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Abstract

Purpose: According to the existing literature, it remains unclear whether a specific ETF outperforms or un-
derperforms its benchmark index in terms of tracking error, especially during crisis periods. Therefore, this 
study concentrates on the largest and most liquid Eurozone equity ETF, iShares Euro Stoxx 50, which tracks 
the Euro STOXX 50 index, with the fundamental objective of identifying explanatory factors of tracking 
errors during crisis periods, encompassing the COVID-19 pandemic and the onset of the Ukrainian war.

Methodology: The added value of current research lies in the utilization of Markov regime switching re-
gression with two-state variables. This approach is supported by the idea that the influence of explanatory 
factors on tracking error may vary between bearish and bullish regimes, which typically align with non-
crisis and crisis periods, respectively.

Results: Empirical findings indicate that an increase in volatility led to a stronger decrease in tracking error 
during periods of market stress than in a bullish regime, while a negative impact of illiquidity on track-
ing error is similar for both regimes. Unlike a single-regime model, Markov switching exhibits a negative 
relationship between the net flows and tracking error, as expected. The effect of premium/discount seems 
to be both positive and negative, but a weaker influence was found during a bearish regime due to herding 
behavior of investors or higher trading costs.

Conclusion: This study relies on an ex-ante approach with its main advantage of providing a forward-
looking estimate of tracking error that takes into account changes in market conditions and the ETF’s 
underlying holdings, unlike historical or ex-post tracking error.
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1. Introduction

Active investing in a highly efficient market requires 
a complex understanding of available information, 
which can be challenging and time-consuming for 
an average investor. Fortunately, the evolution of 
technology has revolutionized the investment land-
scape, enabling investors to efficiently allocate their 
assets into the stock market without the constant 
need to interpret current market information and 

react accordingly. This paradigm shift has given rise 
to the concept of passive investing, where investors 
seek to replicate the performance of an index or a 
specific set of assets. Thus, exchange-traded funds 
(ETFs) have become increasingly popular passive 
investments in Europe in recent years (Le Sourd & 
Safaee, 2021). Beginning with a modest $100 bil-
lion in assets under management in 2000, the ETF 
market skyrocketed to $1 trillion by 2010, and al-
most achieved a $10 trillion market cap in 2020. In 

https://doi.org/10.51680/ev.37.2.3
mailto:jarneric@net.efzg.hr
mailto:losojnik@net.efzg.hr
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Arnerić, J. et al.: Explanatory factors of Eurozone equity ETF tracking error

236 Vol. 37, No. 2 (2024), pp. 235-250

contrast, US-based mutual funds, which have been 
present in the market for nearly a century, held ap-
proximately $27 trillion in assets as of 2020. One 
of the reasons for such an extraordinary increase in 
popularity are the benefits it offered. Some of these 
are minimal fees associated with owning and trad-
ing securities, high liquidity while managing a large 
basket of stocks, diversification benefits and simple 
tradability (Mussavian & Hirsch, 2002; Madhavan, 
2014). As a result, measuring the performance of 
ETFs with respect to tracking error has attracted 
great attention among scientists and practitioners 
(Johnson, 2009; Dorocáková, 2017; Tsalikis & Papa-
dopoulos, 2019; Feder-Sempach & Miziołek, 2023). 
It measures how closely an ETF tracks its bench-
mark index. A low tracking error indicates the abil-
ity of an ETF to replicate its target portfolio or the 
target index almost perfectly, while a high track-
ing error suggests that the ETF deviates from its 
benchmark. Several studies attempted to examine 
the performance of European ETFs with respect to 
tracking error and identify the most influenced fac-
tors. Feder-Sempach & Miziołek (2023) concluded 
that tracking error of eurozone ETFs over a period 
of ten years was relatively low, on average 0.3%, al-
though ETFs with distributing income had a higher 
tracking error against accumulation income ETFs.

However, according to the existing literature, it is still 
unclear if specific ETF outperforms or underperforms 
its benchmark index in terms of tracking error, par-
ticularly in a crisis period. In general, during a crisis 
period, market volatility tends to increase, which can 
make it more difficult for an ETF to perfectly track its 
underlying benchmark (Johnson et al., 2013). This is 
because the prices of the ETF’s constituent securities 
may fluctuate more widely than usual, and the ETF’s 
portfolio manager may not be able to rebalance the 
portfolio efficiently due to market conditions such as 
liquidity constraints and transaction costs. Addition-
ally, during a crisis period, there may be significant 
changes in the composition of the underlying bench-
mark as some securities may become more or less 
important to the benchmark compared to the ETF’s 
holdings, which can also contribute to tracking error 
(Vardharaj et al., 2004). By contrast, in some cases, the 
tracking error of an ETF may decrease during a crisis 
period if the ETF’s portfolio manager is able to identify 
undervalued securities and add them to the portfolio. 
A decreased tracking error implies that ETF outper-
forms the benchmark index and vice versa.

1 Refinitiv Eikon is a financial data platform available at: https://eikon.refinitiv.com/ [accessed April 17, 2023].

In that context, the fundamental objective of the 
current study is to find out if the tracking error of 
the Eurozone ETF relative to its benchmark index 
decreased or increased during crisis periods, spe-
cifically covering COVID-19 pandemic and the 
Ukrainian war. Additionally, it offers empirical evi-
dence for widely used market-based measures that 
may influence tracking error, such as market vola-
tility, illiquidity proxy (bid-ask spread), net flow, 
premium or discount and trading volume. For the 
same reason, daily observations from May 27, 2019 
to May 26, 2023 are provided by Refinitiv Eikon 
service1. According to different market regimes, the 
influence of the aforementioned factors on tracking 
error might be distinctive, and thus this paper tries 
not only to provide empirical evidence and com-
prehensive explanations of those distinctive influ-
ences, but also to fill the gap in eurozone ETF per-
formance analysis with respect to regime switching 
methodology.

This study relies on an ex-ante approach with its 
main advantage of providing a forward-looking 
estimate of tracking error that takes into account 
changes in market conditions and the ETF’s under-
lying holdings, unlike historical or ex-post track-
ing error. It uses the root of the squared residual 
from a simple regression of net asset value (NAV) 
returns on the benchmark returns as an indicator 
of a daily tracking error. Entire research focuses on 
the Eurozone equity ETF, which tracks the Euro 
STOXX 50 index. The STOXX 50 index is a widely 
followed benchmark for the Eurozone equity mar-
ket, representing the performance of fifty blue-chip 
companies from 18 Eurozone countries. There 
are several exchange-traded funds that track the 
STOXX 50 index, but the most popular one is the 
iShares Euro Stoxx 50 ETF as the largest and most 
liquid one, with over 10 billion USD in assets under 
management as of May 2023. This ETF is particu-
larly attractive to investors who want to reinvest 
the dividends into the fund, and not to pay them 
out, which is unique to accumulating income ETFs. 
Unlike distributing income ETFs, the accumulating 
ones maximize future returns. This was yet another 
reason, except the size and its liquidity, for selecting 
iShares Euro Stoxx 50 ETF.

Added value of the research consists of the em-
ployed methodology considering regime switching 
regression with two-state variables that follow the 
Markov chain. The major reason for this is that the 
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influence of tracking error explaining factors may 
deviate over time depending on whether bearish 
or bullish state is in the market. Those two market 
regimes usually coincide with non-crisis and crisis 
periods, and according to the span of time-series 
data, it captures the COVID-19 pandemic and the 
Ukrainian war. This is particularly important as the 
prices of securities tend to fluctuate more during 
times of stress and market turmoil, which can hin-
der the ability of the portfolio manager to efficiently 
manage portfolios of the constituent ETF. The ina-
bility of the portfolio manager to balance portfolios 
strays the price of the ETF away from its benchmark 
index and hence decreases the ETF tracking error. 
Conversely, actively managed ETFs aiming to out-
perform their benchmark index may experience a 
decrease in tracking error during stressful periods. 
This occurs when the portfolio manager success-
fully identifies undervalued securities and incor-
porates them into the portfolio, leading to superior 
performance compared to the index. In addition, a 
Markov switching approach is appropriate for non-
linear time-series models with regimes determined 
by unobserved states which must be inferred from 
the data and the parameters are expanded to in-
clude the transition probabilities. Unlike current 
literature, which mainly revolves around the Amer-
ican market and the ETFs, this paper shifts atten-
tion and contributes to the literature which focuses 
on the European market.

The rest of the paper is organized as follows. Sec-
tion 2 explains the theoretical framework of ETFs, 
including a review of previous studies. Section 3 
presents data and methodology. Section 4 provides 
empirical findings, while Section 5 offers a compre-
hensive discussion of the results. Finally, Section 6 
provides a conclusion.

2. Theoretical framework and a review of 
previous studies

Both mutual funds and ETFs serve to reduce risk 
through diversification. However, there are key dis-
tinctions between the two. ETFs are pooled invest-
ment vehicles that track specific indexes, mostly 
passively managed. With a focus on risk reduction 
rather than returns, ETFs have seen a significant in-
crease in total market cap in the last two decades. 
This simplicity makes them attractive to retail inves-
tors. By contrast, mutual funds lack the ability for 
investors to sell shares at any time and are actively 

managed. The research conducted by Kaminsky 
(2001) suggests that mutual funds play a significant 
role among institutional investors as the primary 
channel for financial flows into emerging markets. 
On the other hand, the findings of Sy and Ong 
(2004) indicate that this phenomenon is more pro-
nounced in the European market compared to the 
United States. This active management of the fund 
comes with greater initial and management costs as 
well as higher transaction costs compared to ETFs 
which drive retail investors toward cheaper alterna-
tives. Broman (2016) says that higher liquidity ETF 
shares attract investors who are not willing to invest 
directly into illiquid assets such as commodities, 
emerging markets, etc. When buying ETFs from the 
broker, one will find that there are many different 
options of an ETF that they want to buy from differ-
ent markets. For example, an ETF from the London 
stock exchange will show prices in pounds, whereas 
on some exchanges there will be a limited number of 
ETFs available to be bought. Investors also want to 
avoid buying from multiple exchanges as there are 
annual charging fees. One important factor to con-
sider is the volume that certain instruments have on 
different exchanges. This is particularly important 
when buying ETFs because of their tracking error. If 
the volume and trading frequency of the ETF is low, 
it can exhibit higher spreads and therefore increase 
tracking error. Therefore, it is wise to choose a stock 
exchange with higher trading volume compared to 
other exchanges. 

There are several approaches to obtaining ETF 
tracking error (a historical approach, an ex-post or 
an ex-ante approach), each with its own pros and 
cons (De Rossi, 2015). Most studies have used re-
gression analysis after obtaining tracking error, in-
dicating that European ETFs generally exhibit good 
performance in terms of tracking their benchmarks. 
However, there is significant variation depending 
on the specific ETF under analysis, the measure-
ment of tracking error, the observed period, and the 
approaches employed to examine the factors influ-
encing tracking error. Understanding these factors 
can assist investors in making informed decisions 
when selecting ETFs for their portfolios. Because of 
the nature of ETFs and their mechanics, the move-
ments of tracking error can be expected to move 
in directions which align with the theory behind 
the variables. The deviation of ETF prices from 
their NAV is primarily maintained through the ar-
bitrage process. Theoretically, an increase in pre-
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mium/discount should invite arbitrageurs, which in 
turn should align ETF prices better with its NAV. 
Moreover, ETFs that include international stocks 
are expected to exhibit greater deviation due to the 
continued trading of their shares on the domestic 
exchange, while the market for the underlying se-
curities in the creation basket is closed. Similarly, 
in theory, ETFs containing illiquid securities should 
experience higher deviations as the arbitrage pro-
cess would require a larger deviation to compensate 
for the higher transaction costs associated with 
trading those less liquid securities. Increased trad-
ing volume positively impacts liquidity and bid-ask 
spread, while market volatility increases bid-ask 
spreads. Net inflows and their effect on the tracking 
error highly depend on the state of the market as 
market participants have different behaviors dur-
ing each regime. To expand the theory, the exami-
nation also includes a review of what the literature 
suggests about variable relationships. ETFs which 
invest in less liquid assets may experience diffi-
culty in replicating their benchmark index leading 
to higher tracking errors. Bae & Kim (2020) have 
documented a positive relation between illiquidity 
and tracking error.

