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ABSTRACT

The permanent magnet synchronous motor (PMSM) avoids commutation-related torque rip-
ples and produces smooth torque. Its great handling capacity and better efficiency make it an
excellent choice for high-demand applications. A typical PM motor drive fed with pulse width-
modulated voltages may cause the motor insulation to break down if rapid voltages (dv/dt) occur
across the motor terminals. Applying variable voltage with low dv/dt and implementing multiple
inverter topology can solve this issue. Multilevel converters have minimal switching losses, better
power quality and the ability to operate at both fundamental and higher switching frequencies.
In this study, a three phase stacked multilevel inverter-based FOC driven PMSM drive design is
proposed. Here, the neutral point is a capacitor intermediate point on DC side, where current is
naturally balanced throughout a switching cycle. This makes it possible to use downstream bat-
teries and even lower voltage equipment, greatly increasing efficiency, improved performance
and smother control at low speed. Therefore, direct-battery-driven electric vehicles will be able
to use this. A 33 level inverter-based PMSM drive was used to implement the FOC, and the sim-
ulation results were used to validate it. The Matlab/Simulink tool is used to simulate the entire
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system.

1. Introduction

More focus has been placed on electric vehicles (EVs)
as a potential solution to the crisis of energy and eco-
logical concerns [1,25]. The prevalence of EVs will rise
rapidly in the upcoming years due to research activi-
ties and ongoing advancements in control strategies and
electrical drive systems [2]. The drive train, power con-
verter, and electric machine make up an EV’s electrical
driving system [3]. Presently, EVs can be powered by
a wide range of electrical drive technologies, includ-
ing two- or multi-level power converters and induc-
tion motors (IM) or permanent magnet synchronous
motors (PMSM). With regard to the electric machine
component, PMSMs are thought to be viable options
for EV applications due to their potential for low main-
tenance, a simpler control scheme, reliable operations,
high efliciency, and high energy density [4]. In EV
applications, two-level inverters are typically utilized to
regulate the PMSM [5]. Multilevel converters can func-
tion at a high rate of switching PWM in addition to
fundamental switching frequency. A power-electronic
device known as a multilevel inverter uses several PWM
algorithms to produce the desired output voltage.
Since multilevel inverters (MLI) use switches with
lesser voltage ratings, offer superior quality wave-
form even at lower switching frequencies, have fewer

electromagnetic issues with compatibility and, require
less filtering, they are a logical choice for high power
inverter drives [6]. cascaded Hbridge Inverter, flying
capacitor MLC, Diode clamped inverters, and MLC
hybrid topologies are examples of typical multilevel
converter (MLC) topologies [7]. Research into produc-
ing more voltage levels has been extensive since it has
been shown that minimize harmonic content in the
waveform [8]. When increasing the number of volt-
age level, diode clamped inverter necessitate a high
quantity of DC link balancing capacitors, and clamp-
ing power diodes also becomes more challenging. Large
numbers of electrolytic capacitors are needed for FCs,
and balancing these flying capacitors is increasingly dif-
ficult as the voltage waveform climbs up. Despite their
modular design, the CHBs need more separate DC sup-
plies to function. There have been numerous reports of
hybrid topologies with voltage waveforms that contain
additional steps.

In [9,10], the management and functioning of a 7-
level inverter are covered in great detail. In [11], a
9-level open-ended setup for induction motor drives
is covered. To balance out the loss distribution across
semiconductor switches, Active NPCs were introduced
[12]. Another type of MLC that can produce increased
voltage level waveforms is the hybrid MLC, which is
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Figure 1. Proposed 33-level stacked circuit diagram of MLIs.

created by combining FCs and several CHBs. Liter-
ature reports on hybrid converters with a single DC
supply for 5-level and 17-level [13]. The investigation
of neutral point (NP) oscillations in multiphase NPCs
[15] and three phase NPCs [14] has been documented
in a number of articles. A thorough examination of
the impact of nonlinearities on the neutral point can
be found in [16]. In [17], the analysis and manage-
ment of DC capacitor voltage drift in a 5-level inverter
are covered. A new report [18] for three phase IM
drives describes another way to create increased voltage
level waveforms by layering MLCs with reduced space
vector structure and using low voltage devices. The
subsequent section replicates the different noteworthy
characteristics of these stacked inverters. With instan-
taneous neutral point (NP) current balancing inside a
switching cycle, the stacked inverter topology is utilized
in this research to power FOC-based PMSM drives that
have just one DC source.

