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ABSTRACT
Advanced brain cancer is the deadliest type with just a few months survival rate. Existing tech-
nologies hinder the objective of forecasting cancer. This work aims to fulfil the pressing require-
ment for timely and precise identification of advanced-stage brain tumours, which are notorious
for their markedly reduced life expectancy. It presents an innovative hybrid approach for pre-
dicting brain tumours and improves diagnostic capabilities. TheMultiple Kernel K-Means Cluster
Algorithm (MKKCA) is used to segment brain MRI images effectively, differentiating healthy and
tumorous tissues. After segmentation, a hybrid approachwith 3D-Convolutional Neural Network
(CNN) and U-Net has been utilized for classification. The objective is to effectively and accurately
distinguish normal and pathological brain images. To enhance the efficiency, we include the
Improved Whale Optimization Algorithm (IWOA), which guarantees accurate and dependable
performance via location updates. The methodology demonstrates outstanding precision with
98.5% accuracy rate, 98.56% specificity, 91% sensitivity, 87.45%precision and a recall rate of 96%
with the F-Measure at 96.02%. These findings, obtained using MATLAB, demonstrate a substan-
tial performance improvement compared to current approaches. This development not only
represents a significant addition to diagnostic imaging but also a crucial role in the prediction
and treatment of brain cancers.
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1. Introduction

Among the most essential and crucial organs in the
human body is the brain, as it contains nerve cells and
tissues that govern the most important processes of
the entire body, such as breathing, muscular movement
and our senses [1]. Every cell has its unique capaci-
ties; some cells gain functionality as they mature, while
others lose capability, resist and become aberrant. This
group of cells form tissue thus it named as tumour. Can-
cerous brain tumours are uncontrollable and abnormal
growths of brain cells that severely impair the neurolog-
ical system and lead in the patient’s terrible death [2,3].
Even though cancer is not a similar disease, it is one of
the major life terrifying and deadly disease. One of the
major brain tumour types is Glioma and it is divided
into two types malignant (HGG) and benign (LGG).

For a physician who uses computer-aided-diagnosis
as a supporting tool for medical operations, most of the
major problems in brain tumour are recognition, anal-
ysis and categorization [4]. Glioma, meningioma and
pituitary are the three notable kinds of brain tumour.
Brain cancer requires a precise and prompt diagnosis in
order to receive effective treatment. Treatment options
are determined by the diagnostic kind, the stage of

the tumour at the time of evaluation and the tumour’s
grade [5,6]. In a variety of methods, computer-aided
design systems (CAD) have aided neurologists. Fur-
thermore, computer-aided design implementations in
neurology aid in the grading, categorization and detec-
tion of tumours.

A painless, non-invasive diagnostic imaging tech-
nique calledmagnetic resonance imaging (MRI) creates
superb 3D and 2D images of human body components.
It is extensively used and recognized as one of the most
efficient methods for cancer identification and catego-
rization due to its high-resolution images of brain tissue
[7–9]. Recognizing cancer kinds from MRI images, on
the other hand, is a tough, failure, highly technical pro-
cess that requires on the ability of the physician, as well
as a time-consuming approach. Additionally, because
tumours can have a range of shapes, there might not
be enough obvious markers in the image to help with
proper diagnosis [10]. We conclude that human anal-
ysis is typically unreliable as a result. The wrong type
of brain tumour can also be a serious issue since it
hinders patients from responding adequately to surgi-
cal intervention and lowers their chances of survival
[11,12].
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Medical image processing for diagnostic reasons has
received a lot of interest. The recent introduction of
sophisticated machine learning algorithms, as well as
their shown efficacy in solving numerous problems in
the field of artificial intelligence, has sparked a surge
of interest in health-related themes and algorithms
[13]. Many studies have been conducted and various
approaches applied to categorize various malignancies
utilizing MRI, particularly MR brain imaging, artificial
neural networks and evolutionary algorithms [14]. The
brain MRI can indicate normal and abnormal types in
earlier studies that are easy to differentiate the shal-
low machine learning algorithms such as probabilis-
tic neural network, neural network, SVM and hybrid
intelligent techniques [15].

Deep convolutional neural networks (CNNs) have
seen a lot of success in computer vision in recent years.
CNNs are artificial neural networks that have numer-
ous hidden convolutional layers in the middle of input
and output layers, which are influenced by the genetic
system of the visual cortex [16–18]. They are non-
linear in nature and can retrieve relatively high relevant
attributes. Deep learning algorithms combined with
CNN have demonstrated good results on a range of
additionalmedical imaging applications, including skin
cancer classification, brain tumour segmentation and
diabetic retinopathy identification [19,20].

In this research we proposed prediction technique
for brain tumour based on ensemble 3D CNN and
U-Net, optimization based on Improved Whale Opti-
mization Algorithm (IWOA). The developing inves-
tigation region in the brain is brain tumour seg-
mentation, as well as classification, to differentiate
between benign and malignant cells in order to antic-
ipate its stage. Advanced systems lack computerized
categorization, making decision-making extra time-
consuming and inefficient. This article proposes com-
puterized categorization methods to circumvent the
drawbacks of recent techniques by preparing a 3D
CNN and U-Net-dependent classification using the
IWOA.

The following aremajor contribution of this research
work

• To tackle the major problem in MR images, such as
low contrast and data heterogeneity, a preprocessing
method was utilized to increase performance.

• The data augmentation approach is then used to
compensate for the absence of data and to deal with
the wide range of brain tumour heterogeneity.

• The hybrid approach of the 3DCNNandU-Netwith
IWOA is applied for the classification scheme. For
segmentation, MKKMC is used.

• The proposed system efficiently and accurately clas-
sifies the cancer parts in the brain image when
compared to existing approaches. The accuracy of

tumour categorization using the provided strategy
has therefore significantly improved.