Hillard & Le (2022) found that emerging European 
markets have higher tracking error in comparison 
to developed Europe, and it was around 0.67% and 
0.33%, respectively. Rompotis (2011) states that 
tracking error for ETFs with higher expense ratios 
was higher. Additionally, Tsalikis & Papadopoulos 
(2019) confirmed that tracking error for European 
ETFs was, on average, higher than that of US ETFs, 
while a possible explanation for the aforementioned 
could lie in the economies of scale and thus lower 
costs. Chu (2011) also found that economies of scale 
will improve tracking ability, while their research 
suggests that expense, delay in receiving dividends, 
the trading cost and the market risk increase track-
ing error. Additionally, Elton et al. (2019), as well 
as Chu & Xu (2021), suggested that tracking error 
is significantly influenced by delayed reinvestments 
of dividend. Regardless of the tracking error meas-
urement, higher assets under management (AUM) 
positively affect tracking ability. The study also 
found that higher expense ratios are associated with 
higher tracking errors, although statistical signifi-
cance is observed only for one measurement. An-
other study by Frino & Gallagher (2001) presented 
evidence that tracking error is positively and signif-
icantly correlated with dividend payments, and also 

that there were seasonal patterns with higher error 
rates in January and May, and a lower error rate in 
the quarters ending in March, June, September, and 
December. Aber et al. (2009) stated that the range 
of daily price fluctuations was very large, which 
indicated that active traders or arbitrageurs were 
more likely to profit than passive traders. Blitz et al. 
(2012) revealed in their study that index funds and 
ETFs in Europe underperform their benchmarks by 
larger amounts than their reported expenses, with 
dividend taxes explaining a significant portion of 
underperformance. This highlights the need to ac-
count for dividend taxes in evaluating fund perfor-
mance and measuring fund costs accurately.

Other well-known factors explaining ETFs tracking 
error are market volatility, trading volume, the net 
flow as well as premium or discount. Higher mar-
ket volatility and trading volumes can lead to wider 
bid-ask spreads, which can increase the cost of 
trading and result in higher tracking errors, as ob-
served in several studies, including Ben-David et al. 
(2019). In a study on Hong-Kong ETFs, Chu (2011) 
demonstrated that trading volume increases track-
ing error; however, it is not significant, while Yian-
naki (2015) suggested that there is a weak correla-
tion between tracking error and trading volumes. 
Dorocáková (2017) found that fluctuations in the 
underlying index can have a relative influence on 
tracking error. In the case of bid-ask spreads, Mein-
hardt et al. (2015) indicated a positive relation to 
tracking error for the German ETF market.

On the demand side, the net flow ETF may affect its 
tracking error. The ETF net flow tends to increase 
during a bulish period when investors are more op-
timistic and confident about the future of financial 
markets. Conversely, during a bearish period in the 
market, the ETF net flow tends to decrease as in-
vestors become more risk-averse and seek to reduce 
their exposure to equities. According to research of 
Ben-David et al. (2017), tracking error is negatively 
related to the ETF net flow. Another study by Oster-
hoff, & Kaserer (2016) confirmed that the net flow 
had a significant negative effect on tracking error 
for small ETFs. 

Divergence of ETF market prices from their net as-
set value, reported as premium (or discount), is yet 
another explaining factor of ETF tracking error. A 
study by Wong & Shum (2010) found that tracking 
error of the examined ETFs is consistently positive 
in both bullish and bearish markets. This suggests 
that investors are willing to pay a premium for ETF 
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investments, as ETFs provide positive returns that 
can cover transaction costs and potentially yield 
returns in different market conditions. Rompotis 
(2010) found tracking error to be positively affected 
by premium/discount, while Li and Zhao (2014) 
found that premiums can lead to increased tracking 
error in ETFs that hold illiquid securities. 

Aber et al. (2009) suggested that ETFs traded more 
at a premium than at a discount, indicating that the 
market tended to overvalue ETFs compared to their 
NAV. Additionally, premiums have shown to be 
higher for newly created ETFs, as documented in a 
study by Piccotti (2018), which indicates that inves-
tors are willing to pay a premium in order to access 
the liquidity benefits provided by ETFs, which allow 
indirect availability to less accessible underlying se-
curities.

3. Data and methodology

In previous studies, researchers have used both 
NAV returns and closing market price returns to 
evaluate the tracking error of ETFs compared to 
their benchmark index returns (Zawadzki, 2020). 
However, due to its advantages, the NAV-based 
measurement of tracking error is widely recognized 
as the preferred approach. NAV returns consider 
dividends or any income generated by the underly-
ing assets, providing a more accurate and reliable 
measure of the ETF’s performance in accordance 
with GIPS - Global Investment Performance Stand-

ards (CFA, 2020). Additionally, changes in the net 
asset value reflect what an investor would actually 
receive from holding the ETF (Osojnik, 2023). In 
contrast, closing price ETF returns may be influ-
enced by short-term price fluctuations that do not 
necessarily reflect the underlying performance of 
the ETF. Therefore, using closing price returns to 
assess tracking error can be misleading. Further-
more, the difference between ETF market prices 
and their respective net asset values introduces an-
other variable known as the premium or discount. 
This variable will be utilized to explain ETF track-
ing error. Mispricing of an ETF in relation to its net 
asset value creates arbitrage opportunities through 
the creation and redemption mechanism, which 
can be advantageous for investors (Osojnik, 2023).

The first impression of tracking error can be made 
by visual inspection of iShares Euro Stoxx 50 ETF 
net asset values and market closing prices of a 
benchmark Euro STOXX 50. Figure 1 uses a dual 
scale axis for comparison and highlights the shaded 
area covering turbulent periods of the COVID-19 
crisis and the Ukrainian war. Both net asset values 
and closing prices are expressed in the same cur-
rency (EUR), but with different scales. Although 
Figure 1 clearly indicates that the ETF tracks its 
benchmark quite well with few disparities during 
a bullish regime, commenting on the ETF perfor-
mance solely based on price differences is not pos-
sible; instead, log returns are considered.

Figure 1 ETF net asset values vs. benchmark index prices

Source: Authors’ construction using data provided by Refinitiv Eikon
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Before analysis continues, all variables of inter-
est are derived from the raw data. Firstly, tracking 
error is estimated following the ex-ante approach 
by regressing NAV returns of the ETF (

Source: Authors’ construction using data provided by Refinitiv Eikon

Before analysis continues, all variables of interest are derived from the raw data. Firstly, 

tracking error is estimated following the ex-ante approach by regressing NAV returns of the 

ETF (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) on benchmark returns (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁). The root of squared regression residual for each 

trading day resulted in tracking error (Osojnik, 2023):

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.0109 − 0.9949𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁)2 .                                  (1)

In the above expression, -0.0109 and -0.9949 are the constant term and the slope coefficient, 

respectively.

Daily NAV returns of ETF and benchmark returns, used in the regression, are obtained 

following the same formulation:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1
100%       𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 =

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 − 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 100%,                  (2)

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1 are ETFs net asset values on the current and previous trading day, 

while 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 and  𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 are closing prices of a benchmark index.

Next, an illiquidity proxy measure is obtained as bid-ask spread with end-of-day ETF quotes 

toward its mid-quote, by the following expression:

𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 =
2(𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)
𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

100%.                                                        (3)

) on 
benchmark returns (

Source: Authors’ construction using data provided by Refinitiv Eikon

Before analysis continues, all variables of interest are derived from the raw data. Firstly, 

tracking error is estimated following the ex-ante approach by regressing NAV returns of the 

ETF (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) on benchmark returns (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁). The root of squared regression residual for each 

trading day resulted in tracking error (Osojnik, 2023):

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.0109 − 0.9949𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁)2 .                                  (1)

In the above expression, -0.0109 and -0.9949 are the constant term and the slope coefficient, 

respectively.

Daily NAV returns of ETF and benchmark returns, used in the regression, are obtained 

following the same formulation:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1
100%       𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 =

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 − 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 100%,                  (2)

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1 are ETFs net asset values on the current and previous trading day, 

while 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 and  𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 are closing prices of a benchmark index.

Next, an illiquidity proxy measure is obtained as bid-ask spread with end-of-day ETF quotes 

toward its mid-quote, by the following expression:

𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 =
2(𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)
𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

100%.                                                        (3)

). The root of squared 
regression residual for each trading day resulted in 
tracking error (Osojnik, 2023): 

Source: Authors’ construction using data provided by Refinitiv Eikon

Before analysis continues, all variables of interest are derived from the raw data. Firstly, 

tracking error is estimated following the ex-ante approach by regressing NAV returns of the 

ETF (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) on benchmark returns (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁). The root of squared regression residual for each 

trading day resulted in tracking error (Osojnik, 2023):

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.0109 − 0.9949𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁)2 .                                  (1)

In the above expression, -0.0109 and -0.9949 are the constant term and the slope coefficient, 

respectively.

Daily NAV returns of ETF and benchmark returns, used in the regression, are obtained 

following the same formulation:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1
100%       𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 =

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 − 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 100%,                  (2)

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1 are ETFs net asset values on the current and previous trading day, 

while 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 and  𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 are closing prices of a benchmark index.

Next, an illiquidity proxy measure is obtained as bid-ask spread with end-of-day ETF quotes 

toward its mid-quote, by the following expression:

𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 =
2(𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)
𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

100%.                                                        (3)

 (1)

In the above expression, -0.0109 and -0.9949 are 
the constant term and the slope coefficient, respec-
tively.

Daily NAV returns of ETF and benchmark returns, 
used in the regression, are obtained following the 
same formulation:

Source: Authors’ construction using data provided by Refinitiv Eikon

Before analysis continues, all variables of interest are derived from the raw data. Firstly, 

tracking error is estimated following the ex-ante approach by regressing NAV returns of the 

ETF (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) on benchmark returns (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁). The root of squared regression residual for each 

trading day resulted in tracking error (Osojnik, 2023):

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.0109 − 0.9949𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁)2 .                                  (1)

In the above expression, -0.0109 and -0.9949 are the constant term and the slope coefficient, 

respectively.

Daily NAV returns of ETF and benchmark returns, used in the regression, are obtained 

following the same formulation:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1
100%       𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 =

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 − 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 100%,                  (2)

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1 are ETFs net asset values on the current and previous trading day, 

while 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 and  𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 are closing prices of a benchmark index.

Next, an illiquidity proxy measure is obtained as bid-ask spread with end-of-day ETF quotes 

toward its mid-quote, by the following expression:

𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 =
2(𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)
𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

100%.                                                        (3)

 

Source: Authors’ construction using data provided by Refinitiv Eikon

Before analysis continues, all variables of interest are derived from the raw data. Firstly, 

tracking error is estimated following the ex-ante approach by regressing NAV returns of the 

ETF (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) on benchmark returns (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁). The root of squared regression residual for each 

trading day resulted in tracking error (Osojnik, 2023):

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.0109 − 0.9949𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁)2 .                                  (1)

In the above expression, -0.0109 and -0.9949 are the constant term and the slope coefficient, 

respectively.

Daily NAV returns of ETF and benchmark returns, used in the regression, are obtained 

following the same formulation:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1
100%       𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 =

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 − 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 100%,                  (2)

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1 are ETFs net asset values on the current and previous trading day, 

while 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 and  𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 are closing prices of a benchmark index.

Next, an illiquidity proxy measure is obtained as bid-ask spread with end-of-day ETF quotes 

toward its mid-quote, by the following expression:

𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 =
2(𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)
𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

100%.                                                        (3)

 (2)

where 

Source: Authors’ construction using data provided by Refinitiv Eikon

Before analysis continues, all variables of interest are derived from the raw data. Firstly, 

tracking error is estimated following the ex-ante approach by regressing NAV returns of the 

ETF (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) on benchmark returns (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁). The root of squared regression residual for each 

trading day resulted in tracking error (Osojnik, 2023):

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.0109 − 0.9949𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁)2 .                                  (1)

In the above expression, -0.0109 and -0.9949 are the constant term and the slope coefficient, 

respectively.

Daily NAV returns of ETF and benchmark returns, used in the regression, are obtained 

following the same formulation:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1
100%       𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 =

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 − 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 100%,                  (2)

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1 are ETFs net asset values on the current and previous trading day, 

while 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 and  𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 are closing prices of a benchmark index.

Next, an illiquidity proxy measure is obtained as bid-ask spread with end-of-day ETF quotes 

toward its mid-quote, by the following expression:

𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 =
2(𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)
𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

100%.                                                        (3)

 and 

Source: Authors’ construction using data provided by Refinitiv Eikon

Before analysis continues, all variables of interest are derived from the raw data. Firstly, 

tracking error is estimated following the ex-ante approach by regressing NAV returns of the 

ETF (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) on benchmark returns (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁). The root of squared regression residual for each 

trading day resulted in tracking error (Osojnik, 2023):

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.0109 − 0.9949𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁)2 .                                  (1)

In the above expression, -0.0109 and -0.9949 are the constant term and the slope coefficient, 

respectively.