Field Oriented Control, or FOC, is a popular closed-
loop control technique that produces PMSMs with
remarkable dynamic performance. By separating the
components of stator current that produce torque and
flux, it makes it possible to regulate the PMSM drivein a
decoupled manner, simulating the control structure of a
DC machine that is excited independently [23]. Due to
its ability to independently adjust torque and flux, FOC
effectively converts the control of an alternating cur-
rent machine into that of a DC machine. In addition to

providing an efficient performance across a larger speed
range, FOC gives the PMSM full motor torque capabil-
ities at speed ranges below rated speed. The following
section lists a few of these stacked inverters’ notewor-
thy characteristics. This paper focuses on instantaneous
neutral point (NP) current balancing for FOC-based
PMSM drives with a single DC source employing a
stacked inverter design.

2. Topology of the proposed stacked
multilevel Inverter

Figure 1 Illustrates the proposed 33 level Stacked MLI
multilevel inverter, which consists of 18 power switches
and 4 capacitors. The suggested 33 level Stacked MLI
switching Table 1 is displayed in the table, and the
proposed Stacked MLI capacitor can be charged and
discharged at the same cycle level. I.

The capacitor voltage V1, Vea, Vs, Vs, Vs and
Ve is specified below.

Vel = Ve =16V,
Ves = Ve = 4V
Vs =2V,

Ve = Vic

The voltage control regulates the charging and dis-
charging of each capacitor to the required voltage level
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Table 1. List of on switching states for the proposed 33-level stacked MLIs.

S1 S2 S3 sS4 S5 S6 ST C1 2 (3 (4 Vo ST S2 S3 S4 S5 S6 S7 C1 C (3 C4 Viny
11 1 1 1 0 0 U U U U 416/ 0 1 1 1 1 0 0 U U U U 0

