration of RES requires the grid to be flexible 
and that it can adapt to fast changes in electricity 
generation. In a system with reduced inertia, after a 
disturbance, larger rotor angle instability occurs that 
requires a greater restoring force to return the system to 
equilibrium. Managing this could strain synchronous 
generators in the system, potentially resulting in significant 
instability issues. Renewable energy sources are often 
located far away from load centers, which places additional 
stability strain on the power system. Modern electrical 
grids are going to have to maintain stability and reliability 
despite displaced centers of electricity production and 
supply fluctuations. As penetration of distributed 
generation in the power system increases, these challenges 
are going to become more prominent. Large renewable 
energy like photovoltaic (PV) systems located in remote 
areas may overload the transmission system that connects 
them to load centers [2]. As PV installation in the 
transmission grid becomes more frequent, additional 
research is done in field of general performance analysis 
with high-penetration PV systems [3], and further 
regarding transient stability [4, 5]. Researchers in [3] 
observed that system inertia and frequency regulation is 
reduced as conventional generation is replaced by PV. It 
was shown in [4] that large-scale PV systems, that increase 

PV penetration levels from 20% to 50%, while replacing 
conventional synchronous machines, have decreased 
voltage stability. The study in [5] investigated dynamic 
performance of the system with a varying level of PV 
penetration, namely small-signal stability, voltage 
stability, and time-domain contingency assessments. 
Eigenvalue analysis revealed that PV systems had a 
negligible impact on overall small-signal stability of the 
system. Conversely, voltage stability and transient stability 
analysis indicated that a distributed approach could 
enhance system stability compared to centralized PV 
farms. A simulation of a test system with high penetration 
of PV for transient stability analysis was done in [6] and 
the low-voltage ride-through (LVRT) characteristics are 
examined. It was shown that high penetration of PV lowers 
transient stability under a large disturbance. Tripping of 
low voltage protection designed to safeguard PV inverters, 
during a voltage sag in the system, can potentially lead to 
a cascading fault since disconnecting PV systems during a 
fault can exacerbate the drop in system voltage. There is a 
need for additional research to identify optimal LVRT 
characteristic for PV systems and develop control schemes 
that enhance system stability under large disturbances. 
Additional analysis [7] for dynamic behaviour of 
synchronous generations with high penetration of PV was 
done by numerical simulation. Research in the field leads 
to the conclusion that high penetration of renewable 
sources will need a solution regarding system stability [2]. 
Fast control of system parameters like node voltage and 
phase angle, line reactance/current and shunt impedance 
can increase system flexibility [8]. Fast development of 
power electronics [9, 10] and extensive research in the field 
of Flexible AC transmission systems (FACTS) give an 
option for increased controllability of system parameters 
[11, 12]. 
 
2 POWER SYSTEM STABILITY 
 

Power system stability is defined as the ability of the 
power system to maintain synchronism and equilibrium 
under normal operating conditions and to remain in 
equilibrium after a disturbance [13]. In [13], power system 
stability was classified into three broad categories rotor 
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angle stability, voltage stability and frequency stability, 
Fig. 1. 
 

 
Figure 1 Power system stability classification 

 
Rotor angle stability refers to the ability of a 

synchronous machine to remain in synchronism after a 
disturbance. This stability relies on the system's capability 
to sustain equilibrium between the electromagnetic and 
mechanical torques of each synchronous machine. 
Instability that may develop is manifested as escalating 
angular swings in certain generators, potentially causing 
them to lose synchronization with other generators in the 
system. Voltage stability refers to the ability of a system to 
maintain a predefined voltage range at all system buses 
after a disturbance. Voltage stability relies on the system's 
capability to sustain equilibrium between electricity supply 
and demand. Instability that may develop is manifested as 
a gradual decline or increase in voltages at certain buses. 
Voltage instability could potentially lead to consequences 
such as load shedding in a specific area, or the activation 
of protective systems causing the tripping of transmission 
lines and other components, ultimately resulting in 
cascading outages [14]. These two broad categories can be 
additionally divided into four subcategories based on the 
physical process and time frame. Time frame refers to 
transient and long-term effects. When a disturbance 
happens, it can cause two types of effects: transient and 
long-term. Transient effects are fast and severe, and they 
happen right after a large disturbance. Long-term effects 
are slow and moderate, and they happen over time after a 
small or gradual disturbance. Physical processes refer to 
rotor or voltage dynamics. Rotor dynamics is concerned 
with electromechanical oscillations of a machine due to 
torque-angle variations, while voltage dynamics is 
concerned with voltage variations due to reactive power 
changes. Lastly, frequency stability refers to the ability of 
a power system to maintain a steady operational frequency 
value following a large disturbance that causes a 
substantial imbalance between power generation and load. 
This imbalance, if not resolved quickly, can lead to 
frequency swings that can result in tripping of generators 
or loads. 