Daily NAV returns of ETF and benchmark returns, used in the regression, are obtained 

following the same formulation:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1
100%       𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 =

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 − 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 100%,                  (2)

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1 are ETFs net asset values on the current and previous trading day, 

while 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 and  𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 are closing prices of a benchmark index.

Next, an illiquidity proxy measure is obtained as bid-ask spread with end-of-day ETF quotes 

toward its mid-quote, by the following expression:

𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 =
2(𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)
𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

100%.                                                        (3)

 are ETFs net asset values 
on the current and previous trading day, while 

Source: Authors’ construction using data provided by Refinitiv Eikon

Before analysis continues, all variables of interest are derived from the raw data. Firstly, 

tracking error is estimated following the ex-ante approach by regressing NAV returns of the 

ETF (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) on benchmark returns (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁). The root of squared regression residual for each 

trading day resulted in tracking error (Osojnik, 2023):

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.0109 − 0.9949𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁)2 .                                  (1)

In the above expression, -0.0109 and -0.9949 are the constant term and the slope coefficient, 

respectively.

Daily NAV returns of ETF and benchmark returns, used in the regression, are obtained 

following the same formulation:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1
100%       𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 =

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 − 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 100%,                  (2)

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1 are ETFs net asset values on the current and previous trading day, 

while 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 and  𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 are closing prices of a benchmark index.

Next, an illiquidity proxy measure is obtained as bid-ask spread with end-of-day ETF quotes 

toward its mid-quote, by the following expression:

𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 =
2(𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)
𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

100%.                                                        (3)

 
and 

Source: Authors’ construction using data provided by Refinitiv Eikon

Before analysis continues, all variables of interest are derived from the raw data. Firstly, 

tracking error is estimated following the ex-ante approach by regressing NAV returns of the 

ETF (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) on benchmark returns (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁). The root of squared regression residual for each 

trading day resulted in tracking error (Osojnik, 2023):

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.0109 − 0.9949𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁)2 .                                  (1)

In the above expression, -0.0109 and -0.9949 are the constant term and the slope coefficient, 

respectively.

Daily NAV returns of ETF and benchmark returns, used in the regression, are obtained 

following the same formulation:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1
100%       𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 =

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 − 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 100%,                  (2)

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1 are ETFs net asset values on the current and previous trading day, 

while 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 and  𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 are closing prices of a benchmark index.

Next, an illiquidity proxy measure is obtained as bid-ask spread with end-of-day ETF quotes 

toward its mid-quote, by the following expression:

𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 =
2(𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)
𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

100%.                                                        (3)

 are closing prices of a benchmark index.

Next, an illiquidity proxy measure is obtained as 
bid-ask spread with end-of-day ETF quotes toward 
its mid-quote, by the following expression:

Source: Authors’ construction using data provided by Refinitiv Eikon

Before analysis continues, all variables of interest are derived from the raw data. Firstly, 

tracking error is estimated following the ex-ante approach by regressing NAV returns of the 

ETF (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) on benchmark returns (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁). The root of squared regression residual for each 

trading day resulted in tracking error (Osojnik, 2023):

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.0109 − 0.9949𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁)2 .                                  (1)

In the above expression, -0.0109 and -0.9949 are the constant term and the slope coefficient, 

respectively.

Daily NAV returns of ETF and benchmark returns, used in the regression, are obtained 

following the same formulation:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1
100%       𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 =

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 − 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 100%,                  (2)

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1 are ETFs net asset values on the current and previous trading day, 

while 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 and  𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 are closing prices of a benchmark index.

Next, an illiquidity proxy measure is obtained as bid-ask spread with end-of-day ETF quotes 

toward its mid-quote, by the following expression:

𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 =
2(𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)
𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

100%.                                                        (3) (3)

ETF daily premium is also expressed as a percent-
age like all other variables according to:

ETF daily premium is also expressed as a percentage like all other variables according to:

𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 =
𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1
100%,                                                   (4)

where 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 are closing (market) prices of the ETF on day 𝑅𝑅𝑅𝑅. The same indicator (4) exhibits a

discount (negative values) when the ETF market price is lower than its NAV. This means that 

investors buy the ETF at a price cheaper than the underlying value of its assets. Conversely, an 

ETF is trading at a premium when its market price is higher than its NAV (positive values of 

the aforementioned indicator).

The daily ETF net flow, which represents the inflow and outflow of ETF, is given by the 

formula:

𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅_𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 =
𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 − �1 + 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡−1𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

100 � 𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1
𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1

100%,                                  (5)

where the total net asset value 𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 represents a product of NAV per share and the number 

of outstanding shares on the current day. The previous day total net asset value 𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡−1 is 

adjusted with the respective ETF daily return to account for the performance effect of the 

change, which is independent of capital flows.

Market volatility is measured by the official Euro Stoxx 50 volatility index (VSTOXX), which 

is the European version of VIX, reflecting investor’s sentiment as expectations of future 

volatility. 

Summary statistics of variables of interest are reported in Table 1. All values of variables are 

expressed in percentages, except the volatility index and trading volume. Only trading volume 

is transformed into logs due to a large scale and extreme variations of trading across days.

Table 1 Descriptive statistics of iShares Euro Stoxx 50 ETF tracking error and its explanatory 

predictors along with ADF unit root test

Variable Min Max Mean SD Median ADF test

Tracking error 0.00 1.08 0.07 0.09 0.05 -15.1558***

Illiquidity proxy 0.01 0.48 0.06 0.04 0.05 -11.5989***

Volatility index 10.69 85.62 23.21 8.85 21.36 -13.8413***

 (4)

where 

ETF daily premium is also expressed as a percentage like all other variables according to:

𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 =
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where 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 are closing (market) prices of the ETF on day 𝑅𝑅𝑅𝑅. The same indicator (4) exhibits a

discount (negative values) when the ETF market price is lower than its NAV. This means that 

investors buy the ETF at a price cheaper than the underlying value of its assets. Conversely, an 

ETF is trading at a premium when its market price is higher than its NAV (positive values of 

the aforementioned indicator).

The daily ETF net flow, which represents the inflow and outflow of ETF, is given by the 

formula:
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adjusted with the respective ETF daily return to account for the performance effect of the 

change, which is independent of capital flows.

Market volatility is measured by the official Euro Stoxx 50 volatility index (VSTOXX), which 

is the European version of VIX, reflecting investor’s sentiment as expectations of future 

volatility. 

Summary statistics of variables of interest are reported in Table 1. All values of variables are 

expressed in percentages, except the volatility index and trading volume. Only trading volume 

is transformed into logs due to a large scale and extreme variations of trading across days.

Table 1 Descriptive statistics of iShares Euro Stoxx 50 ETF tracking error and its explanatory 

predictors along with ADF unit root test

Variable Min Max Mean SD Median ADF test

Tracking error 0.00 1.08 0.07 0.09 0.05 -15.1558***

Illiquidity proxy 0.01 0.48 0.06 0.04 0.05 -11.5989***

Volatility index 10.69 85.62 23.21 8.85 21.36 -13.8413***
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 (5)

where the total net asset value TNAVt  represents a 
product of NAV per share and the number of out-
standing shares on the current day. The previous 
day total net asset value TNAVt-1  is adjusted with 
the respective ETF daily return to account for the 
performance effect of the change, which is inde-
pendent of capital flows.

Market volatility is measured by the official Euro 
Stoxx 50 volatility index (VSTOXX), which is the 
European version of VIX, reflecting investor’s senti-
ment as expectations of future volatility. 

Summary statistics of variables of interest are re-
ported in Table 1. All values of variables are ex-
pressed in percentages, except the volatility index 
and trading volume. Only trading volume is trans-
formed into logs due to a large scale and extreme 
variations of trading across days.

Table 1 Descriptive statistics of iShares Euro Stoxx 50 ETF tracking error and its explanatory predic-
tors along with ADF unit root test

Variable Min Max Mean SD Median ADF test

Tracking error 0.00 1.08 0.07 0.09 0.05 -15.1558***

Illiquidity proxy 0.01 0.48 0.06 0.04 0.05 -11.5989***

Volatility index 10.69 85.62 23.21 8.85 21.36 -13.8413***

Net flow -5.74 3.59 -0.03 0.48 -0.01 -20.9258***

Premium/discount -3.55 2.19 0.04 0.21 0.05 -18.7641***

Logs of volume 7.37 13.56 9.84 0.85 9.82 -13.4245***
Note: significance levels * p < 0.05, ** p < 0.01, *** p < 0.001 
Source: Authors’ calculation using data provided by Refinitiv Eikon
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It can be noticed in Table 1 that the mean and medi-
an tracking errors are 0.07% and 0.05%, respectively. 
The maximum value of 1.08% can be expected dur-
ing high market volatility and stress, when assets in 
the portfolio become less liquid and more difficult 
to allocate. The null hypothesis of the Augmented 
Dickey-Fuller (ADF) unit root test is rejected at the 
significance level of 1%, indicating that all consid-
ered variables are stationary. ADF in the levels is 
performed without trend and without drift, except 
for the net flow, and the premium/discount as their 
mean is approximately zero, and thus a drift term is 

not omitted for those two variables (Osojnik, 2023). 
Stationarity of all variables is preferred to eliminate 
possible suspicion of the results in the post-estima-
tion phase caused by the non-stationarity issue.

Figure 2 shows the clustering of tracking error, vol-
atility and illiquidity, particularly in crisis periods 
which can be identified as bearish states of the ETF 
regime. Therefore, it is not surprising that these 
three variables are more correlated than other vari-
ables, indicating that illiquidity and volatility con-
tribute positively to tracking error (Figure 3).

Figure 2 Time-series of variables observed from May 27, 2019 to May 26, 2023

Source: Authors’ construction using data provided by Refinitiv Eikon
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Figure 3 Correlation matrix between the ob-
served variables

Source: Authors’ construction using data provided by 
Refinitiv Eikon

An application of Markov regime-switching (MRS) 
models has attracted great interest in capturing dy-
namics of financial time-series, primarily due to the 
nonlinear dependence between considered vari-
ables as well as their nonstationary property (time-
varying moments). In these circumstances, the 
main advantage of MRS is that it allows regression 
parameters to switch across multiple states or re-
gimes, with the probabilities of switching between 
these states being dependent on the current state 
(Peovski et al., 2022). For example, the MRS model 
can capture changes of the dependence between 
two or more variables during different economic 
cycles or market regimes, such as high and low 
volatility regimes or bearish and bullish regimes, 
which usually coincides with crisis and non-crisis 
periods (Osojnik, 2023).

A simple Markov switching bivariate regression 
model, which considers two states of regime, can be 
formalized as follows:

across multiple states or regimes, with the probabilities of switching between these states being 

dependent on the current state (Peovski et al., 2022). For example, the MRS model can capture 

changes of the dependence between two or more variables during different economic cycles or 

market regimes, such as high and low volatility regimes or bearish and bullish regimes, which 

usually coincides with crisis and non-crisis periods (Osojnik, 2023).