2. Literature review

Swati et al. [21] introduced a method for classifying
brain tumour images build on fine-tuning and trans-
fer learning. Using a before-trained CNN from an off
attributes extraction is not as effective as using learn-
ing algorithm and block level fine-tuning. Further body
organMRI image, andmanyothermedical imaging cat-
egories such as PET, CT scans and X-rays, might be
classified using the proposed method. This technique
was significantlymore versatile because it only required
little preprocessing for 2D MR images and did not rely
on produced features. Along the same CE-MRI dataset,
the suggested method outscored state-of-the-art classi-
cal machine learning techniques as well as state-of-the-
art CNNs approaches, according to the experimental
results.

Amin et al. [22] suggested using the discrete wavelet
transform (DWT) and the Daubechies wavelet ker-
nel for fusion, resulting in a highly communicative
tumour region when compared to a normal MRI sig-
nal. A partial differential diffusion filter (PDDF) was
used to eliminate noise just after the fusion process.
For segmenting tumour regions, a global threshold-
ing approach was applied, which was then fed into
a recommended convolutional neural network (CNN)
model for eventually discriminating tumour and non-
neoplastic regions. The method achieves greater solu-
tion on merged images such as 0.97% accuracy on
BRATS 2012 Image, 0.98% accuracy on BRATS 2013,
0.96% accuracy on BRATS 2013 Leader board, 1.00%
accuracy on BRATS 2015 Challenge and 0.97% accu-
racy on BRATS 2018 datasets.

El-Mahelawi et al. [23] suggested to employ an artifi-
cialNeuralNetworkmodel to classify tumour types. For
training this approach utilize feed-forward back propa-
gation algorithm. Sex, histologic type, liver, lung, degree
of difference, pleura, bone state, age, bone marrow,
brain, peritoneum, skin, neck, supraclavicular, axillar,
abdomen and mediastinum are some of the key factors
in the classification of tumours. For the ANN model,
they were employed as input variables. The “primary
tumour” dataset was used to build a classifier depend-
ing on theML topology. The concept was put to the test,
with the best score being 79.65%. An artificial neural
network was effectively used to classify tumour types in
this research.

While predicting output label, Sajid et al. [24] sug-
gested a new CNN architecture that employa patch-
based method that takes local and contextual commu-
nication into account. The proposed network uses a
repeated training method to handle the issue of data
imbalance while combining dropout regularization and
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batch normalization to address the issue of over fit-
ting. The suggested method includes a pre-treatment
stage in which images are normalized and the bias
field is changed, a feed-forward run via a CNN and
a post-processing stage in which minor false positives
around the skull area are eliminated. On the BRATS
2013 dataset, the suggested method obtains values of
0.86, 0.86 and 0.91 cent in terms of specificity, dice
score and sensitivity over the entire tumour region,
outperforming state-of-the-art methodologies.

Numerous end-to-end iterative deep CNN appro
aches for completely automated brain tumour segmen-
tation were introduced by Saouli et al. [25]. In addition,
we use the Ensemble Learning technique to create a
more effective strategy. They provide a new training
method for solving the problem of learning CNN archi-
tectures that takes into account the most important
hyper-parameters by constraining and limiting these
hyper-parameters in order to ensure an effective train-
ing process. The reported deep learning models are
efficient at segmenting brain tumours and provide very
high accuracy. Furthermore, the suggested models may
aid medical experts in reducing diagnosis time.

Naz et al. [26] suggested different architectures
of SegNeT encoder and decoder depend on pixel-
wise classification. SegNet achieved better segmenta-
tion performance and more precise in label predic-
tion. In comparison to patch-based categorization, it
showed high efficiency with promising reliability. It
achieves successful performance without the inclusion
of a post-processing CRF, which would have made the
approach extra time demanding despite attaining the
intended outcomes. In comparison to previous segmen-
tation models, SegNet reduces computational time and
memory usage. The usage of a small number of param-
eters is crucial in the implementation of SegNet. The
projected method achieves a level of accuracy of above
99%.

The implementation of deep learning models for
the prediction of brain tumours was described in this
research [27].Noreen et al. The ensemblemethod based
on conjunction of dense blocks using the DensNet201
pre-trained framework outperformed present research
methodologies for brain tumour classification. Then,
to classify the brain tumour, these characteristics were
synthesized and submitted to the softmax classifier.
With 99.51% testing consistency on testing samples, the
suggested method achieved the best representation in
the classification of brain tumours.

Based on the advanced approaches and high-
performance measures discussed in the referenced
study, there is a possible research need to investigate
these techniques’ real-time implementation and adapt-
ability. The majority of studies primarily concentrate
on attaining a high level of precision and specificity
in regulated datasets. However, extensive research is
scarce regarding the capability of such approaches to

adapt in broad, real-world research-backing environ-
ments. This includes considerations such as processing
velocity, interoperability with different medical imag-
ing technological advances and resilience against vary-
ing evidence and patient information quality. Resolving
these factors might significantly improve the practical
effectiveness of deep learning techniques for diagnosing
diseases.

3. Methodology

The proposed brain tumour categorization system is
preferable due to its complete and complex approach.
Data preparation is the initial procedure in which
non-tissue components and noise are effectively elim-
inated from MRI scan image, ensuring that the data
for evaluation is flawless and of high quality. Accu-
rate diagnosis relies heavily on this. Data augmenta-
tion is a subsequent process that improves the dataset,
enabling the model to generalize more effectively and
provide dependable outcomes across many scenar-
ios. This is a crucial factor that is often absent in
other approaches. Adopting the Multiple Kernel K-
Means Cluster Algorithm (MKKMC) in brain tumour
segmentation offers a reliable method for accurately
detecting tumour areas. The essential advantage of this
approach is the use of a hybrid methodology that com-
bines a 3D Convolutional Neural Network and U-Net
for tumour classification. This combination capitalizes
on the benefits of methods, guaranteeing meticulous
feature extraction and practical learning from intri-
cate image data. The Improved Whale Optimization
Algorithm (IWOA) effectively tackles optimization dif-
ficulties by enhancing the classification procedure. The
method’s superiority in medical imaging and tumour
categorization is evident via its carefully crafted series
of phases, eachmethodically tailored tomaximize accu-
racy and efficacy. Figure 1 depicts the orderly proce-
dure of the suggested technique aimed at enhancing
perceptions.