Power system stability definitions and classifications 
had to be updated because of recent developments in CIG 
technologies that are becoming more prevalent in electrical 
power systems [15]. CIG devices have a fast response to 
changes in system parameters, which is the reason that 
systems dynamics is affected in new ways compared to 
traditional power generation technologies. Designing grid-
connected power converters used by CIG requires ensuring 
proper operation under various grid voltage conditions. 
This involves designing control algorithms that guarantee 

robust and safe performance, especially in abnormal grid 
conditions. Resonant controllers on the stationary 
reference frame present an effective alternative to current 
controllers based on the double synchronous reference 
frame, particularly for regulating currents during 
unbalanced and distorted grid conditions. Additionally, 
alternative solutions like hysteresis current controllers, 
direct power control methods, and model-based predictive 
control can be employed for grid-connected power 
converters, with hysteresis-based approaches standing out 
for their robustness and quick dynamic response [16]. Due 
to their increased use, two new stability categories were 
introduced in [15]. 

Converter-driven stability was defined because CIG is 
usually interfaced with the grid by a voltage source 
converter (VSC) and it is expected that in the near future, 
more than 50% of the generated power may be converter-
interfaced [17]. CIG relies on control loops with rapid 
response times, including the Phase-Locked Loop (PLL) 
and inner-current control loop. Consequently, the 
extensive timescale associated with CIG controls can lead 
to interactions with both the electromechanical dynamics 
of machines and the electromagnetic transients of the 
power system. This interaction may give rise to unstable 
power system oscillations across a broad frequency range, 
posing a novel challenge for system operators.               
Converter-driven stability can be divided into                 
slow-interaction and fast-interaction stability, depending 
on the frequency of the phenomena in question. 

Resonance stability refers to sub-synchronous 
resonance (SSR) and can be divided into torsional 
resonance and electrical resonance. Resonance happens 
when oscillations of energy between two points increase 
due to insufficient energy dissipation, which in turn causes 
an increase in system parameters like voltage, current or 
torque. SSR was first defined in [18], as a condition where 
the power system exchanges significant energy with a 
turbine-generator at a frequency below synchronous 
frequency (50 Hz or 60 Hz). Research on SSR began in the 
1930s because a series-compensated line caused a              
turbine-generator shaft failure because of neglected 
torsional oscillations [19]. 
 