A simple Markov switching bivariate regression model, which considers two states of regime,

can be formalized as follows:

𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑥𝑥𝑥𝑥𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡   
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 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼1(2 − 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡) + 𝛼𝛼𝛼𝛼2(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 − 1) (6)

𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝛽𝛽𝛽𝛽1(2 − 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡) + 𝛽𝛽𝛽𝛽2(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 − 1)

𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡2 = 𝜎𝜎𝜎𝜎12(2 − 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡) + 𝜎𝜎𝜎𝜎22(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 − 1),

where 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗  is a discrete state variable that indicates in which regime the Markov process is

𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑡𝑡𝑡𝑡. Consequently, if the process is in the first regime state, then  𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 1, with 

parameters 𝛼𝛼𝛼𝛼1 , 𝛽𝛽𝛽𝛽1 and 𝜎𝜎𝜎𝜎12, but if the process is in the second regime state, then 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 2, with 

parameters 𝛼𝛼𝛼𝛼2, 𝛽𝛽𝛽𝛽2 and 𝜎𝜎𝜎𝜎22. Assuming that the conditional probability density function is 

Gaussian:

𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡) = 1
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where St=j is a discrete state variable that indicates 
in which regime the Markov process is j=1,2,..., k. 
Consequently, if the process is in the first regime 
state, then St=1, with parameters α1, β1 and σ

2
1, but if 

the process is in the second regime state, then St=2, 
with parameters α2, β2  and σ2

2 . Assuming that the 
conditional probability density function is Gaussian:
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changes of the dependence between two or more variables during different economic cycles or 

market regimes, such as high and low volatility regimes or bearish and bullish regimes, which 

usually coincides with crisis and non-crisis periods (Osojnik, 2023).
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𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡2 = 𝜎𝜎𝜎𝜎12(2 − 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡) + 𝜎𝜎𝜎𝜎22(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 − 1),

where 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗  is a discrete state variable that indicates in which regime the Markov process is

𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑡𝑡𝑡𝑡. Consequently, if the process is in the first regime state, then  𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 1, with 

parameters 𝛼𝛼𝛼𝛼1 , 𝛽𝛽𝛽𝛽1 and 𝜎𝜎𝜎𝜎12, but if the process is in the second regime state, then 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 2, with 

parameters 𝛼𝛼𝛼𝛼2, 𝛽𝛽𝛽𝛽2 and 𝜎𝜎𝜎𝜎22. Assuming that the conditional probability density function is 

Gaussian:

𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡) = 1

�2𝜋𝜋𝜋𝜋𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
2
𝑅𝑅𝑅𝑅𝑥𝑥𝑥𝑥𝑅𝑅𝑅𝑅 �− (𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆−𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∙𝑥𝑥𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)2

2𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
2 �,                                     (7)

then a log-likelihood function 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙 = ∑ 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛 {𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡)}𝐸𝐸𝐸𝐸
𝑡𝑡𝑡𝑡=1 can be maximized with respect to 

parameters 𝛼𝛼𝛼𝛼1 , 𝛼𝛼𝛼𝛼2 , 𝛽𝛽𝛽𝛽1 , 𝛽𝛽𝛽𝛽2, 𝜎𝜎𝜎𝜎12,  and 𝜎𝜎𝜎𝜎22.  However, the state variable is usually unobserved in 

practical applications, but it is commonly assumed that it follows a Markov chain process with 

a k-dimensional state space (Hamilton, 1989). The specificity of a Markov chain process is the 

first-order dependence, implying that a state variable at the moment 𝑅𝑅𝑅𝑅 depends only on the 

previous state of the process at the moment 𝑅𝑅𝑅𝑅 − 1 (Goldfeld & Quandt, 1973). Thus, for 𝑡𝑡𝑡𝑡 = 2,

the log-likelihood function takes the form:

𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙 = � ln ���
1

�2𝜋𝜋𝜋𝜋𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡2
exp �−

(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 − 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 − 𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑥𝑥𝑥𝑥𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡)2

2𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡2
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�Pr(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)�.     
𝐸𝐸𝐸𝐸

𝑡𝑡𝑡𝑡=1

(8)

 (7)

then a log-likelihood function  
can be maximized with respect to parameters α1,   
α2 , β1, β2 , σ

2
1 and σ2

2. However, the state variable is 
usually unobserved in practical applications, but 
it is commonly assumed that it follows a Markov 
chain process with a k-dimensional state space 
(Hamilton, 1989). The specificity of a Markov chain 
process is the first-order dependence, implying that 
a state variable at the moment t depends only on 
the previous state of the process at the moment t-1 
(Goldfeld & Quandt, 1973). Thus, for k=2, the log-
likelihood function takes the form:

across multiple states or regimes, with the probabilities of switching between these states being 

dependent on the current state (Peovski et al., 2022). For example, the MRS model can capture 

changes of the dependence between two or more variables during different economic cycles or 

market regimes, such as high and low volatility regimes or bearish and bullish regimes, which 

usually coincides with crisis and non-crisis periods (Osojnik, 2023).

A simple Markov switching bivariate regression model, which considers two states of regime,

can be formalized as follows:

𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑥𝑥𝑥𝑥𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡   

𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ~ 𝑊𝑊𝑊𝑊𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡2 )

 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼1(2 − 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡) + 𝛼𝛼𝛼𝛼2(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 − 1) (6)

𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝛽𝛽𝛽𝛽1(2 − 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡) + 𝛽𝛽𝛽𝛽2(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 − 1)

𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡2 = 𝜎𝜎𝜎𝜎12(2 − 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡) + 𝜎𝜎𝜎𝜎22(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 − 1),

where 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗  is a discrete state variable that indicates in which regime the Markov process is

𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑡𝑡𝑡𝑡. Consequently, if the process is in the first regime state, then  𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 1, with 

parameters 𝛼𝛼𝛼𝛼1 , 𝛽𝛽𝛽𝛽1 and 𝜎𝜎𝜎𝜎12, but if the process is in the second regime state, then 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 2, with 

parameters 𝛼𝛼𝛼𝛼2, 𝛽𝛽𝛽𝛽2 and 𝜎𝜎𝜎𝜎22. Assuming that the conditional probability density function is 

Gaussian:

𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡) = 1
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2 �,                                     (7)

then a log-likelihood function 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙 = ∑ 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛 {𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡)}𝐸𝐸𝐸𝐸
𝑡𝑡𝑡𝑡=1 can be maximized with respect to 

parameters 𝛼𝛼𝛼𝛼1 , 𝛼𝛼𝛼𝛼2 , 𝛽𝛽𝛽𝛽1 , 𝛽𝛽𝛽𝛽2, 𝜎𝜎𝜎𝜎12,  and 𝜎𝜎𝜎𝜎22.  However, the state variable is usually unobserved in 

practical applications, but it is commonly assumed that it follows a Markov chain process with 

a k-dimensional state space (Hamilton, 1989). The specificity of a Markov chain process is the 

first-order dependence, implying that a state variable at the moment 𝑅𝑅𝑅𝑅 depends only on the 

previous state of the process at the moment 𝑅𝑅𝑅𝑅 − 1 (Goldfeld & Quandt, 1973). Thus, for 𝑡𝑡𝑡𝑡 = 2,

the log-likelihood function takes the form:

𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙 = � ln ���
1

�2𝜋𝜋𝜋𝜋𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡2
exp �−
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𝑗𝑗𝑗𝑗=1

�Pr(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)�.     
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𝑡𝑡𝑡𝑡=1

(8) (8)

The probability density function (8) for each ob-
servation t=1,2,..., T is presented as a weighted sum 
of conditional probability density functions for 
both regime states j=1,2. The associated weights 

across multiple states or regimes, with the probabilities of switching between these states being 

dependent on the current state (Peovski et al., 2022). For example, the MRS model can capture 

changes of the dependence between two or more variables during different economic cycles or 

market regimes, such as high and low volatility regimes or bearish and bullish regimes, which 

usually coincides with crisis and non-crisis periods (Osojnik, 2023).

A simple Markov switching bivariate regression model, which considers two states of regime,

can be formalized as follows:

𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑥𝑥𝑥𝑥𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡   

𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ~ 𝑊𝑊𝑊𝑊𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡2 )

 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼1(2 − 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡) + 𝛼𝛼𝛼𝛼2(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 − 1) (6)

𝛽𝛽𝛽𝛽𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝛽𝛽𝛽𝛽1(2 − 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡) + 𝛽𝛽𝛽𝛽2(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 − 1)

𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡2 = 𝜎𝜎𝜎𝜎12(2 − 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡) + 𝜎𝜎𝜎𝜎22(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 − 1),

where 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗  is a discrete state variable that indicates in which regime the Markov process is

𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑡𝑡𝑡𝑡. Consequently, if the process is in the first regime state, then  𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 1, with 

parameters 𝛼𝛼𝛼𝛼1 , 𝛽𝛽𝛽𝛽1 and 𝜎𝜎𝜎𝜎12, but if the process is in the second regime state, then 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 2, with 

parameters 𝛼𝛼𝛼𝛼2, 𝛽𝛽𝛽𝛽2 and 𝜎𝜎𝜎𝜎22. Assuming that the conditional probability density function is 

Gaussian:

𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡) = 1

�2𝜋𝜋𝜋𝜋𝜎𝜎𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
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2 �,                                     (7)

then a log-likelihood function 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙 = ∑ 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛 {𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡)}𝐸𝐸𝐸𝐸
𝑡𝑡𝑡𝑡=1 can be maximized with respect to 

parameters 𝛼𝛼𝛼𝛼1 , 𝛼𝛼𝛼𝛼2 , 𝛽𝛽𝛽𝛽1 , 𝛽𝛽𝛽𝛽2, 𝜎𝜎𝜎𝜎12,  and 𝜎𝜎𝜎𝜎22.  However, the state variable is usually unobserved in 

practical applications, but it is commonly assumed that it follows a Markov chain process with 

a k-dimensional state space (Hamilton, 1989). The specificity of a Markov chain process is the 

first-order dependence, implying that a state variable at the moment 𝑅𝑅𝑅𝑅 depends only on the 

previous state of the process at the moment 𝑅𝑅𝑅𝑅 − 1 (Goldfeld & Quandt, 1973). Thus, for 𝑡𝑡𝑡𝑡 = 2,

the log-likelihood function takes the form:

𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙 = � ln ���
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(8) are interpreted as conditional probabili-
ties that the process is in the state j at the moment t, 
conditioned on all information from previous peri-
ods up to and including the moment t-1. These con-
ditional probabilities are called ex ante probabilities 
(Kim & Nelson, 2017). In order to maximize the 
log-likelihood function it is necessary to assume a 
priori the behavior of a discrete state variable St. It 
is assumed that the state variable is generated by a 
first-order Markov process:

The probability density function (8) for each observation 𝑅𝑅𝑅𝑅 = 1,2, … ,𝑇𝑇𝑇𝑇 is presented as a 

weighted sum of conditional probability density functions for both regime states 𝑗𝑗𝑗𝑗 = 1, 2. The 

associated weights 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) are interpreted as conditional probabilities that the process 

is in the state 𝑗𝑗𝑗𝑗 at the moment 𝑅𝑅𝑅𝑅, conditioned on all information from previous periods up to and 

including the moment 𝑅𝑅𝑅𝑅 − 1. These conditional probabilities are called ex ante probabilities

(Kim & Nelson, 2017). In order to maximize the log-likelihood function it is necessary to 

assume a priori the behavior of a discrete state variable 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡. It is assumed that the state variable 

is generated by a first-order Markov process:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1, 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−2, … , 𝑆𝑆𝑆𝑆1, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)  = 𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1).                                       (9)                                       

Ex ante probabilities 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) are generated by a matrix of transitional probabilities, 

the so-called stochastic matrix:

𝑃𝑃𝑃𝑃 = �
𝑝𝑝𝑝𝑝11 𝑝𝑝𝑝𝑝12
𝑝𝑝𝑝𝑝21 𝑝𝑝𝑝𝑝22� = � 𝑝𝑝𝑝𝑝 (1 − 𝑝𝑝𝑝𝑝)

(1 − 𝑙𝑙𝑙𝑙) 𝑙𝑙𝑙𝑙 � .                                         (10)

The matrix of transition probabilities 𝑃𝑃𝑃𝑃 is an irreducible and primitive matrix (Hamilton, 1989).

This means that all states of the Markov chain communicate with each other, i.e. that there is a 

probability of transition from state 𝑖𝑖𝑖𝑖 to state 𝑗𝑗𝑗𝑗, as well as a probability of transition from state 𝑗𝑗𝑗𝑗

to state 𝑖𝑖𝑖𝑖. Therefore, it is assumed that all elements of the stochastic matrix are greater than zero 

(a primitive matrix). In the matrix 𝑃𝑃𝑃𝑃, the probability 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 = 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖) is the 

conditional probability that the process is in the state 𝑗𝑗𝑗𝑗 at the moment 𝑅𝑅𝑅𝑅 if it was in the state 𝑖𝑖𝑖𝑖 at 

the previous moment 𝑅𝑅𝑅𝑅 − 1. For example, 𝑝𝑝𝑝𝑝12 is interpreted as the probability of transition from 

the first state to the second state of the regime, and 𝑝𝑝𝑝𝑝22 as the probability that the process will 

remain in the second state. The probabilities 𝑝𝑝𝑝𝑝11 and 𝑝𝑝𝑝𝑝12 are complementary, just like the 

probabilities 𝑝𝑝𝑝𝑝21 and 𝑝𝑝𝑝𝑝22. The transition probabilities 𝑝𝑝𝑝𝑝 and 𝑙𝑙𝑙𝑙 in the stochastic matrix 𝑃𝑃𝑃𝑃 are 

commonly parameterized using inverse logit transformation:

𝑝𝑝𝑝𝑝 =
𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝0

1 + 𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝0
 ;      𝑙𝑙𝑙𝑙 =

𝑅𝑅𝑅𝑅𝑞𝑞𝑞𝑞0
1 + 𝑅𝑅𝑅𝑅𝑞𝑞𝑞𝑞0

.                                                  (11)

Upon transitional probabilities 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖), conditional probabilities 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)

can be generated and then the log-likelihood function can be maximized by the parameters 𝛼𝛼𝛼𝛼1,

𝛼𝛼𝛼𝛼2 , 𝛽𝛽𝛽𝛽1 , 𝛽𝛽𝛽𝛽2, 𝜎𝜎𝜎𝜎12, 𝜎𝜎𝜎𝜎22, 𝑝𝑝𝑝𝑝0 and 𝑙𝑙𝑙𝑙0. Since the process of maximizing the log-likelihood function is 

iterative, in each new iteration conditional probabilities are updated using Kim’s smoothing 

algorithm, the so-called Kim’s filter. Kim’s smoothing algorithm can be described in two steps