The suggested strategy has several advantages com-
pared to current methods, including effective prepro-
cessing, data augmentation, generalizability, scalability
and an innovative method of dividing into segments
that enhances efficiency and effectiveness. These ben-
efits jointly enhance the brain tumour categorization
system’s efficiency, precision and adaptability.

3.1. Pre-processing

The initial step is to crop unnecessary areas of the MRI
and the corresponding tumour mask images that per-
tain to non-tissue regions from all of the images of each
patient. Cropping was done in three dimensions for
each patient’s image. Cropping theMRI brain images is
crucial to remove any superfluous areas from the input
image. Cropped image are filled with zeros to keep their
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Figure 1. overall architecture of proposed approach.

aspect ratio, and then scaled back to 256× 256 pixels. In
addition, noise in the obtained MRI scans may smear
small details, distort tumour borders and even reduce
the spatial resolution of the images. As a result, by
complicating feature extraction, it could substantially
damage the performance of CNN-based approaches. As
a result, MR image contrast enhancement and denois-
ing approaches have recently sparked a lot of interest
and have been thoroughly examined by academics. The
magnetic resonance imaging contrast enhancement is
calculated using the following equation:

g(x, y) = f (x, y) − f min
fmac − f min

∗ 2bpp (1)

3.1.1. Denoising
This denoising will demonstrate how to lower noise
using a non-local mean filter. The weight value of the
mean pixel is altered. Each pixel’s weight is determined
only by the length between the destination pixel and
the severity grey level vector. The following equation is
used to construct a denoised image for each pixel:

M(i, j) =
∑
j∈D

D(i, j)w(i, j) (2)

The noisy MRI was designated by j, and the de-
noised image was represented by M. As a result of
subsequent events0 ≤ w(i, j) ≤ 1quantity can be satis-
fied. The judgement among the locales of pixels I and
j determines the weighted ordinary of the complete
pixel.

3.2. Data augmentation

Data augmentation could be viewed as a crucial aspect
in the training of significantly deep learning-based sys-
tems.Utilizing commondata augmentation techniques,
many photo variations were created to improve the
dataset samples and lessen over-fitting during training.
Data Augmentation addresses the issue of class imbal-
ance by interpolation the minority samples, resulting
in a more balanced outcome on the training phase.
Numerous augmentation approaches were used in our
research, involving horizontal and vertical flips, rotat-
ing, brightness alteration, zooming, ZCA whitening,
shifting and shearing.

3.3. MKKMC-based segmentation

To segment the tumour portion in the unusual image,
the suggested method uses a clustering algorithm. The
MKKMC algorithm is used in the suggested technique
for segment. Multiple kernel learning is used to modify
the classic K-means clustering algorithm. For segmen-
tation, a variety of clustering algorithms are utilized.
One of the most often used clustering algorithms is
the K-means algorithm, which identifies categories by
reducing clustering error. The suggested method uses
two hybrid kernels in the multi kernel process, like the
quadratic and linear kernels.

We utilize the hybrid kernel K-means clustering
approach to increase the projected segmentation accu-
racy. Many kernels are utilized presently, including the
quadratic kernel, radial basis function (RBF) kernel and
linear kernel.We hybridize quadratic kernels and linear
with them in this suggested approach.
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Let’s assume there are two kernels, k1 and k 2.
Under the kernelization of the metric technique, the
hybridized kernel K-means algorithm is an iterative
two-step technique that minimizes the optimal solu-
tion by partitioning P = {P1, . . . , Pk} of X into K
clusters and their associated cluster centroids Yk ∈ Rp
(k = 1, . . . , k).

W =
k∑

k=1

∑
||�(xi) − �(yk)||2

=
k∑

k=1

∑
x∈pk

{KMK(xi, xi) − 2K(xi, yk) + KMK(yk, yk)}

(3)

Let’s assume there are two kernels, LK1 andQK2. Then,
as seen in the preceding, three hybrid kernels are cre-
ated.

K(a, b) = LK1(a, b) + QK2(a, b) is a kernel (4)

K(a, b) = α ∗ LK1(a, b) is a kernel, when α > 0 (5)

K(a, b) = LK1(a, b) ∗ QK2(a, b) is a kernel (6)

The objective function (OF) is provided in the fol-
lowing expression, and the overall structure of the K-
means method seeks to lower it.

OF =
N∑
i=1

C∑
j=1

Zij||Ii − μj||2 (7)

N∑
I=1

c∑
j=1

Zij||Ii − μj||2 (8)

The basic Objective Function is changed as follows,
where Zij is the cluster deployment method.

OF =
N∑
I=1

c∑
j=1

Zij||Ii − μj||2 =
N∑
i=1

C∑
j=1

1 − Kmk(Ii, μj)

(9)
Whereas N represents the quantity of data, C defines
the amount of clusters,Kmk indicates themultiple kernel
function, µ denotes the cluster centre and I represents
the input image.

I indicates the kernel function Kmk in many ker-
nel fuzzy c means. Quadratic and linear kernels are
presented in this section.

The kernel-based objective function is applied in
Equation (10)

Kmk(a, b) = LK1(a, b) + QK2(a, b) (10)

The linear kernel LK1 is given by,

LK1(a, b) = aTb + c (11)

The quadrature kernel QK2 is given by,

QK2(a, b) = 1 − ||a − b||2
||a − b||2 + c

(12)

where c is the constant value. The kernel-based objec-
tive function is applied in Equation (5), thus we obtain

Kmk(a, b) = α ∗ LK1(a, b) (13)

where α is a random value. The kernel-based objective
function is applied in Equation (6), thus it expressed by

Kmk(a, b) = LK1(a, b) ∗ QK2(a, b) (14)

The modified centre formula is shown in the following
equations:

yk =
∑

xi∈pk KMK(xi, yk)xi∑
xi∈pk KMK(xi, yk)

(15)

After each cluster’s centroid has been upgraded, the
length between both the centroid and the data point
must be calculated. Every data is designate to a cluster
centre with the shortest length. This approach is done
till the modified centroid of every cluster in successive
iterations is identical.