3 FACTS TECHNOLOGY 
 

FACTS devices are a class of power electronic devices 
used to regulate system parameters such as voltage, 
frequency and phase angle in electrical power systems 
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[20], improving the stability and reliability of the grid. 
Power electronics refers to the processing of electrical 
power with electronic devices, such as insulated-gate 
bipolar transistors (IGBT), gate turn-off (GTO) thyristors 
and integrated gate-commutated thyristor (IGCT) [21]. 
Typically, FACTS devices are installed in high-voltage 
electrical power systems to address power quality issues or 
alleviate congestion in areas of the transmission network 
[22, 23]. Integrating RES into existing power grids 
presents several technical challenges. The variability of 
power generation introduces uncertainties and potential 
risks to system reliability. Additionally, insufficient 
transmission capacity hinders the delivery of large amounts 
of power generated by RES from remote areas to load 
centers. While constructing new transmission lines is an 
obvious solution to enhance capacity, these projects are 
often lengthy and expensive due to long construction times 
and stringent environmental approvals as they require 
significant land areas. To address some of these challenges, 
FACTS devices are designed to regulate power flow over 
long distances, as RES are frequently positioned far from 
load centers. Controllability of system parameters 
inherently allows for higher integration of RES in the grid 
[24]. This can be particularly important when load centers 
are geographically far away from RES, as these systems 
can have significant line losses and stability issues. The 
feasibility of using FACTS depends on several technical, 
environmental and financial factors. All three must be 
carefully considered before deciding to implement them in 
a power system. FACTS devices are usually installed to 
optimize existing transmission system assets (instead of 
installing costly and environmentally problematic 
transmission lines). Papers [25, 26] have shown that 
installing them in off-shore wind farms can enhance power 
quality and improve terminal voltage and power 
fluctuations. It is worth noting that in [27] a proof of 
concept showed that an uncontrolled rectifier can be used 
in an off-shore wind farm with a high voltage DC (HVDC) 
link as a cost-saving measure, which could eliminate the 
need for off-shore FACTS controllers. As the complexity 
of the power system increases, coordination between 
multiple controllers is going to become a key issue for 
transmission system operators. Optimal reclosing and SVC 
coordination improves transient stability in multi-machine 
power systems under various fault conditions compared to 
conventional reclosing and SVC methods [28, 29]. 

FACTS devices can be categorized into four categories 
based on type of connection and two based on operating 
principle. FACTS devices can have a series, shunt, series-
series and series-shunt connection to the power system 
[30], as seen in Fig. 2. Thyristor-controlled FACTS devices 

and VSC-based FACTS devices are both used to enhance 
the controllability and efficiency of transmission systems, 
but they differ in their underlying technologies and 
characteristics. VSC-based FACTS devices may use other 
types of semiconductor switching devices such as gate 
turn-off thyristors or gate commutated thyristors, but 
IGBTs provide several advantages. Thyristors are typically 
slower in response compared to IGBTs, which makes the 
control capability of thyristor-based FACTS devices 
limited to a certain extent. Based on research in [31], it was 
demonstrated that IGBT-based rectifiers operate at higher 
switching frequencies using Pulse Width Modulation 
(PWM), while thyristor-based rectifiers function at lower 
frequencies using the phase-shifting method. Simulation 
results demonstrated that implementing IGBT-based 
rectification systems results in fewer power quality issues 
and reduced losses, but reduced reliability and higher costs 
compared to thyristor-based systems. Furthermore,            
VSC-based FACTS devices: are more modular and 
scalable, allowing for easier expansion or modification of 
the system. In summary, the main difference is underlying 
technology, which is reflected in their control capabilities, 
dynamic performance, and modularity.                       
Thyristor-controlled FACTS devices may have limitations 
in speed, but come ahead in cost, while VSC-based FACTS 
devices leverage better control capability and dynamic 
performance but for a higher cost and reduced reliability. 

The most notable series-connected FACTS device is 
the Static Synchronous Series Compensator (SSSC), which 
directly injects variable voltage in quadrature with the 
current into the connected line. The most notable                 
shunt-connected devices are the Static VAR Compensator 
(SVC) and Static Synchronous Compensator 
(STATCOM). Both devices have seen wide installation in 
today's power systems. The interline power flow controller 
(IPFC) [33] and the unified power flow controller (UPFC) 
[34] represent the series-series and series-shunt devices, 
respectively. Shunt-connected devices are better at reactive 
power compensation and voltage control [35-41], while 
series-connected devices are more suitable for active 
power flow control and increasing transient stability              
[42-44]. Furthermore, shunt-connected devices improve 
transmission capacity indirectly by providing local reactive 
power compensation, meaning that less reactive power has 
to be transferred by the grid. On the other hand,              
series-connected devices modify line reactance and 
directly improve transmission capacity [45, 46].                 
Series-connected devices were shown to help with 
reducing or postponing the need for new transmission 
lines, which have significant environmental and 
geographical constraints [47]. 