 (9)

Ex ante probabilities  are generated 
by a matrix of transitional probabilities, the so-
called stochastic matrix:

The probability density function (8) for each observation 𝑅𝑅𝑅𝑅 = 1,2, … ,𝑇𝑇𝑇𝑇 is presented as a 

weighted sum of conditional probability density functions for both regime states 𝑗𝑗𝑗𝑗 = 1, 2. The 

associated weights 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) are interpreted as conditional probabilities that the process 

is in the state 𝑗𝑗𝑗𝑗 at the moment 𝑅𝑅𝑅𝑅, conditioned on all information from previous periods up to and 

including the moment 𝑅𝑅𝑅𝑅 − 1. These conditional probabilities are called ex ante probabilities

(Kim & Nelson, 2017). In order to maximize the log-likelihood function it is necessary to 

assume a priori the behavior of a discrete state variable 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡. It is assumed that the state variable 

is generated by a first-order Markov process:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1, 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−2, … , 𝑆𝑆𝑆𝑆1, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)  = 𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1).                                       (9)                                       

Ex ante probabilities 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) are generated by a matrix of transitional probabilities, 

the so-called stochastic matrix:

𝑃𝑃𝑃𝑃 = �
𝑝𝑝𝑝𝑝11 𝑝𝑝𝑝𝑝12
𝑝𝑝𝑝𝑝21 𝑝𝑝𝑝𝑝22� = � 𝑝𝑝𝑝𝑝 (1 − 𝑝𝑝𝑝𝑝)

(1 − 𝑙𝑙𝑙𝑙) 𝑙𝑙𝑙𝑙 � .                                         (10)

The matrix of transition probabilities 𝑃𝑃𝑃𝑃 is an irreducible and primitive matrix (Hamilton, 1989).

This means that all states of the Markov chain communicate with each other, i.e. that there is a 

probability of transition from state 𝑖𝑖𝑖𝑖 to state 𝑗𝑗𝑗𝑗, as well as a probability of transition from state 𝑗𝑗𝑗𝑗

to state 𝑖𝑖𝑖𝑖. Therefore, it is assumed that all elements of the stochastic matrix are greater than zero 

(a primitive matrix). In the matrix 𝑃𝑃𝑃𝑃, the probability 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 = 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖) is the 

conditional probability that the process is in the state 𝑗𝑗𝑗𝑗 at the moment 𝑅𝑅𝑅𝑅 if it was in the state 𝑖𝑖𝑖𝑖 at 

the previous moment 𝑅𝑅𝑅𝑅 − 1. For example, 𝑝𝑝𝑝𝑝12 is interpreted as the probability of transition from 

the first state to the second state of the regime, and 𝑝𝑝𝑝𝑝22 as the probability that the process will 

remain in the second state. The probabilities 𝑝𝑝𝑝𝑝11 and 𝑝𝑝𝑝𝑝12 are complementary, just like the 

probabilities 𝑝𝑝𝑝𝑝21 and 𝑝𝑝𝑝𝑝22. The transition probabilities 𝑝𝑝𝑝𝑝 and 𝑙𝑙𝑙𝑙 in the stochastic matrix 𝑃𝑃𝑃𝑃 are 

commonly parameterized using inverse logit transformation:

𝑝𝑝𝑝𝑝 =
𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝0

1 + 𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝0
 ;      𝑙𝑙𝑙𝑙 =

𝑅𝑅𝑅𝑅𝑞𝑞𝑞𝑞0
1 + 𝑅𝑅𝑅𝑅𝑞𝑞𝑞𝑞0

.                                                  (11)

Upon transitional probabilities 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖), conditional probabilities 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)

can be generated and then the log-likelihood function can be maximized by the parameters 𝛼𝛼𝛼𝛼1,

𝛼𝛼𝛼𝛼2 , 𝛽𝛽𝛽𝛽1 , 𝛽𝛽𝛽𝛽2, 𝜎𝜎𝜎𝜎12, 𝜎𝜎𝜎𝜎22, 𝑝𝑝𝑝𝑝0 and 𝑙𝑙𝑙𝑙0. Since the process of maximizing the log-likelihood function is 

iterative, in each new iteration conditional probabilities are updated using Kim’s smoothing 

algorithm, the so-called Kim’s filter. Kim’s smoothing algorithm can be described in two steps

 (10)

The matrix of transition probabilities P is an irre-
ducible and primitive matrix (Hamilton, 1989). This 
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means that all states of the Markov chain commu-
nicate with each other, i.e. that there is a probability 
of transition from state i to state j, as well as a prob-
ability of transition from state j to state i. Therefore, 
it is assumed that all elements of the stochastic ma-
trix are greater than zero (a primitive matrix). In the 
matrix P the probability  
is the conditional probability that the process is in 
the state j at the moment t if it was in the state i  at 
the previous moment t-1. For example, p12 is inter-
preted as the probability of transition from the first 
state to the second state of the regime, and  p22 as 
the probability that the process will remain in the 
second state. The probabilities p11 and p12 are com-
plementary, just like the probabilities in p21 and p22. 
The transition probabilities p and q i1 the stochas-
tic matrix P are commonly parameterized using in-
verse logit transformation:

The probability density function (8) for each observation 𝑅𝑅𝑅𝑅 = 1,2, … ,𝑇𝑇𝑇𝑇 is presented as a 

weighted sum of conditional probability density functions for both regime states 𝑗𝑗𝑗𝑗 = 1, 2. The 

associated weights 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) are interpreted as conditional probabilities that the process 

is in the state 𝑗𝑗𝑗𝑗 at the moment 𝑅𝑅𝑅𝑅, conditioned on all information from previous periods up to and 

including the moment 𝑅𝑅𝑅𝑅 − 1. These conditional probabilities are called ex ante probabilities

(Kim & Nelson, 2017). In order to maximize the log-likelihood function it is necessary to 

assume a priori the behavior of a discrete state variable 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡. It is assumed that the state variable 

is generated by a first-order Markov process:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1, 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−2, … , 𝑆𝑆𝑆𝑆1, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)  = 𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1).                                       (9)                                       

Ex ante probabilities 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) are generated by a matrix of transitional probabilities, 

the so-called stochastic matrix:

𝑃𝑃𝑃𝑃 = �
𝑝𝑝𝑝𝑝11 𝑝𝑝𝑝𝑝12
𝑝𝑝𝑝𝑝21 𝑝𝑝𝑝𝑝22� = � 𝑝𝑝𝑝𝑝 (1 − 𝑝𝑝𝑝𝑝)

(1 − 𝑙𝑙𝑙𝑙) 𝑙𝑙𝑙𝑙 � .                                         (10)

The matrix of transition probabilities 𝑃𝑃𝑃𝑃 is an irreducible and primitive matrix (Hamilton, 1989).

This means that all states of the Markov chain communicate with each other, i.e. that there is a 

probability of transition from state 𝑖𝑖𝑖𝑖 to state 𝑗𝑗𝑗𝑗, as well as a probability of transition from state 𝑗𝑗𝑗𝑗

to state 𝑖𝑖𝑖𝑖. Therefore, it is assumed that all elements of the stochastic matrix are greater than zero 

(a primitive matrix). In the matrix 𝑃𝑃𝑃𝑃, the probability 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 = 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖) is the 

conditional probability that the process is in the state 𝑗𝑗𝑗𝑗 at the moment 𝑅𝑅𝑅𝑅 if it was in the state 𝑖𝑖𝑖𝑖 at 

the previous moment 𝑅𝑅𝑅𝑅 − 1. For example, 𝑝𝑝𝑝𝑝12 is interpreted as the probability of transition from 

the first state to the second state of the regime, and 𝑝𝑝𝑝𝑝22 as the probability that the process will 

remain in the second state. The probabilities 𝑝𝑝𝑝𝑝11 and 𝑝𝑝𝑝𝑝12 are complementary, just like the 

probabilities 𝑝𝑝𝑝𝑝21 and 𝑝𝑝𝑝𝑝22. The transition probabilities 𝑝𝑝𝑝𝑝 and 𝑙𝑙𝑙𝑙 in the stochastic matrix 𝑃𝑃𝑃𝑃 are 

commonly parameterized using inverse logit transformation:

𝑝𝑝𝑝𝑝 =
𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝0

1 + 𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝0
 ;      𝑙𝑙𝑙𝑙 =

𝑅𝑅𝑅𝑅𝑞𝑞𝑞𝑞0
1 + 𝑅𝑅𝑅𝑅𝑞𝑞𝑞𝑞0

.                                                  (11)

Upon transitional probabilities 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖), conditional probabilities 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)

can be generated and then the log-likelihood function can be maximized by the parameters 𝛼𝛼𝛼𝛼1,

𝛼𝛼𝛼𝛼2 , 𝛽𝛽𝛽𝛽1 , 𝛽𝛽𝛽𝛽2, 𝜎𝜎𝜎𝜎12, 𝜎𝜎𝜎𝜎22, 𝑝𝑝𝑝𝑝0 and 𝑙𝑙𝑙𝑙0. Since the process of maximizing the log-likelihood function is 

iterative, in each new iteration conditional probabilities are updated using Kim’s smoothing 

algorithm, the so-called Kim’s filter. Kim’s smoothing algorithm can be described in two steps

 (11)

Upon transitional probabilities  , conditional probabilities  can be 
generated and then the log-likelihood function 
can be maximized by the parameters α1, α2, β1, β2, 
σ2

1, σ
2
2 and q0.. Since the process of maximizing the 

log-likelihood function is iterative, in each new it-
eration conditional probabilities are updated using 
Kim’s smoothing algorithm, the so-called Kim’s fil-
ter. Kim’s smoothing algorithm can be described in 
two steps (Kim & Nelson, 2017). In the first step, at 
the beginning of iteration, ex ante probabilities are 
calculated as follows:

(Kim & Nelson, 2017). In the first step, at the beginning of iteration, ex ante probabilities are 

calculated as follows:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)  = �𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖)𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)
2

𝑗𝑗𝑗𝑗=1

    𝑗𝑗𝑗𝑗 = 1, 2.                    (12)

In the second step, according to the Bayes rule, for the observed values of response variable 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡,

the so-called filtered probabilities are obtained:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡)  =
𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 

∑ 𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)2
𝑗𝑗𝑗𝑗=1  

 .                              (13)

However, initial probabilities need to be determined before the iterative procedure of 

maximizing the likelihood function can begin. For the initial probabilities, Hamilton (1989) 

proposed unconditional probabilities of the state of the regime, i.e. steady state probabilities:

𝜇𝜇𝜇𝜇1 =
1 − 𝑝𝑝𝑝𝑝

2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙
 ;   𝜇𝜇𝜇𝜇2 =

1 − 𝑙𝑙𝑙𝑙
2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙

.                                                    (14)

Based on the transitional probabilities of the regime state, the expected duration of the 

process in the 𝑗𝑗𝑗𝑗- th regime state can be calculated as:

𝑙𝑙𝑙𝑙1 =
1

1 − 𝑝𝑝𝑝𝑝
 ;   𝑙𝑙𝑙𝑙2 =

1
1 − 𝑙𝑙𝑙𝑙

.                                                         (15)

In the two-state regime model, the first regime state is assumed to be a low-volatility state and 

the second regime state is a high-volatility state. Then the parameters 𝜋𝜋𝜋𝜋1 and  𝜋𝜋𝜋𝜋2 can be 

interpreted as the expected probabilities that the process is in the regime of low (high) volatility 

in the long term, while the parameters  𝑙𝑙𝑙𝑙1 and 𝑙𝑙𝑙𝑙2 show the duration of the process in low and 

high volatility regimes in terms of days (Osojnik, 2023). Furthermore, it is worthwhile to 

analyze the time it takes for the process to switch from low to high volatility states, and vice 

versa.