3.4. Tumour classification

The CNN is essential in extracting features, classifying
and processing 3D data and enhancing the accuracy of
diagnosing brain cancers from MRI images. This tech-
nology’s advanced deep learning capabilities enable
thorough examination and interpretation of intricate
medical imagery. However, U-Net is crucial in picture
segmentation, mainly when data is scarce. The system’s
design is skilled at precisely dividing complex brain
tumour structures by collecting high-level and compre-
hensive characteristics via fine-grained segmentation.

3.4.1. 3D convolutional neural network
The proposed 3D CNN consists of eight convolutional
layers and three fully connected (FC) layers. Our sug-
gested CNN approach is basically based on two major
parts for reliable brain tumour categorization. It is just
that, unlike 2D CNN architecture, which does not fully
investigate the volumetric knowledge in MR images
and instead focuses on two-dimensional slices, we use
a 3D convolutional layer to generate a detailed feature
map that incorporates either global or local contextual
information. The next is deep network design, which
results in higher-quality local optimization. In such a
design, the added non-linearity could result in great
discriminative power.

Convolutional neural networks (CNNs) are a type of
supervised deep learning technique that hasmade great
research in the area of image analysis. The 3 major lay-
ers of a convolutionary neural design are convolutional,
fully connected and pooling. In convolutional layers,
the network creates several MRI features by utilizing
various kernels to describe the input image. The set of
parameters in the network will be greatly reduced by
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using this layer strategy, and the network will acquire
the association between corresponding pixels.

Deeper structures have already demonstrated their
usefulness for natural image categorization as an out-
come of the greater structures recorded by deepermod-
els. Its influence on 3D networks could be even more
dramatic.

To modify CNN models to 3D data, all layers must
be capable of 3D operations or execute in a 3Dmanner.
3D convolutional layers, being the crucial constituent
of 3D CNNs, execute the following function:

hl+1
i = σ

⎛
⎝∑

j
ul+1
ji + bl+1

i

⎞
⎠ (16)

ul+1
ji (x, y, z) =

∑
m,n,t

hlj(x + m, y + n, z + t)·

Wl+1
ji (m, n, t) (17)

where ul+1
ji (x, y, z)a 3D convolution with flipped kernel

is Wl+1
ji and hli is the ith channel of the lth layer, bl+1

i
is a bias term. By layering 3D convolutional layers and
down-sampling layers in a hierarchical manner. Deep
3D CNNs are capable of extracting greater-level 3D
attributes, while they are required for tackling complex
issues involving volumetric data.

Moreover, as contrasted to the 2D CNN variation,
3D CNN is theoretically and memory intensive due to
the huge number of learnable parameters necessary. As
a result, we recommended using only 3× 3 kernels for
each convolutional layer as a method, which might be
deemed quicker to convolve and allow layering addi-
tional layers with less weight. In the meantime, the
pooling layers are employed to lower the middle layer’s
size. Other technique for dealing with storage limits is
to use fewer filters for each layer, particularly during
first two levels of the network, in which the features are
more dimensional.

3.4.1.1. Activation function. The activation function
could be regarded as the source of the data transfor-
mation’s non-linearity. In the suggested model, the rec-
tifier linear unit (ReLU) is employed as an activation
function, as stated in Equation (18), where f (i) is the
function of a neuron’s outcome of an input labelled “i.”

f (i) = Max(0, i) (18)

The ReLUs can be represented as

f ′(z) =
{
1, for z ≥ 0
0, for z < 0

(19)

We use “ReLU” to get better results because it can
train deep CNNs quicker than the traditional “hyper-
bolic tangent” or “sigmoid” functions described by
Equation (20).

F(i) = tanh(i) (20)

3.4.1.2. Pooling. On CNN, pooling is a down sam-
pling approach.Wemight specify average pooling, max
pooling, which are the twomost common types of pool-
ing. The average pooling method takes into account
all elements in a pooling zone, including those with
low magnitude. As an outcome of the mean comput-
ing taking into consideration several zero components,
the pairing of activation function and the average pool-
ing creates a downweighting high activation impact. As
a result, max pooling was utilized in this study because
it isolates themost important information for classifica-
tion, such as tumour edges. Themax pooling procedure
was given a max filter to keep the sub-regions of the
beginning presentation from overflowing.

3.4.1.3. Regularization. To boost adaptability and
prevent overfitting, we used the dropout as a normali
zation for the fully connected (FC) layers. Dropout
removes nodes out from system in a deterministic way
for each area during training. As a solution, nodes
across all FC levels must learn improved data represen-
tations while co-adapting is prohibited.

3.4.1.4. Loss function. As a loss function, categorized
cross-entropy is used in this study. This function
compares the anticipated and real distributions using
Equation (21)where y and ŷ are the predicted and target
results, appropriately.

L(y, ŷ) = −
M∑
j=0

N∑
i=0

(yij ∗ log(ŷij)) (21)

3.4.2. U-Net architecture
U-Net is a well-known medical image categorization
network. It comprises a contracting path for captur-
ing contextual and a symmetrical extending path for
exact expansion localization. There are three convo-
lutional layers for every direction, with dropout and
pooling. In addition, skip-connections interconnect the
contracting and growing pathways. Every layer includes
3× 3× 3 convolutional kernels. The first convolutional
layer includes 32 filters, whereas different layers have
twice as many filters as the preceding stage.

We built two consecutive 3D nets, including one ini-
tial outcome concatenated to later results and the other
without. We discovered that the strategy with conjunc-
tion outscored the one without concatenation by a little
margin. The conjunction of up-sampling and down-
sampling convolutional layers, rather than the connec-
tion of a former to the latter, appears to be the most
important aspect of the U-net structure.