 

 
Figure 2 FACTS classification with examples [32] 

 
Based on operating principle, FACTS devices can be 

categorized into thyristor-controlled and VSC-based 
FACTS devices. Thyristor-controlled devices like the SVC 

operate as a controlled reactive admittance, while             
VSC-based devices like the STATCOM operate as a 
synchronous voltage source [48]. 
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3.1 Historical Development and First Applications 
 

One of the first FACTS devices installed was an SVC, 
which was first demonstrated in 1974 and 1975 by General 
Electric and Westinghouse, respectively [20]. The SVC 
provides dynamic shunt compensation by adjusting the 
firing angle of a thyristor circuit that controls the total 
reactance a reactor or capacitor bank provides into the grid. 
Today, the majority of installed static var compensation is 
by ABB [49, 50]. According to the data presented in Fig. 
3, the installation of FACTS devices experiences a steady 
increase, reflecting the growing energy demand [51]. 
Furthermore, it can be concluded from steeper rise in 
installed power in recent years in Fig. 3 that more 
transmission-level FACTS projects are being developed. 
As transmission system operators gain more experience 
with these technologies, less resistance to their 
implementation is expected. It is further expected that with 
the growth of renewable sources in the power system, the 
installation of FACTS technology will follow an upward 
trend. The increasing complexity of the power system 
necessitates a demand for more precise and improved 
controllability. A pioneering paper on reactive power 
compensation with thyristor-controlled capacitors [52] 
paved the way for further research in the following decade 
[53-56]. 
 

 
Figure 3 Historical installation of SVC and STATCOM devices [76] 

 
Furthermore, Fig. 4 shows that the North American 

region has had the most experience with FACTS 
technology, which is supported by the fact that the US and 
Canada's large geographical area warrants significant 
investment in grid stability [57]. Examining the percentage 
values depicted in Fig. 4, it is evident that the North 
American region exhibits a substantial level of familiarity 
and engagement FACTS technology. 
 

 
Figure 4 Historical installation of SVC and STATCOM devices [76]. 

 
The geographical distribution illustrated in Fig. 5 

includes data from an additional manufacturer of FACTS 

technology (besides ABB, which was provided to the 
authors directly), providing a more accurate representation 
of the distribution. However, a comprehensive 
understanding of this scenario necessitates consideration of 
additional factors, specifically, the overall electricity 
consumption within the region. To address this limitation 
and offer a more nuanced perspective, we propose the 
introduction of a novel metric: the FACTS Penetration 
Index (FPI). 

This index, when appropriately scaled for the total 
electricity consumption of a region [58], aims to provide a 
more accurate reflection of the actual impact and 
integration of FACTS devices within the regional power 
infrastructure. By factoring in the corresponding electricity 
consumption, the FACTS Penetration Index strives to offer 
a more refined evaluation of the influence of FACTS 
technology across diverse regions. This nuanced approach 
is essential for researchers and policymakers seeking a 
comprehensive understanding of the intricacies associated 
with the implementation and success of FACTS devices in 
different geographical contexts. 

FPI can be formulated by considering the ratio of the 
installed FACTS capacity to the total electricity 
consumption within a given region. The formula for 
FACTS Penetration Index can be expressed as (1): 
 

Installed FACT Scapacity
FPI=

Total Energy Consumption
                                    (1) 

 
Fig. 6 shows total installed capacity by region and with 

provided FPI for each region. The Australian region is 
allocating substantial investments to FACTS technology, 
driven in part by the growing integration of renewable 
energy sources [59]. 