4. Empirical results

In accordance with the previously described methodology and research objectives, assuming 

two states of regime 𝑡𝑡𝑡𝑡 = 2, the following MRS regression model is estimated:

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽1,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽2,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡  + 𝛽𝛽𝛽𝛽3,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡

∙ 𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡
(16) 

 

(Kim & Nelson, 2017). In the first step, at the beginning of iteration, ex ante probabilities are 

calculated as follows:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)  = �𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖)𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)
2

𝑗𝑗𝑗𝑗=1

    𝑗𝑗𝑗𝑗 = 1, 2.                    (12)

In the second step, according to the Bayes rule, for the observed values of response variable 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡,

the so-called filtered probabilities are obtained:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡)  =
𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 

∑ 𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)2
𝑗𝑗𝑗𝑗=1  

 .                              (13)

However, initial probabilities need to be determined before the iterative procedure of 

maximizing the likelihood function can begin. For the initial probabilities, Hamilton (1989) 

proposed unconditional probabilities of the state of the regime, i.e. steady state probabilities:

𝜇𝜇𝜇𝜇1 =
1 − 𝑝𝑝𝑝𝑝

2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙
 ;   𝜇𝜇𝜇𝜇2 =

1 − 𝑙𝑙𝑙𝑙
2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙

.                                                    (14)

Based on the transitional probabilities of the regime state, the expected duration of the 

process in the 𝑗𝑗𝑗𝑗- th regime state can be calculated as:

𝑙𝑙𝑙𝑙1 =
1

1 − 𝑝𝑝𝑝𝑝
 ;   𝑙𝑙𝑙𝑙2 =

1
1 − 𝑙𝑙𝑙𝑙

.                                                         (15)

In the two-state regime model, the first regime state is assumed to be a low-volatility state and 

the second regime state is a high-volatility state. Then the parameters 𝜋𝜋𝜋𝜋1 and  𝜋𝜋𝜋𝜋2 can be 

interpreted as the expected probabilities that the process is in the regime of low (high) volatility 

in the long term, while the parameters  𝑙𝑙𝑙𝑙1 and 𝑙𝑙𝑙𝑙2 show the duration of the process in low and 

high volatility regimes in terms of days (Osojnik, 2023). Furthermore, it is worthwhile to 

analyze the time it takes for the process to switch from low to high volatility states, and vice 

versa.

4. Empirical results

In accordance with the previously described methodology and research objectives, assuming 

two states of regime 𝑡𝑡𝑡𝑡 = 2, the following MRS regression model is estimated:

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽1,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽2,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡  + 𝛽𝛽𝛽𝛽3,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡

∙ 𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡
(16) 

 (12)

In the second step, according to the Bayes rule, for 
the observed values of response variable yt, the so-
called filtered probabilities are obtained:

(Kim & Nelson, 2017). In the first step, at the beginning of iteration, ex ante probabilities are 

calculated as follows:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)  = �𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖)𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)
2

𝑗𝑗𝑗𝑗=1

    𝑗𝑗𝑗𝑗 = 1, 2.                    (12)

In the second step, according to the Bayes rule, for the observed values of response variable 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡,

the so-called filtered probabilities are obtained:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡)  =
𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 

∑ 𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)2
𝑗𝑗𝑗𝑗=1  

 .                              (13)

However, initial probabilities need to be determined before the iterative procedure of 

maximizing the likelihood function can begin. For the initial probabilities, Hamilton (1989) 

proposed unconditional probabilities of the state of the regime, i.e. steady state probabilities:

𝜇𝜇𝜇𝜇1 =
1 − 𝑝𝑝𝑝𝑝

2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙
 ;   𝜇𝜇𝜇𝜇2 =

1 − 𝑙𝑙𝑙𝑙
2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙

.                                                    (14)

Based on the transitional probabilities of the regime state, the expected duration of the 

process in the 𝑗𝑗𝑗𝑗- th regime state can be calculated as:

𝑙𝑙𝑙𝑙1 =
1

1 − 𝑝𝑝𝑝𝑝
 ;   𝑙𝑙𝑙𝑙2 =

1
1 − 𝑙𝑙𝑙𝑙

.                                                         (15)

In the two-state regime model, the first regime state is assumed to be a low-volatility state and 

the second regime state is a high-volatility state. Then the parameters 𝜋𝜋𝜋𝜋1 and  𝜋𝜋𝜋𝜋2 can be 

interpreted as the expected probabilities that the process is in the regime of low (high) volatility 

in the long term, while the parameters  𝑙𝑙𝑙𝑙1 and 𝑙𝑙𝑙𝑙2 show the duration of the process in low and 

high volatility regimes in terms of days (Osojnik, 2023). Furthermore, it is worthwhile to 

analyze the time it takes for the process to switch from low to high volatility states, and vice 

versa.

4. Empirical results

In accordance with the previously described methodology and research objectives, assuming 

two states of regime 𝑡𝑡𝑡𝑡 = 2, the following MRS regression model is estimated:

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽1,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽2,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡  + 𝛽𝛽𝛽𝛽3,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡

∙ 𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡
(16) 

 (13)

However, initial probabilities need to be deter-
mined before the iterative procedure of maximiz-
ing the likelihood function can begin. For the initial 
probabilities, Hamilton (1989) proposed uncondi-
tional probabilities of the state of the regime, i.e. 
steady state probabilities:

(Kim & Nelson, 2017). In the first step, at the beginning of iteration, ex ante probabilities are 

calculated as follows:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)  = �𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖)𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)
2

𝑗𝑗𝑗𝑗=1

    𝑗𝑗𝑗𝑗 = 1, 2.                    (12)

In the second step, according to the Bayes rule, for the observed values of response variable 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡,

the so-called filtered probabilities are obtained:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡)  =
𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 

∑ 𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)2
𝑗𝑗𝑗𝑗=1  

 .                              (13)

However, initial probabilities need to be determined before the iterative procedure of 

maximizing the likelihood function can begin. For the initial probabilities, Hamilton (1989) 

proposed unconditional probabilities of the state of the regime, i.e. steady state probabilities:

𝜇𝜇𝜇𝜇1 =
1 − 𝑝𝑝𝑝𝑝

2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙
 ;   𝜇𝜇𝜇𝜇2 =

1 − 𝑙𝑙𝑙𝑙
2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙

.                                                    (14)

Based on the transitional probabilities of the regime state, the expected duration of the 

process in the 𝑗𝑗𝑗𝑗- th regime state can be calculated as:

𝑙𝑙𝑙𝑙1 =
1

1 − 𝑝𝑝𝑝𝑝
 ;   𝑙𝑙𝑙𝑙2 =

1
1 − 𝑙𝑙𝑙𝑙

.                                                         (15)

In the two-state regime model, the first regime state is assumed to be a low-volatility state and 

the second regime state is a high-volatility state. Then the parameters 𝜋𝜋𝜋𝜋1 and  𝜋𝜋𝜋𝜋2 can be 

interpreted as the expected probabilities that the process is in the regime of low (high) volatility 

in the long term, while the parameters  𝑙𝑙𝑙𝑙1 and 𝑙𝑙𝑙𝑙2 show the duration of the process in low and 

high volatility regimes in terms of days (Osojnik, 2023). Furthermore, it is worthwhile to 

analyze the time it takes for the process to switch from low to high volatility states, and vice 

versa.

4. Empirical results

In accordance with the previously described methodology and research objectives, assuming 

two states of regime 𝑡𝑡𝑡𝑡 = 2, the following MRS regression model is estimated:

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽1,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽2,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡  + 𝛽𝛽𝛽𝛽3,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡

∙ 𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡
(16) 

 (14)

Based on the transitional probabilities of the regime 
state, the expected duration of the process in the 
j- th regime state can be calculated as:

(Kim & Nelson, 2017). In the first step, at the beginning of iteration, ex ante probabilities are 

calculated as follows:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)  = �𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖)𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)
2

𝑗𝑗𝑗𝑗=1

    𝑗𝑗𝑗𝑗 = 1, 2.                    (12)

In the second step, according to the Bayes rule, for the observed values of response variable 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡,

the so-called filtered probabilities are obtained:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡)  =
𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 

∑ 𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)2
𝑗𝑗𝑗𝑗=1  

 .                              (13)

However, initial probabilities need to be determined before the iterative procedure of 

maximizing the likelihood function can begin. For the initial probabilities, Hamilton (1989) 

proposed unconditional probabilities of the state of the regime, i.e. steady state probabilities:

𝜇𝜇𝜇𝜇1 =
1 − 𝑝𝑝𝑝𝑝

2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙
 ;   𝜇𝜇𝜇𝜇2 =

1 − 𝑙𝑙𝑙𝑙
2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙

.                                                    (14)

Based on the transitional probabilities of the regime state, the expected duration of the 

process in the 𝑗𝑗𝑗𝑗- th regime state can be calculated as:

𝑙𝑙𝑙𝑙1 =
1

1 − 𝑝𝑝𝑝𝑝
 ;   𝑙𝑙𝑙𝑙2 =

1
1 − 𝑙𝑙𝑙𝑙

.                                                         (15)

In the two-state regime model, the first regime state is assumed to be a low-volatility state and 

the second regime state is a high-volatility state. Then the parameters 𝜋𝜋𝜋𝜋1 and  𝜋𝜋𝜋𝜋2 can be 

interpreted as the expected probabilities that the process is in the regime of low (high) volatility 

in the long term, while the parameters  𝑙𝑙𝑙𝑙1 and 𝑙𝑙𝑙𝑙2 show the duration of the process in low and 

high volatility regimes in terms of days (Osojnik, 2023). Furthermore, it is worthwhile to 

analyze the time it takes for the process to switch from low to high volatility states, and vice 

versa.

4. Empirical results

In accordance with the previously described methodology and research objectives, assuming 

two states of regime 𝑡𝑡𝑡𝑡 = 2, the following MRS regression model is estimated:

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽1,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽2,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡  + 𝛽𝛽𝛽𝛽3,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡

∙ 𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡
(16) 

 (15)

In the two-state regime model, the first regime 
state is assumed to be a low-volatility state and the 
second regime state is a high-volatility state. Then 
the parameters 

(Kim & Nelson, 2017). In the first step, at the beginning of iteration, ex ante probabilities are 

calculated as follows:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)  = �𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖)𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)
2

𝑗𝑗𝑗𝑗=1

    𝑗𝑗𝑗𝑗 = 1, 2.                    (12)

In the second step, according to the Bayes rule, for the observed values of response variable 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡,

the so-called filtered probabilities are obtained:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡)  =
𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 

∑ 𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)2
𝑗𝑗𝑗𝑗=1  

 .                              (13)

However, initial probabilities need to be determined before the iterative procedure of 

maximizing the likelihood function can begin. For the initial probabilities, Hamilton (1989) 

proposed unconditional probabilities of the state of the regime, i.e. steady state probabilities:

𝜇𝜇𝜇𝜇1 =
1 − 𝑝𝑝𝑝𝑝

2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙
 ;   𝜇𝜇𝜇𝜇2 =

1 − 𝑙𝑙𝑙𝑙
2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙

.                                                    (14)

Based on the transitional probabilities of the regime state, the expected duration of the 

process in the 𝑗𝑗𝑗𝑗- th regime state can be calculated as:

𝑙𝑙𝑙𝑙1 =
1

1 − 𝑝𝑝𝑝𝑝
 ;   𝑙𝑙𝑙𝑙2 =

1
1 − 𝑙𝑙𝑙𝑙

.                                                         (15)

In the two-state regime model, the first regime state is assumed to be a low-volatility state and 

the second regime state is a high-volatility state. Then the parameters 𝜋𝜋𝜋𝜋1 and  𝜋𝜋𝜋𝜋2 can be 

interpreted as the expected probabilities that the process is in the regime of low (high) volatility 

in the long term, while the parameters  𝑙𝑙𝑙𝑙1 and 𝑙𝑙𝑙𝑙2 show the duration of the process in low and 

high volatility regimes in terms of days (Osojnik, 2023). Furthermore, it is worthwhile to 

analyze the time it takes for the process to switch from low to high volatility states, and vice 

versa.

4. Empirical results

In accordance with the previously described methodology and research objectives, assuming 

two states of regime 𝑡𝑡𝑡𝑡 = 2, the following MRS regression model is estimated:

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽1,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽2,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡  + 𝛽𝛽𝛽𝛽3,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡
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(16) 

  and 

(Kim & Nelson, 2017). In the first step, at the beginning of iteration, ex ante probabilities are 

calculated as follows:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)  = �𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖)𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)
2

𝑗𝑗𝑗𝑗=1

    𝑗𝑗𝑗𝑗 = 1, 2.                    (12)

In the second step, according to the Bayes rule, for the observed values of response variable 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡,

the so-called filtered probabilities are obtained:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡)  =
𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 

∑ 𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)2
𝑗𝑗𝑗𝑗=1  

 .                              (13)

However, initial probabilities need to be determined before the iterative procedure of 

maximizing the likelihood function can begin. For the initial probabilities, Hamilton (1989) 

proposed unconditional probabilities of the state of the regime, i.e. steady state probabilities:

𝜇𝜇𝜇𝜇1 =
1 − 𝑝𝑝𝑝𝑝

2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙
 ;   𝜇𝜇𝜇𝜇2 =

1 − 𝑙𝑙𝑙𝑙
2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙

.                                                    (14)

Based on the transitional probabilities of the regime state, the expected duration of the 

process in the 𝑗𝑗𝑗𝑗- th regime state can be calculated as:

𝑙𝑙𝑙𝑙1 =
1

1 − 𝑝𝑝𝑝𝑝
 ;   𝑙𝑙𝑙𝑙2 =

1
1 − 𝑙𝑙𝑙𝑙

.                                                         (15)

In the two-state regime model, the first regime state is assumed to be a low-volatility state and 

the second regime state is a high-volatility state. Then the parameters 𝜋𝜋𝜋𝜋1 and  𝜋𝜋𝜋𝜋2 can be 

interpreted as the expected probabilities that the process is in the regime of low (high) volatility 

in the long term, while the parameters  𝑙𝑙𝑙𝑙1 and 𝑙𝑙𝑙𝑙2 show the duration of the process in low and 

high volatility regimes in terms of days (Osojnik, 2023). Furthermore, it is worthwhile to 

analyze the time it takes for the process to switch from low to high volatility states, and vice 

versa.