Regionally 3× 3 convolution is calculated is for input
fragments implemented or from outcomes of previous
stages in every layer in convolution I at bottomn, for the
input spots implemented from outcomes of previous
stages, accompanied by assessment of RLU to achieve
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the outcome described in Equation (22).

lmi = max(0,
∑
j
lm−1
j ∗ wn

ij + bni ) (22)

The trainable parameters in this case are the quan-
tity of every 3D convolution kernels wn

ij and the biases.
Every convolutional layer is followed by a max pool
layer, which calculates the maximum on a 3× 3 kernel,
reducing the dimension of the attribute map by 2.

To get the efficiency at the solution, we used the
widely accepted exponential function, Softmax, pre-
sented in Equation (22) for pixel-wise decision.

p(x)i = exi

k∑
j=1

exj
(23)

where k is a positive integer. After implementing soft-
max, every element in the range (0, 1), and the elements
will aggregate up to 1 so that they may be read as
probabilities. p(x)iis the approximate of the extreme of
activation function, i.e. p(x)i ∼= 1 for k that has max-
imum activation function and p(x)i ∼= 0 for another
values of k.

Thus vector is resolved by the softmax classifier as
bright or dark pixels. The cross-entropy function was
used to calculate the costs of the decisions and to tally
up the overall mistake.

E = 1
N

( N∑
i=1

ci · log(pi)
)

(24)

To assess the expenses of the selections and to sum
the overall error, the cross-entropy function was uti-
lized. As the interconnection grew increasingly trained
for attaining the intended output for provided sam-
ple points, the cost function grew closer to zero. The
variance among targets (c) and predicted values (p), as
specified in Equation (24), is used to determine cross-
entropy (E).

3.5. WOA

The humpback whale is among the biggest rorqual type
whales. These whales may grow to be the size of a bus
as an adulthood. Creele and tiny fish families make
for exciting shooting. The bubble-net feeding model
is a mechanism used by humpback whales to catch
prey. Humpback whales tend to feed towards the sur-
face of the ocean. WOA is inspired from the humpback
whales’ bubble net feeding method. Whale Optimiza-
tion Algorithm would be a type of adaptive optimiza-
tion technique which can be implemented to a variety
of optimization problems. The activity of humpback
whale feed hunting is represented as a way for deter-
mining the universal minimum and maximum in this
method. The major goal of this technique is to simulate

the activity of locating and capturing prey groups using
two basic methods: encompassing the prey and using
bubble systems to encircle the prey.

The demography to investigate for the best optimi
zation solutionwould be the first randomvariable in the
Whale Optimization Method. The preceding is aexpo-
nential concept for the bubble-net foraging mechanism
in whale’s humpback:

Z(t + 1) =
{
Z ∗ (t) − AD p < 0.5
D′ebl cos(2π t) + Z ∗ (t) p ≥ 0.5

(25)

D′ = |CZ ∗ (t) − Z(t)| (26)

A = 2ar − a (28)

C = 2r (29)

Whereas p and r are randomconstants in the interval
[0, 1], l defines a random variable in the region [1, 1],
and an is a descending number exponentially from 2
to 0 limit the iteration. The latest iteration is t, the expo-
nential form of the circular movement is b, and the
spacing between the ith whale and the best decision
is D.

It’s worth noting that if |Z| > 1, the technique’s
completion could be assured. We may additionally
make the appropriate improvements to the algorithm
investigation:

D′ = |CZrand(t) − Z(t)| (30)

Z(t + 1) =
{
Zrand(t) − AD P < 0.5
D′ebl cos (2π t) + Zrand(t) p ≥ 0.5

(31)

3.5.1. Improvedwhale optimization algorithm
The WOA technique can be enhanced with the assist
of chaos theory. Chaos processes have two key charac-
teristics that can be used to improve system resolution
and quickness: their sensitivity to the immediate situ-
ation and their random behaviour. This trait increases
population variety, making it easier to break free from
the locally optimal trap. The use of a logistic map-
pingmethod to enhance the generalwhale optimization
algorithm is suggested in this research. The proposed
algorithm is known as the improved whale optimiza-
tion algorithm (IWOA).

For creating chaotic values, there seem to be a vari-
ety of approaches. The approach of Logistic Mapping is
used in this study as follows:

pk+1=δpk(1−pk) (32)

While k denotes the number of iterations, p0 ∈ [0, 1]
denotes the starting random number, and 1 denotes a
control parameter in the range 1∈ [0, 1] – 0.25, 0.5, 0.75.
This can be demonstrated that if 1 = 4, the expression
given would be chaos.
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This determines which whale should be used in the
iterative model for location updates. Like a result, the
IWOA-based RBNN divides brain abnormalities into
four categories: neoplastic (brain tumour), cerebrovas-
cular and inflammatory illness. Algorithm 1 compu-
tationally depicts the overall process of the proposed
model.

Algorithm 1. Proposed brain tumour classification algorithm.

Input: Set of patient MRI images
Output: Classification of Brain Tumours

1: procedure PREPROCESSING(MRI_Images)
2: for each image in MRI_Images do
3: Crop non-tissue areas in three dimensions
4: Fill cropped images with zeros to maintain aspect ratio
5: Scale images to 256× 256 pixels
6: Apply contrast enhancement and denoising techniques
7: end for
8: end procedure
9: procedure DATA_AUGMENTATION(MRI_Images)
10: for each image in MRI_Images do
11: Apply augmentation techniques (flips, rotation, etc.)
12: end for
13: end procedure
14: procedure SEGMENTATION(MRI_Images)
15: Initialize MKKMC algorithm with hybrid kernels
16: for each image in MRI_Images do
17: Segment tumour portion using MKKMC
18: end for
19: end procedure
20: procedure TUMOR_CLASSIFICATION(Segmented_Images)
21: Initialize 3D CNN with specific architecture parameters
22: Train CNN with Segmented_Images
23: Apply Improved Whale Optimization Algorithm (IWOA)
24: end procedure
25: procedure 3D_CNN_ARCHITECTURE
26: Define CNN with convolutional and fully connected layers
27: Set Activation function as ReLU
28: Apply Dropout for regularization
29: Use Categorized cross-entropy as loss function
30: end procedure
31: procedure U_NET_ARCHITECTURE
32: Implement U-Net with contracting and expanding paths
33: Connect layers with skip connections
34: end procedure
35: procedureWHALE_OPTIMIZATION
36: Implement WOA based on humpback whales’ feeding