STATCOM is a second-generation FACTS device that 
showed promising control of reactive power, albeit for a 
steeper price [60]. First installed in 1980 by Kansai Electric 
Power Co. as a prototype, it showed sufficient protection 
against system faults which merited a plan for further 
commercial application [61]. 1991 saw the first 
commercial use of STATCOM in Japan's Inuyama station 
with the reactive power output of ±80 MVAr [62]. SVC 
and STATCOM were initially created to enhance the 
power quality in electric power systems that use electric arc 
furnaces (EAF), as these furnaces produce random and 
substantial fluctuations in both real and reactive power, 
which can result in voltage drops and significant voltage 
variations in brief time intervals [63]. The SSSC was first 
simulated and installed in Spanish transmission grid in 
2015 in order to control power flow and reduce line loading 
caused by high penetration of RES [64-66]. The third 
generation of FACTS, known as the Unified Power Flow 
Controller (UPFC), is created by integrating the 
STATCOM and the SSSC into a single system that uses a 
common control system. The UPFC has a distinctive 
capability to control the flow of real and reactive power 
independently. In 1998, American Electric Power's Inez 
substation was selected as the site for the first utility 
demonstration of a UPFC [67]. By 2018, 6 UPFC have 
been installed worldwide, 2 of which have been 
decommissioned [68]. Research on improvement of UPFC 
is still ongoing to provide similar system parameter 
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controllability and reliability, but at a reduced cost [69]. 
Although UPFC offers technical benefits over SVC, 
STATCOM and SSSC, its cost poses a challenge for 
numerous transmission system operators when it comes to 

installation. In the following chapters, a concise summary 
will be provided of the technologies currently in use and 
familiar to transmission system operators. 

 

 
Figure 5 FACTS installation by country from 1970s to 2023, expressed in MVAr 

 
3.2 Static VAR Compensators (SVC) 
 

SVC is composed of a thyristor-controlled or a 
thyristor-switched reactor (TCR/TSR), a thyristor-
switched capacitor (TSC) and filters. The TCR generates 
harmonics, which is why filters are needed [8]. The 
primary advantage of using SVCs to enhance transient 
stability is the quick and precise control they provide over 
bus voltage by changing the equivalent susceptance of 
TCR, which is a function of the thyristor trigger angle. This 
control can be especially useful during low-voltage 
situations that often arise during faults, as it can improve 
power transfer and prevent local generators from 
accelerating too much [70]. At present, the most commonly 
employed technology for minimizing the adverse impacts 
of EAF on the power system is SVC [71]. 
 
3.3 Static Synchronous Compensators (STATCOM) 
 

STATCOM's operating principle is based on 
producing a controlled internal voltage. The internal 
voltage uses grid voltage as a reference and adjusts its 
amplitude, while maintaining a phase angle of ±π/2. 
Amplitude higher or lower than grid amplitude makes the 
STATCOM behave as a source or sink of reactive power, 
respectively [72]. STATCOM is more effective than SVC 
in improving transient stability of wind farms because it 
has a faster response time and can provide the needed 
reactive power during a fault [73-75], but at a higher cost. 
An additional advantage of STATCOM over SVC is that it 
does not generate higher-order harmonics. According to 
data provided by ABB [76] regarding global STATCOM 
installation, the primary reason for more than 70% of 
installed devices was because of flicker mitigation. The 
increased penetration of renewables in recent years has led 
to a greater use of STATCOMs for enhancing grid stability 
[77-79]. 
 
3.4 Static Synchronous Series Compensators (SSSC) 
 

The SSSC, a device based on a voltage source 
converter like the STATCOM, is connected in series with 

a transmission line. Its main functions are to regulate 
voltage, provide reactive power support, and reduce power 
system oscillations by injecting or absorbing reactive 
power. Additionally, the SSSC can adjust the impedance of 
the line, thus enabling control of power flow and reducing 
the possibility of congestion. The SSSC is recognized for 
its capability to quickly respond to changes in system 
parameters and offer damping support during transients. It 
can function alone or work in tandem with other FACTS 
devices to achieve more extensive power system control 
[43-80]. Further success in improving transient stability 
was shown in [81]. The effectiveness of SSSC and 
STATCOM in improving power system stability differs 
based on the specific scenario. In terms of improving the 
first swing stability limit, STATCOM is more effective 
than SSSC. However, when it comes to improving 
damping in subsequent swings, SSSC is found to be more 
effective [82]. In [83], different aspects of research on 
SSSC are shown. 
 