4. Empirical results

In accordance with the previously described methodology and research objectives, assuming 

two states of regime 𝑡𝑡𝑡𝑡 = 2, the following MRS regression model is estimated:

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽1,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽2,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡  + 𝛽𝛽𝛽𝛽3,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡

∙ 𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡
(16) 

 can be interpreted as the 
expected probabilities that the process is in the re-
gime of low (high) volatility in the long term, while 
the parameters d1 and d2 show the duration of the 
process in low and high volatility regimes in terms 
of days (Osojnik, 2023). Furthermore, it is worth-
while to analyze the time it takes for the process to 
switch from low to high volatility states, and vice 
versa.

4. Empirical results

In accordance with the previously described meth-
odology and research objectives, assuming two 
states of regime k=2 , the following MRS regression 
model is estimated:

(Kim & Nelson, 2017). In the first step, at the beginning of iteration, ex ante probabilities are 

calculated as follows:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)  = �𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖)𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)
2

𝑗𝑗𝑗𝑗=1

    𝑗𝑗𝑗𝑗 = 1, 2.                    (12)

In the second step, according to the Bayes rule, for the observed values of response variable 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡,

the so-called filtered probabilities are obtained:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡)  =
𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 

∑ 𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)2
𝑗𝑗𝑗𝑗=1  

 .                              (13)

However, initial probabilities need to be determined before the iterative procedure of 

maximizing the likelihood function can begin. For the initial probabilities, Hamilton (1989) 

proposed unconditional probabilities of the state of the regime, i.e. steady state probabilities:

𝜇𝜇𝜇𝜇1 =
1 − 𝑝𝑝𝑝𝑝

2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙
 ;   𝜇𝜇𝜇𝜇2 =

1 − 𝑙𝑙𝑙𝑙
2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙

.                                                    (14)

Based on the transitional probabilities of the regime state, the expected duration of the 

process in the 𝑗𝑗𝑗𝑗- th regime state can be calculated as:

𝑙𝑙𝑙𝑙1 =
1

1 − 𝑝𝑝𝑝𝑝
 ;   𝑙𝑙𝑙𝑙2 =

1
1 − 𝑙𝑙𝑙𝑙

.                                                         (15)

In the two-state regime model, the first regime state is assumed to be a low-volatility state and 

the second regime state is a high-volatility state. Then the parameters 𝜋𝜋𝜋𝜋1 and  𝜋𝜋𝜋𝜋2 can be 

interpreted as the expected probabilities that the process is in the regime of low (high) volatility 

in the long term, while the parameters  𝑙𝑙𝑙𝑙1 and 𝑙𝑙𝑙𝑙2 show the duration of the process in low and 

high volatility regimes in terms of days (Osojnik, 2023). Furthermore, it is worthwhile to 

analyze the time it takes for the process to switch from low to high volatility states, and vice 

versa.

4. Empirical results

In accordance with the previously described methodology and research objectives, assuming 

two states of regime 𝑡𝑡𝑡𝑡 = 2, the following MRS regression model is estimated:

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽1,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽2,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡  + 𝛽𝛽𝛽𝛽3,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡

∙ 𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡
(16) 

(Kim & Nelson, 2017). In the first step, at the beginning of iteration, ex ante probabilities are 

calculated as follows:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)  = �𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖)𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)
2

𝑗𝑗𝑗𝑗=1

    𝑗𝑗𝑗𝑗 = 1, 2.                    (12)

In the second step, according to the Bayes rule, for the observed values of response variable 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡,

the so-called filtered probabilities are obtained:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡)  =
𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 

∑ 𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)2
𝑗𝑗𝑗𝑗=1  

 .                              (13)

However, initial probabilities need to be determined before the iterative procedure of 

maximizing the likelihood function can begin. For the initial probabilities, Hamilton (1989) 

proposed unconditional probabilities of the state of the regime, i.e. steady state probabilities:

𝜇𝜇𝜇𝜇1 =
1 − 𝑝𝑝𝑝𝑝

2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙
 ;   𝜇𝜇𝜇𝜇2 =

1 − 𝑙𝑙𝑙𝑙
2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙

.                                                    (14)

Based on the transitional probabilities of the regime state, the expected duration of the 

process in the 𝑗𝑗𝑗𝑗- th regime state can be calculated as:

𝑙𝑙𝑙𝑙1 =
1

1 − 𝑝𝑝𝑝𝑝
 ;   𝑙𝑙𝑙𝑙2 =

1
1 − 𝑙𝑙𝑙𝑙

.                                                         (15)

In the two-state regime model, the first regime state is assumed to be a low-volatility state and 

the second regime state is a high-volatility state. Then the parameters 𝜋𝜋𝜋𝜋1 and  𝜋𝜋𝜋𝜋2 can be 

interpreted as the expected probabilities that the process is in the regime of low (high) volatility 

in the long term, while the parameters  𝑙𝑙𝑙𝑙1 and 𝑙𝑙𝑙𝑙2 show the duration of the process in low and 

high volatility regimes in terms of days (Osojnik, 2023). Furthermore, it is worthwhile to 

analyze the time it takes for the process to switch from low to high volatility states, and vice 

versa.

4. Empirical results

In accordance with the previously described methodology and research objectives, assuming 

two states of regime 𝑡𝑡𝑡𝑡 = 2, the following MRS regression model is estimated:

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽1,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽2,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡  + 𝛽𝛽𝛽𝛽3,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡

∙ 𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡
(16) 

(Kim & Nelson, 2017). In the first step, at the beginning of iteration, ex ante probabilities are 

calculated as follows:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)  = �𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖)𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1 = 𝑖𝑖𝑖𝑖|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)
2

𝑗𝑗𝑗𝑗=1

    𝑗𝑗𝑗𝑗 = 1, 2.                    (12)

In the second step, according to the Bayes rule, for the observed values of response variable 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡,

the so-called filtered probabilities are obtained:

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡)  =
𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 

∑ 𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡|𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗, 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1) 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 (𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1)2
𝑗𝑗𝑗𝑗=1  

 .                              (13)

However, initial probabilities need to be determined before the iterative procedure of 

maximizing the likelihood function can begin. For the initial probabilities, Hamilton (1989) 

proposed unconditional probabilities of the state of the regime, i.e. steady state probabilities:

𝜇𝜇𝜇𝜇1 =
1 − 𝑝𝑝𝑝𝑝

2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙
 ;   𝜇𝜇𝜇𝜇2 =

1 − 𝑙𝑙𝑙𝑙
2 − 𝑝𝑝𝑝𝑝 − 𝑙𝑙𝑙𝑙

.                                                    (14)

Based on the transitional probabilities of the regime state, the expected duration of the 

process in the 𝑗𝑗𝑗𝑗- th regime state can be calculated as:

𝑙𝑙𝑙𝑙1 =
1

1 − 𝑝𝑝𝑝𝑝
 ;   𝑙𝑙𝑙𝑙2 =

1
1 − 𝑙𝑙𝑙𝑙

.                                                         (15)

In the two-state regime model, the first regime state is assumed to be a low-volatility state and 

the second regime state is a high-volatility state. Then the parameters 𝜋𝜋𝜋𝜋1 and  𝜋𝜋𝜋𝜋2 can be 

interpreted as the expected probabilities that the process is in the regime of low (high) volatility 

in the long term, while the parameters  𝑙𝑙𝑙𝑙1 and 𝑙𝑙𝑙𝑙2 show the duration of the process in low and 

high volatility regimes in terms of days (Osojnik, 2023). Furthermore, it is worthwhile to 

analyze the time it takes for the process to switch from low to high volatility states, and vice 

versa.

4. Empirical results

In accordance with the previously described methodology and research objectives, assuming 

two states of regime 𝑡𝑡𝑡𝑡 = 2, the following MRS regression model is estimated:

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽1,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 + 𝛽𝛽𝛽𝛽2,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡  + 𝛽𝛽𝛽𝛽3,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡

∙ 𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡
(16) 

+ 𝛽𝛽𝛽𝛽4,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡   + 𝛽𝛽𝛽𝛽5,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛 (𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡) 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 +  𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 .

For two states of regime, 16 parameters (constant term, five coefficients, and error standard 

deviation for each state along with two transitional probabilities) are estimated by the 

approximate maximum likelihood method using the expectation–maximization (EM) algorithm 

due to its convenience (Perlin, 2010). For comparison purposes, a single-regime regression 

model is also estimated to verify the switching property of regression coefficients (Table 2). In 

the post-estimation phase, appropriateness of the MRS approach is supported by diagnostic 

checking of unobserved error term 𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 that should follow a white noise process with zero mean 

and constant variance for each state of regime (Table 3).

Table 2 Estimates of a single-regime model and a two-state regime model

Single Two-state regime-switching model

Variable regime Regime 1 Regime 2
(Intercept) 0.0172 0.0165*** -0.0321***

(0.0134) (0.0043) (0.0006)
Volatility index 0.0012*** 0.0008*** 0.0029***

(0.0001) (0.0002) (0.0001)
Illiquidity proxy 1.1595*** 1.0975*** 1.0049***

(0.0404) (0.0666) (0.0096)
Net flow 0.0522*** -0.1482*** -0.0155***

(0.0044) (0.0067) (0.0014)
Premium/discount -0.0424*** -0.3891*** 0.0507***

(0.0117) (0.0277) (0.0030)
Logs of volume -0.0051*** 0.0033*** -0.0514***

(0.0015) (0.0004) (0.0031)

Error standard deviation 0.0101 0.0089 0.0024
Transitional probability - 0.8509 0.5762
Observations 1019 1019 -
R2 0.897 0.9318 0.9925
AIC -6536.0 -8507.4 -
BIC -6501.5 -8365.2 -
Log.Lik. 3274.995 4265.739 -
RMSE 0.011 0.008 0.002

Note: significance levels * p < 0.05, ** p < 0.01, *** p < 0.001; standard errors in parenthesis
Source: Authors’ estimation using data provided by Refinitiv Eikon

For 1019 observations, the results of a single-regime model and a two-state regime-switching 

model are compared in Table 2. All variables are statistically significant at a 0.1% significance 

+ 𝛽𝛽𝛽𝛽4,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡   + 𝛽𝛽𝛽𝛽5,𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 ∙ 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛 (𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡) 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 +  𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 .

For two states of regime, 16 parameters (constant term, five coefficients, and error standard 

deviation for each state along with two transitional probabilities) are estimated by the 

approximate maximum likelihood method using the expectation–maximization (EM) algorithm 

due to its convenience (Perlin, 2010). For comparison purposes, a single-regime regression 

model is also estimated to verify the switching property of regression coefficients (Table 2). In 

the post-estimation phase, appropriateness of the MRS approach is supported by diagnostic 

checking of unobserved error term 𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 that should follow a white noise process with zero mean 

and constant variance for each state of regime (Table 3).