behaviour
37: Enhance with logistic mapping for chaotic behaviour
38: end procedure
39: procedure IMPROVED_WHALE_OPTIMIZATION
40: Enhance WOA with chaos theory using logistic mapping
41: end procedure
42: BEGIN
43: Prepro-

cessed_Images = PREPROCESSING(MRI_Images)44: Aug-
mented_Images = DATA_AUGMENTATION(Preprocessed_Images)

45: Segmented_Images = SEGMENTATION(Augmented_Images)
46: TUMOR_CLASSIFICATION(Segmented_Images)
47: 3D_CNN_ARCHITECTURE
48: U_NET_ARCHITECTURE
49: WHALE_OPTIMIZATION
50: IMPROVED_WHALE_OPTIMIZATION
51: END

Segmentation,mainly throughU-Net, is essential for
isolating the region of interest (ROI) within the com-
plex anatomy of the brain, thereby enabling more tar-
geted and effective treatment plans. Accurate segmen-
tation ensures that oncologists and radiologists can dis-
tinctly identify the size, shape and location of tumours,

which is critical for surgical planning, radiation ther-
apy and monitoring disease progression. On the other
hand, optimization strategies like the Improved Whale
Optimization Algorithm (IWOA) play a pivotal role in
enhancing the performance of these neural networks.
Optimization directly impacts the accuracy, speed and
efficiency of the algorithms, ensuring that the models
performwell on current datasets and are robust enough
to handle new and varied data. This combination of pre-
cise segmentation and effective optimization improves
diagnostic accuracy and contributes significantly to
personalized medicine and patient care advancements.

Moreover, the use of 3D CNN and U-Net archi-
tectures has been increasingly recognized in recent
research for their effectiveness in handling complex
medical imaging data. Studies have demonstrated that
3D CNNs, with their ability to process volumetric
data, provide a more nuanced and detailed analysis of
MRI scans compared to traditional 2D methods. This
depth of analysis is crucial in identifying subtle patterns
indicative of brain tumours. Furthermore, U-Net’s pro-
ficiency in image segmentation, as evidenced bynumer-
ous medical imaging studies, allows for the precise
delineation of tumour boundaries, which is vital for
accurate diagnosis and treatment planning. Incorporat-
ing these technologies signifies a substantial advance-
ment in medical imaging, offering more reliable and
precise tools for healthcare professionals.

4. Experimental evaluation

4.1. Dataset description

Here, the online available MRI dataset is available pub-
licly, and it is open-source that anyone can access the
dataset for research purposes. It has two labels: yes or
no, where yes specifies the occurrence of tumour and
no specifies no tumour. The dataset is classified and
acquired from the radiologists, physicians and shared
with various researchers. It is composed of 253 brain
MR images of different lengths and shapes. There are 98
MR images with normal (no tumour) and 155 tumour
images, and the dataset shape is heterogeneous and
non-uniform. The MR images are jpeg and.png file
format. Figure 2 depicts the dataset images with two
classes, “no” and “yes.”

4.2. Performancemetrics

The recommended images for medical records classi-
fication are created using a variety of medical photos
as source. Multiple kernel K-means clustering can be
used to perform segmentation, and a hybrid approach
3d can be used to perform definitive healthy and
unhealthy classification. 3D CNN and U-Net are two of
the most well-known television networks in the United
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Figure 2. Sample image for MRI dataset.

States. The proposed methodology is used to catego-
rize the classifier as “no (non-tumour images)” and “yes
(tumour) images” in this case. The simulation is done
in the MATLAB. Specificity, Precision, F-measure, FP,
sensitivity and NR, accuracy, NPV have been used to
evaluate the classifier’s efficiency.

False positive rate:
It indicates the efficiency of times an image ismistak-

enly labelled as relating to the same person as another
image when it’s doesn’t. Equation (33), which is pro-
vided below, is used to assess it.

FPR =
FP

FP + TN
(33)

False negative rate:
It indicates the ratio of times an image is classified as

not referring to the same person photographs while, in
fact, it corresponds to the images. It is calculated using
Equation (34) as a guide.

FNR =
FN

FN + TP
(34)

Positive Predictive Value (PPV):
The chance of an individual having a positive out-

come (B+ | T+) for the nation of interest is defined
by the PPV. As an outcome, PPV indicates the propor-
tion of sufferers who have a conclusive result out of a
maximum of eligible subjects (TP/TP+ FP).

PPV =
TP

(TP + FP)
(35)

Negative Predictive Value (NPV):
The likelihood of not contracting the disease in

an individual with a false negative outcome (B | T)
is described by the NPVNPV is expressed as the
ratio of people without illness who have a false neg-
ative outcome out of a sum of negative test results
(TN/TN+ FN).

NPV =
TN

(TN + FN)
(36)

Sensitivity:
The percentage of true positives that are appropri-

ately detected is the sensitivity measure. It has to do
with a test’s ability to notice good outcomes.

Sensitivity =
TP

TP + FN
(37)

TN – true negative, whereas FP – false positive.
Accuracy:
The percentage of the total quantity of True Posi-

tive and True Negative to the entire quantity of data
determines the accuracy of the suggested approach.

Accuracy =
TN + TP

(TN + TP + FN + FP)
(38)

F-measure: sensitivity as well as precision in a dramatic
mode

F - Measure = 2 ∗ Precision ∗ Recall
Precision + Recall

(39)

Specificity: The entire number of appropriately rec-
ognized negatives is referred to as the genuine negative
rate.