4 RECENT DEVELOPMENTS AND FUTURE DIRECTIONS 

IN FACTS TECHNOLOGY 
 

Initially, SVCs were used mainly for addressing flicker 
issues in electric arc furnaces, but their usage is now 
expanding within utilities due to growing concerns over 
system stability caused by the reduced system inertia 
resulting from the higher integration of renewable energy 
sources [84-85]. Research in [86] conducted a cost-benefit 
analysis on SVCs in relation to dynamic economic 
dispatch. By incorporating stability concerns into the 
calculations, extended analysis could provide further 
insight into the viability of installing SVCs, which is a 
factor that often dissuades system operators from 
considering their use. Advanced models are being 
researched to represent real systems more accurately in the 
context of SVC modelling for transient analysis [87, 88]. 
Furthermore, the control system is being improved in 
ongoing research aimed at enhancing the low voltage ride 
through (LVRT) capability of wind farms through the use 
of SVC [89-91]. The location and size of SVC has been a 
persistent challenge since its initial installation. However, 
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it has been demonstrated that cost-effectiveness in terms of 
transient stability necessitates additional research [92-95].
 

 
Figure 6 FACTS installation by region, compared to regional FPI. 

 
Novel approaches to STATCOM control are being 

explored that incorporate considerations for transient 
behaviour [96, 97], and there is ongoing progress in 
refining control strategies that utilize neural networks [98]. 
Due to the decreasing initial cost of battery energy storage 
systems (BESS), there is an increasing consideration for 
using more STATCOMs with BESS to manage power 
system transients [99]. Although BESS has demonstrated 
superior post-fault voltage restoration performance 
compared to STATCOM individually [100-102], a hybrid 
solution combining both devices has been shown to yield 
even greater benefits for transient response [103-108]. In 
recent years, there has been growing consideration and 
testing of PV inverters as a means of supporting transient 
stability, driven by increasingly stringent grid codes and 
the desire to maximize the potential of already installed PV 
systems [109-113]. 

The current focus of SSSC research is on developing 
novel control algorithms aimed at enhancing transient 
stability [114-116]. Additionally, modular implementation 
is being explored and field tested as a means of overcoming 
the challenges that have traditionally hindered the 
widespread adoption of conventional FACTS devices 
[117-119]. 
 
5 CONCLUSIONS 
 

SVCs are mainly used for reactive power 
compensation and voltage control, while SSSCs are 
primarily used for active power flow control and improving 
transient stability. STATCOMs, on the other hand, offer a 
balance of both reactive and active power control 
capabilities, making them suitable for a wider range of 
applications. While SVCs are a more mature and cost-
effective technology, STATCOMs and SSSCs offer faster 
response times and improved performance, making them a 
preferred choice for modern power systems with high 
penetration of renewable energy sources. Although there 
are many benefits to using FACTS devices, not all are 

easily quantifiable. Furthermore, the cost of these devices 
is quite significant and must be weighed against their 
expected advantages. One of the reasons for the limited 
adoption of FACTS devices is the lack of evidence of their 
profitability as many factors must be taken into account to 
accurately predict installation profitability. It is also 
challenging to obtain information regarding the total 
capital needed for the installation and operation of FACTS 
devices. FACTS devices can prevent potential system 
failures, which could have severe consequences for other 
economic sectors. They can also help prevent widespread 
blackouts, and the opportunity cost of not using them in 
such situations must be considered. The high cost and 
potential losses, as well as issues such as appropriate sizing 
and settings, location, and availability, are major 
considerations in deploying FACTS controllers. Despite 
the long history of development, proven technology, and 
extensive benefits, FACTS controllers are still not widely 
used due to their higher perceived costs compared to 
conventional alternatives. It can be concluded that future 
research in the field of FACTS technology must focus on 
improving transient stability and cost-effectiveness 
through advanced control strategies and integration with 
renewable energy sources, thereby optimizing the 
utilization of pre-existing installed devices. Standardized 
cost-effectiveness metrics can be developed to evaluate 
different FACTS technologies based on objective and 
consistent criteria, enabling accurate comparisons and 
informed decision-making regarding implementation in the 
power system. 
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