Table 2 Estimates of a single-regime model and a two-state regime model

Single Two-state regime-switching model

Variable regime Regime 1 Regime 2
(Intercept) 0.0172 0.0165*** -0.0321***

(0.0134) (0.0043) (0.0006)
Volatility index 0.0012*** 0.0008*** 0.0029***

(0.0001) (0.0002) (0.0001)
Illiquidity proxy 1.1595*** 1.0975*** 1.0049***

(0.0404) (0.0666) (0.0096)
Net flow 0.0522*** -0.1482*** -0.0155***

(0.0044) (0.0067) (0.0014)
Premium/discount -0.0424*** -0.3891*** 0.0507***

(0.0117) (0.0277) (0.0030)
Logs of volume -0.0051*** 0.0033*** -0.0514***

(0.0015) (0.0004) (0.0031)

Error standard deviation 0.0101 0.0089 0.0024
Transitional probability - 0.8509 0.5762
Observations 1019 1019 -
R2 0.897 0.9318 0.9925
AIC -6536.0 -8507.4 -
BIC -6501.5 -8365.2 -
Log.Lik. 3274.995 4265.739 -
RMSE 0.011 0.008 0.002

Note: significance levels * p < 0.05, ** p < 0.01, *** p < 0.001; standard errors in parenthesis
Source: Authors’ estimation using data provided by Refinitiv Eikon

For 1019 observations, the results of a single-regime model and a two-state regime-switching 

model are compared in Table 2. All variables are statistically significant at a 0.1% significance 

 (16)

For two states of regime, 16 parameters (constant 
term, five coefficients, and error standard deviation 
for each state along with two transitional probabili-
ties) are estimated by the approximate maximum 
likelihood method using the expectation–maxi-
mization (EM) algorithm due to its convenience 
(Perlin, 2010). For comparison purposes, a single-
regime regression model is also estimated to verify 
the switching property of regression coefficients 
(Table 2). In the post-estimation phase, appropri-
ateness of the MRS approach is supported by diag-
nostic checking of unobserved error term ust  that 
should follow a white noise process with zero mean 
and constant variance for each state of regime (Ta-
ble 3).
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Table 2 Estimates of a single-regime model and a two-states regime model

Single Two-states regime-switching model

 Variable regime Regime 1 Regime 2

(Intercept) 0.0172 0.0165*** -0.0321***

(0.0134) (0.0043) (0.0006)

Volatility index 0.0012*** 0.0008*** 0.0029***

(0.0001) (0.0002) (0.0001)

Illiquidity proxy 1.1595*** 1.0975*** 1.0049***

(0.0404) (0.0666) (0.0096)

Net flow 0.0522*** -0.1482*** -0.0155***

(0.0044) (0.0067) (0.0014)

Premium/discount -0.0424*** -0.3891*** 0.0507***

(0.0117) (0.0277) (0.0030)

Logs of volume -0.0051*** 0.0033*** -0.0514***

(0.0015) (0.0004) (0.0031)

Error standard deviation 0.0101 0.0089 0.0024

Transitional probability - 0.8509 0.5762

Observations 1019 1019 -

R2 0.897 0.9318 0.9925

AIC -6536.0 -8507.4 -

BIC -6501.5 -8365.2 -

Log.Lik. 3274.995 4265.739 -

RMSE 0.011 0.008 0.002
Note: significance levels * p < 0.05, ** p < 0.01, *** p < 0.001; standard errors in parenthesis 
Source: Authors’ estimation using data provided by Refinitiv Eikon

For 1019 observations, the results of a single-
regime model and a two-states regime-switching 
model are compared in Table 2. All variables are 
statistically significant at a 0.1% significance level. 
An increase in volatility and illiquidity increases 
tracking error. The results are the same for single-
regime and two-states regime models. However, 
tracking error increases more in the second regime 
(0.29%) than in the first one (0.08%) with respect 
to a 1% increase in volatility, while 1% change of 
illiquidity has approximately the same impact on 
tracking error in both regimes (increases by 1.09% 
and 1%, respectively). 

For the case of net flows, it shows a positive rela-
tionship with tracking error only in a single-regime 
model. The expected negative relationship was 

present for the two-states switching model, also 
indicating a steeper coefficient for a bullish period, 
meaning that the effect of net flows is stronger dur-
ing bull periods, i.e. tracking error reduces by 0.14% 
with respect to a 1% increase of net flow. Further-
more, the results indicate that a premium/discount 
affects tracking error negatively in a single-regime 
model; however, their effect is both negative and 
positive for the bulish and bearish periods, respec-
tively, for the two-states switching model.

Furthermore, the transition probability matrix 
provides information about probability transi-
tions between two regime states. The probabilities 
p11 =  0.8509 and p22 =  0.5762 indicate the likeli-
hood of remaining in the first and second states 
of the regime, respectively. Conversely, p12 = 
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0.1491 represents the probability of transitioning 
from the first state to the second state, while p21 = 
0.4237 denotes the probability of transitioning 
from the second state to the first state. Accord-
ingly, it is more likely to remain in the bullish state 
regime once the market gets to that state and ap-
proximately stays in that state for 7 trading days (a 
week and a half ). In addition, the transition from 
a bearish to a bullish state of regime is 2.8 times 
more likely than the reverse, with a probability of 
0.4237 compared to 0.1491.

Goodness-of-fit measures confirm the appropriate-
ness and superiority of the two-states regime model 
over the single-regime model in terms of R2, infor-
mation criteria, the Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC), 
respectively, as well as the root mean square error 
(RMSE). In both regimes, R2 is substantially greater 
than in a single-regime case. Likewise, RMSE in-
dicates lower regression standard errors in both 
states against a single state. Smaller AIC and BIC 
are observed within the Markov regime-switching 
model, supporting its preference. An R2 value close 

to 1 does not imply that the results from regression 
of time-series are spurious. Spurious regression 
occurs when regressing two or more independent 
time-series, resulting in false relationships due to 
nonstationary properties. To address this issue, the 
Augmented Dickey-Fuller (ADF) unit root test was 
conducted on each variable (Table 1), confirming 
their stationarity. Furthermore, the absence of clear 
trending behavior in the variables (Figure 2) elimi-
nates the possibility of spurious results stemming 
from common trends. Once the Markov switching 
model parameters are estimated, the filtered proba-
bilities of the regime states are obtained by Kim’s fil-
tering algorithm, which is a byproduct of the itera-
tive log-likelihood maximization procedure (Perlin, 
2010). Inspecting both the filtered and smoothed 
probabilities is useful for interpreting the switch-
ing regression coefficients associated with different 
time periods (Osojnik, 2023). In Figure 4, it is clear 
that regime 1 corresponds to the bullish state of the 
market, while regime 2 corresponds to the bearish 
state, and more importantly, it covers crisis periods 
including the COVID-19 pandemic and the onset 
of the Ukrainian war.

Figure 4 Filtered and smoothed probabilities of the Markov two-states switching model

Source: Authors’ construction using data provided by Refinitiv Eikon
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The validity of the Markov switching model requires 
diagnostic checking of residuals. Two series of re-
siduals are generated in total, one for each state of 
regime. Three diagnostic plots are constructed for 
each residual series in Figure 5 (the correlogram of 
the residuals, the correlogram of the squared resid-
uals, and the normal quantile-quantile plot), where-
as formal diagnostic tests (the Ljung-Box test, the 
ARCH test and the Jarque-Bera test) are performed 
on the weighted residuals, i.e. a linear combination 
of two residual series using smoothed probabilities 
as the weights. In Figure 5, correlograms indicate 

no autocorrelation of residuals in both regimes and 
no autocorrelation of squared residuals, confirm-
ing the serial independence of error terms as well 
homoscedasticity (error terms have constant vari-
ance). The same conclusion is supported by non-re-
jection of the Ljung-Box test null hypothesis with 5 
and 10 time lags, and by non-rejection of the ARCH 
test null hypothesis for autoregressive conditional 
heteroscedasticity at all significance levels (Table 
3). According to the Jarque-Bera test, the normality 
assumption of weighted residuals is met.

Figure 5 Diagnostic plots of two regime residuals

Source: Authors’ construction using data provided by Refinitiv Eikon

Table 3 Diagnostic checking of weighted residuals

Test Statistic

Ljung-Box (5) 1.8469

Ljung-Box (10) 3.7356

ARCH 20.7821

Jarque-Bera 1.3569
Note: significance levels * p < 0.05, ** p < 0.01, *** p < 0.001 
Source: Authors’ calculation using data provided by Refinitiv Eikon
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5. Discussion

The primary objective of this study was to address 
a critical gap in the analysis of Eurozone ETF per-
formance by focusing specifically on the European 
market and investigating the impact of market-re-
lated variables on ETF tracking error. Both models, 
the single regime, and the two-states switching re-
gime, confirm that volatility and illiquidity increase 
tracking error. This is likely because the increase 
is associated with higher trading costs for arbitra-
geurs, reducing their ability to create and redeem 
ETF shares and underlying assets.

When comparing results obtained by both models, 
it becomes evident that parameters in the single-re-
gime case are overestimated or exhibit unexpected 
signs. For instance, the impact of illiquidity is over-
estimated, and the net flow shows a misleading di-
rection of influence. According to Ben-David et al. 
(2019), increases in trading volume can lead to wid-
er bid-ask spreads, which should, in turn, increase 
tracking error. Our results confirm this relation-
ship, but only for the bullish period in the market 
(the first state of the regime). In contrast, during the 
bearish regime (the second state), trading volume 
reduces tracking error more than it does in the bull-
ish regime.

Theoretically, an increase in premium should at-
tract authorized participants, hedge funds, and 
arbitrageurs, thereby decreasing tracking error. 
This effect is confirmed only for bullish periods 
(-0.38%). The results regarding the effect of pre-
mium/discount on tracking error align with those 
documented by Rompotis (2012). Interestingly, our 
study found similar results for bearish periods, con-
trary to previous findings. One possible explanation 
for this positive relationship during bearish periods 
could be attributed to herding behavior among 
investors, as documented by Ferreruela & Mal-
lor (2021). Shum & Kang (2013) also noted higher 
premiums/discounts in ETFs during crisis periods, 
suggesting reduced arbitrage activity due to height-
ened trading costs. Our analysis supports these 
findings, indicating consistency with the economic 
literature for most variables. Notably, in the two-
states switching-regime model, the coefficients for 
net flow, premium, and volume change vary, pro-
viding a more comprehensive understanding of the 
variables influencing tracking error.

These findings underscore the importance of uti-
lizing the two-states switching methodology for 

researchers. The introduction of the two-states 
switching methodology clearly demonstrates how 
the effects of variables such as net flow, premium, 
and volume can change. In addition to the current 
variables, supplementary variables like ETF pro-
vider’s rebalancing frequency, benchmark index 
composition, and expense ratios could help explain 
tracking error. However, obtaining this information 
from publicly available data is not straightforward, 
and the significance of these variables may be ques-
tionable due to their daily time-invariance. For ex-
ample, expense ratios are typically reported as an-
nual fees, not on a daily basis.

6. Conclusion

The research explored how the tracking error of a 
Eurozone ETF, concerning its benchmark index, 
is influenced during crisis periods, including the 
COVID-19 pandemic and the Ukrainian war. By 
carefully examining market periods or regimes, the 
paper offers empirical evidence on several market-
based measures, such as market volatility, liquidity 
proxy, net flow, premium or discount, and trading 
volume, to comprehensively understand their in-
fluence on tracking error. In addition to presenting 
in-depth explanations and empirical evidence, this 
study contributes to the literature by employing a 
regime-switching methodology. The findings sup-
port existing economic literature to some extent 
and highlight the importance of considering differ-
ent market regimes. While all variables are statis-
tically significant, it was found that an increase in 
volatility and illiquidity led to a decrease in tracking 
error. However, the method of switching regimes 
has shown that the influence of volatility on track-
ing error is stronger during periods of market stress 
than in bullish periods (0.29% and 0.08%, respec-
tively), while in terms of illiquidity, the influence is 
the same for both regimes. When considering trad-
ing volume, the results confirm the findings of Ben-
David et al. (2019) that an increase in volume does 
increase tracking error, but only slightly (0.003%). 
The relationship holds true only for the first re-
gime (the bullish period). On top of that, the study 
found the influence of volume to be both negative 
and stronger for periods of market stress (-0.05%). 
Regarding net flows, the results surprisingly show 
a positive relationship with tracking error in a 
single-regime model. However, the use of switch-
ing regimes yields the excepted negative relation-
ship between net flows and tracking error. To be 
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more precise, 1% of net flow reduces tracking error 
for 0.14% during bullish periods and 0.01% during 
bearish periods. Lastly, the results show that premi-
um/discount negatively affects tracking error using 
a single-regime model. With a two-states switching 
model, the results yield interesting findings. The ef-
fect of premium/discount seems to be both positive 
and negative. A negative influence was expected, 
and it was found only during the bullish period of 
the market (-0.38%). A positive but weaker (0.05%) 
influence of premium/discount on tracking error 
was found during periods of stress and it was also 
documented by Rompotis (2012). One of the expla-
nations for a positive influence could lie in herding 
behavior exhibited by investors during periods of 
market stress. Another reason could be higher trad-

ing costs which arise in the periods of market stress. 
Higher trading costs tend to make arbitration more 
expensive. Hence, it keeps authorized participants 
waiting for the price between ETF and its NAV to 
be further and further away, explaining the positive 
relationship between premium/discount and track-
ing error. One limitation of the current research is 
the fact that only a single ETF is used in the analy-
sis. It would be of great value if future researchers 
take into account ETFs with different liquidities and 
sizes. 
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