Specificity = TN
(TN + FP)

(40)

Precision: The percentage of true positives among
expected positives.

Precision =
TP

TP + FP
(41)

Dice similarity coefficient: The DSC was utilize to
assess the projected tumour’s resemblance.

DSC =
2TP

FP + 2TP + FN
(42)

The findings shown in Table 1 and Figure 3 demon-
strate the efficacy of the proposed hybrid strategy for
classifying brain tumours, particularly when compared
to conventional techniques such as FL-SNM, ELM
and 2D CNN. The system’s effectiveness is measured
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Table 1. Computation of performance measures.

Input image Accuracy Sensitivity F-Measure G-mean DSC

40 96.88 92.2 96.31 95.66 90.98
60 96.89 92.10 96.48 96.75 91.27
80 96.89 91.3 95.06 95.99 91.43
100 97 91.35 94.17 95.13 91.68

using numerous performance metrics, notably Accu-
racy, Sensitivity, F-Measure, G-mean and Dice Similar-
ity Coefficient (DSC).

There is a noticeable trend in the performance mea-
surements for various input image quantities (40, 60,
80, 100). With an increasing number of input photos,
there is a marginal enhancement seen in most mea-
sures. Accuracy reaches its highest point at 97% and
DSC at 91.68% for a dataset of 100 images. This increase
indicates that the model gains advantages from a more
extensive dataset, improving its capacity to acquire
knowledge and make generalizations.

The sensitivity, which represents the proportion of
actual positive results, typically exceeds 91%, demon-
strating the model’s capacity to detect the existence
of tumours accurately. The model’s Accuracy, which
remains above 96.88%, indicates its overall useful-
ness in accurately categorizing both tumour and non-
tumour instances.

The F-Measure, a metric that considers both Accu-
racy and recall, and the G-mean, a metric that evaluates
the balance between sensitivity and specificity, both
provide robust outcomes. The maximum F-Measure
achieved is 96.48%, while the G-mean attains a value
of 96.75%, suggesting a well-balanced categorization
system.

The Dice Similarity Coefficient, essential for eval-
uating segmentation quality, positively correlates with
the number of input photos. This suggests the model’s

Table 2. Comparison of overall performance for proposed vs
existing approach.

Performance metrics FL-SNM ELM 2D CNN PROPOSED

Accuracy 94.86 91.6 97.02 98.5
Sensitivity 92.06 90.19 92 91
Specificity 98.35 97.73 98.13 98.56
Precision 89.37 86.42 89 87.45
Recall 88.40 85.48 92 96
F-Measure 94.07 87.54 95 96.02

capacity to perform segmentation improves as the
dataset size increases. The suggested hybrid strategy
outperforms existing techniques like FL-SNM, ELM
and 2D CNN. This excellence may be ascribed to its
entiremethodology, including extensive pre-processing
to eliminate noise, data augmentation to enhance gen-
eralization and complex segmentation algorithms. The
model’s use of 3D CNN and U-Net architecture signifi-
cantly improves its capacity to extract intricate features
and efficiently learn from intricate image input.

The findings, shown in Table 2 and visualized
in Figures 4 and 5, demonstrate the brain tumour
classification technique’s higher efficacy than current
approaches such as FL-SNM, ELM and 2D CNN. This
contrast is essential for comprehending the progress
our technique brings to the area.

Our method attains a remarkable accuracy of 98.5%,
surpassing FL-SNM by 3.64%, ELM by 6.9% and 2D
CNN by 1.48%. The high accuracy rate demonstrates
the method’s overall effectiveness, primarily because of
the incorporation of advanced techniques like 3DCNN
and U-Net along with the Improved Whale Optimiza-
tion Algorithm. These techniques improve the model’s
ability to identify positive and negative cases accurately.

Moreover, the proposed technique has a sensitivity
of 91%, which is lower than FL-SNM and 2D CNN
but higher than ELM. By comparison, the specificity is

Figure 3. MRI outputs of brain (a), input image (b), pre-processed image (c), data augmentation brain image (d), segmented yield
of brain MRI and (e) predicted MRI.
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Figure 4. Performance comparison of proposed versus existing.

Figure 5. Differentiation of precision, recall and f-measure.

98.56%, exceeding the performance of all three com-
paring approaches. The delicate equilibrium between
sensitivity and specificity plays a crucial role in med-
ical diagnostics, as it guarantees both accurate tumour
identification and the reduction of false positives, which
is vital in a clinical environment.

The accuracy of our technique is 87.45%, surpass-
ing ELM but falling short of FL-SNM and 2D CNN.
However, recall has a notably higher value in all three

comparisons, reaching 96%. The high recall rate of this
approach showcases its efficacy in accurately detecting
a significant proportion of actual positive tumour cases.

The F-Measure, which stands at 96.02%, solidifies
the method’s robustness, surpassing all three com-
pared approaches by a significantmargin. Themeasure,
which is a harmonic mean of accuracy and recall, high-
lights the balanced efficacy of our technique in both
dimensions.
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Table 3. Differentiation of PPV, NPV, FPR, FNR.

Techniques PPV NPV FPR FNR

FL-SNM 92.5 89.40 20.81 19.71
ELM 88.23 81.05 10.01 8
2D CNN 93 80 30.81 6.70
PROPOSED 94.89 78 38.05 6.40

The investigation of the results, as shown in Table 3
and Figure 6, highlights the effectiveness of our sug-
gested brain tumour classification approach. This sys-
tem surpasses others in several crucial criteria, demon-
strating its complete and intelligent approach.

PPV:Our approach attains a PPV of 94.89%, signify-
ing a notable level of precision in forecasting actual pos-
itive instances. This strategy has a substantially higher
effectiveness level than the ELM approach, as seen by a
lower PPV of 88.23%. The high PPV of our technique
may be due to the rigorous data preparation procedure,
which guarantees the use of high-quality, noise-free
data for assessment.