T 1 1 1 1 1 0 U U U C 415 0 1 1 1 1 1 0 U U U C Ve

1 1 1 1 0 0 1 U U C D 415 0 1 1 1 0 0 1 U U C D Vg

1 1 1 0 1 0 1 C U D D 415/ 0 1 1 0 1 0 1 C U D D Vg
11 1 1 0 0 0 U U C U 414/ 0 1 1 1 0 0 0 U U C U -2
11 1 0 1 0 0 C U D U 414 o0 1 1 0 1 0 0 C U D U =2V
1 1 1 1 0 1 0 U U C C 41V 0 1 1 1 0 1 0 U U C C =3V
1 1 1 0 1 1 0 C U D C 413 0 1 1 0 1 1 0 C U D C =3V
17 1 0 1 1 0 1 C U U D 41V 0 1 0 1 1 0 1 € U U D =3V
1 1 0 1 1 0 0 C U U U 412 0 1 0 1 1 0 0 C U U U -4V
1 1 0 1 1 1 0 C U U C 41V 0 1T 0 1 1 1 0 C U U C =5V
1 1. 0 1 0 0 1 C U C D 41V 0 1 0 1 0 0 1 C U C D =5V
1 1 0 0 1 0 1 C C D D 41V 0 1 0 0 1 0 1 € C D D =5V
1 1 0 1 0 0 0 C U C U 410V 0 1 0 1 0 0 0 C U C U —6Vg
1 1 0 0 1 0 0 C C D U 410V 0 1 0 0 1 0 0 C C D U —6V
1 1 0 1 0 1 0 C U C C +49% o0 1 0 1 0 1 0 C U C C =7V
1 1 0 0 1 1 0 C C D C +49% 0 1 0 0 1 1 0 C C D C —7Vg&
1 o 1 1 1 0 1 D D U D 4% o0 o0 1 1 1 0 1 D D U D -7V
1 o 1 1 1 0 0 D D U U +8/4 0 0 1 1 1 0 0 D D U U —8V
1 0 1 1 1 1 0 D D U C 48 0 0 1 1 1 1 0 D D U C =9V
1 0 1 1 0 0 1 D D U D 4 0 0 1 1 0 0 1 D D U D =9
1 o 1 o0 1 0 1 U D D D 47, 0 0 1 0 1 0 1 U D D D -9V
1 o0 1 1 0 0 0 D D C U 46V, 0 0 1 1 0 0 0 D D C U —10V
1 0 1 0 1 0 0 U D D U +46/4 0 0 1 0 1 0 0 U D D U =10V
1 0 1 1 0 1 0 D D C C 45% 0 0 1 1 0 1 0 D D C C =1V
1 o 1 0 1 1 0 U D U C 45/ ©0 0 1 0 1 1 0 U D U C =11V
1 o o0 1 1 o0 1 U D U D 45/ 0 0 0 1 1 0 1 U D U D =11V
1 0 0 1 1 0 0 U D U U 444 0 0 0 1 1 0 0 U D U U =12V
1 0 0 1 1 1 0 U D U C 43 0 0 0 1 1 1 0 U D U C =13V
1 0 0 1 0 0 1 U D C D 43¢ 0 0 0 1 0 0 1 U D C D —13V
1 o0 0 o0 1 o0 1 U U D D 43, 0 0 0 0 1 0 1 U U D D =13V
1 0 0 1 0 0 0 U D C U 42 0 0 0 1 0 0 0 U D C U =14V
1 0 0 0 1 0 0 U U D U 42 0 0 0 0 1 0 0 U U D U =14V
1 0 0 1 0 1 0 U D C C 4V 0 0 0 1 0 1 0 U D C C =15V
1 0 0 0 1 1 0 U U D C 4V 0 0 0 0 1 1 0 U U C D =15/
1 0 0 0 0 0 1 U U U D 4V 0 0 0 0 0 ©0 1 U U U C =15/
1. 0 0 0 0O O O U U U U 0 0 0 0 0 0 0 0 U U U U =16V

Table 2. Topology comparisons of the proposed stacked mlis
with existing topologies.

LI Topology LEVEL SWITCH DIODE DCSOURCE Capacitor
CHBMLI 33 64 - 16 -
Proposed CHBMLI [9] 33 64 - 32 -
ST-Type[8] 33 24 24 8 -
Csb[10] 33 21 16

HCMLI[11] 33 34 - 16 -
SBSU STACKED MLIs [21] 33 79 - 1 15

SU STACKED MLIs [20] 33 21 32 1 16
Proposed STACKED MLI 33 18 18 1 6

of each capacitor. The switch can produce both positive
and negative voltage levels when it is in the ON and OFF
states, respectively.

Table 2 analyzes the number of switches, diode,
capacitor, and DC sources for a single phase inverter
as a function of 33 voltage levels. The topology of [8],
[9], [10], and [11] is not as good as that of the typi-
cal CHBMLI, requiring the same number of switches
but more DC sources than Stacked MLI, which only
requires one DC source. SBSU-Stacked MLI [20] and
Stacked MLI SU-StackedMLI [19]. On the other hand,
the suggested Stacked MLI requires a notably smaller
number of switches and DC sources while requiring the
same amount of DC sources as the traditional CHBMLI
and Stacked MLI. Consequently, the suggested HCMLI
can be used with both single- and three-phase inverters.

3. PMSM mathematical model

In an attempt to simplify the mathematical model of
the synchronistic coordinate system of PMSM, the fol-
lowing assumptions are commonly made: ignoring the
motor’s core saturation, removing the hysteresis and
eddy current losses, and maintaining the three phase
AC wave current symmetrical; ignoring magnetic sat-
uration with iron loss, magnetic field circuit is main-
tained linearly, and relying on the inverter to produce
absolute three phase power while ignoring the friction
in rotor shaft and superior harmonics [24]. Coordinate
transformation theory serves as the foundation for the
control technique known as vector control. Through
the use of coordinate transformation, speed control in
PMSM can achieve performance comparable to that of
DC motors. In order to achieve this, the flux, motion
and torque derivations for the PMSM’s model mathe-
matically in the coordinate d-q system can be explained
as follows.
Voltage derivation:

ug = Rlg + Ppsq — w.¢5q (1)
ug = Rl + Ppsq + 0.9s )

Flux derivation:

@d = Lea.Isqa + of (3)
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Figure 3. Block diagram of FOC.
¥q = Lsq-Isq (4) Motion derivation:
Torque derivation: w )
d Te=]xp|—)+Rao*—+T (7)
p np

3
T, = E”p-[‘ﬂf-lsq + (Lsg — qu)-Isd-Isq] (5)

The formula above can be rewritten as follows for
the surface permanent magnet synchronous motor
(SPMSM) since Lgg equals Lyq.