NPV: Our technique has a 78% NPV, indicating its
ability to detect negative instances accurately. By com-
parison, the FL-SNM technique has a superior NPV of
89.40%, suggesting areas where our method might be
improved.

Our technique has a much higher FPR of 38.05%
compared to ELM’s lower rate of 10.01%. While there
may be an increased occurrence of incorrect positive
results, this is counteracted by extensive data augmen-
tation and sophisticated segmentation methods, such

as the MKKMC algorithm, which improve the over-
all accuracy of predictions. The suggested approach
demonstrates a FNR of 6.40%, which is much lower
than the FNR of 19.71% seen in FL-SNM. The low
FNR of our technique demonstrates its excellent capac-
ity to minimize instances of missed diagnoses, which is
essential for ensuring successful medical treatment.

Thus, our technique distinguishes significantly not
just in specific measurements but also in its compre-
hensive incorporation of sophisticated preprocessing,
data augmentation, MKKMC-based segmentation and
a hybrid of 3D CNN and U-Net for classification. The
IWOA optimizes all of these components. This leads
to developing a resilient system that outperforms spe-
cific performance measures and provides a complete
solution for classifying brain tumours. The method’s
complex and versatile architecture greatly enhances its
medical imaging and tumour categorization efficacy.

Figure 7, in conjunction with the data in Table 4,
presents a comprehensive technical comparison of the
AUC (Area Under the Curve) values for several clas-
sification methods: FL-SNM, ELM, 2D CNN and the
PROPOSED model. The outcome demonstrates that
the PROPOSED model surpasses the others, achiev-
ing an AUC value of 0.93. The obtained result of 0.90
is notably superior to the scores of FL-SNM (0.85),
ELM (0.87) and 2D CNN (0.88), suggesting a more
robust and more dependable ability to classify brain
cancers. With the result bar of the PROPOSED model
approaching the ideal value of 1, the visual depiction

Figure 6. Comparison of predicted rates with existing approach.
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Figure 7. Analysis of AUC in the tumour classification process.

Table 4. Comparative analysis of AUC values for different clas-
sification methods.

Method AUC Value

FL-SNM 0.85
ELM 0.87
2D CNN 0.88
PROPOSED 0.93

visually strengthens its superiority. The PROPOSED
model’s higher AUC value indicates its superior capac-
ity to reliably differentiate between classes, a critical
factor in medical diagnostics for reducing false posi-
tives and negatives. However, the comparatively lower
AUC values of FL-SNM, ELM and 2D CNN indicate
that these models may not be as efficient in distin-
guishing between tumorous and non-tumorous areas in
MRI images, albeit still demonstrating relatively high
performance. Figure 7 and Table 4 provide a persua-
sive depiction and quantitative account of the improved
diagnostic precision of the suggested strategy.

The suggested brain tumour categorization system
has significant and diverse theoretical and practical
ramifications. This method expands the limits of the
processing of medical images and machine learning
by using sophisticated algorithms such as 3D CNNs
and U-Net, together with novel optimization and seg-
mentation strategies. Besides adding to what is already
known about neural computation along with AI in
health care, this also establishes new standards for how
quickly and accurately medical diagnoses can be made.
In practical terms, the technique has substantial rami-
fications for therapeutic settings. Improved precision,
as well as accuracy in tumour categorization, result
in an enhanced diagnosis, hence driving the develop-
ment of better approaches to therapy. The rigorous pre-
liminary processing and data enhancement procedures

strengthen the dependability of outcomes, especially
when dealing with diverse image quality, making the
approach flexible for various medical imaging modal-
ities and patient demographics.

Moreover, there is the potential for flexibility and
generality. Many kinds of medical imaging suggest that
this technique can significantly transform the diagno-
sis and treatment of various disorders. Ultimately, this
may lead to better results for patients and improved
effectiveness in medical services.

The primary limitations of our work include the
model’s inherent heterogeneity in its capacity to per-
form over a wide range of real-world medical imaging
datasets, as well as the need to evaluate and modify
the technique in various clinical environments. Fur-
thermore, the potential for the method to be applied
to many forms of medical imaging and diverse medi-
cal disorders has yet to be extensively investigated and
confirmed.

5. Conclusion and future enhancement

Our objective in this work was to deliver a highly
efficient, precise and user-friendly automated method
for classifying brain tumours. Our technique primar-
ily involves integrating Multiple Kernel K-means clus-
tering to separate brain tumours accurately in MRI
images. This is then followed by a classification system
that utilizes the combined capabilities of 3D CNN and
U-Net. This hybrid technique is designed to improve
accuracy and greatly minimize error margins. The sys-
tem employs a supervised learning framework by cat-
egorizing MRI results into binary groups: tumour or
non-tumour. It utilizes a sequence of feed-forward lay-
ers to facilitate efficient learning and prediction. We
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have selected MATLAB as our execution environment
because of its strong capability in managing medical
imaging data. The performance metrics of our sug-
gested technique are pretty encouraging, with an accu-
racy rate of 98.5%, specificity rate of 98.56%, sensitivity
rate of 91%, recall rate of 96%, precision rate of 87.45%
and an F-Measure of 96.02%. These numbers showcase
the technique’s efficacy and highlight its superiority
over current methodologies in brain tumour classifica-
tion, therebymaking it a substantial addition tomedical
imaging and diagnostics.

Our future intent is to investigate sophisticated algo-
rithms to improve the model’s precision and effec-
tiveness, mainly when dealing with varied and more
extensive datasets. Additionally, we want to examine
the integration of our technique with real-time diag-
nostic tools, evaluating its versatility in different clinical
settings. Furthermore, we want to investigate the scala-
bility of our method to include many forms of medical
imaging and disorders, perhaps expanding its practical-
ity significantly. This extensive expansionwill recognize
the existing constraints and provide a distinct trajectory
for future progress in the discipline.
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