3
T, = Enp'(pf-lsq (6)

Within the aforementioned formulas, ¢sq and ¢sq sig-
nify the dq axis constituent of stator flux, Lsq and Lgq
denoted dq axis equivalent inductance of stator wind-
ings, I;q and Iq signify the dq axis constituent of stator
current, ud and uq signify the d and q axis constituent
of stator voltage, ¢r represents the PMSM flux, R indi-
cates the stator windings resistance, and w expresses the
rotor speed. Te is proportional tolsg, p indicates differ-
entiation condition, and 7, represents the count of the
pole pairs.

Here, ] stands for inertia of rotational force, w for elec-
trical velocity rotor angular, and TL for load torque. R2
is the damping coefficient. The current (I5q) is only the
torque component in torque function, which is higher
when id equal to zero. This is reflected in formula
(6), which represents vector control approach, where
Isqg = 0.

4. PMSM FOC control

The efficiency of AC drives is increased by vector con-
trol (VC), which was developed at the start of the 1970s
and shown in an induction motor that may be con-
trolled by a separately excited DC motor [19]. The
instantaneous positions of the voltage, current, and
flux space vectors are controlled in VC, which ide-
ally provides the right orientation during transients
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as well as steady states. Both synchronous and asyn-
chronous motor drives can use vector control. There
are several similarities between Sinusoidal Control and

Discrete,
Ts=1e-006's. > |:|

_Ll i
L igref P labc

Scope3

D_Infcrete Discrete dref labc*
imer iabcr [—1—]Ir_abc
PI Controller e = Int

the

dg2abe

Table 3. Rated data of the simulated and tested PMSM motor.

Rated Speeds 1500 rpm
Torques 3.5Nm
Rated frequencies 50 Hz
Rated Voltages 93V
Stator resistances 2.8 ohm
Stator Inductances 1.5mH
Torque Constants 1.05 Nm/A
Pole pairs 4

the Field Oriented Control algorithm. It can, however,
attain greater efficiency at high speeds due to a few key
distinctions. The primary disadvantage of Sinusoidal
Control is that it attempts to regulate motor currents,
which direction and magnitude change with time. The
PI controllers’ limited bandwidth prevents them from
handling the operation as the speed and frequency rise.
By expressing and managing the current space vector
in the two-axis d-q frame of reference, this issue can be
solved.

Even though changing current alone seems like the
most obvious solution at first, creating variation in
torque with a PMSM motor is more challenging. When
current is introduced into the rotor perpendicular to
the magnetic field, torque is produced. The majority
of permanent magnet DC motors use FOC. To apply
torque to rotor’s position, magnetic field’s phase and to
motor shaft must be known. In order to compare Hall
Effect sensors to vector control, this article will examine
them.

Synchronous inductances Ly and their correspond-
ing armature fluxes ¢, are minimal i.e. ¢, = ¢y = ¢r.
Torque expression outcomes can be represented as
Equation 1.

3
T = E”p-‘pf-lsq (8)

Which implies torques is proportional to Isq power
factor angles ¢ equal torque angles § as depicted in
Equation 2.2

cosh = @5/ cos§ = ¢ (9)
v
- Scope
Itpge MeasurementScopel Step
o
Vabc
A Tm >
- > ]
B N A 1\, <Rotor sifed wm (rad/s)
bj#——= B -
c . < - torque fFeMNm):
LaC ‘Rotor afigle thet: Rbtor godle hetam (radf>

Proposed 33 LEVEL INVERTE!

Three-Phase
V-1 Measurement

Scoped
Permanent Magnet
Synchronous Machin

Figure 5. MATLAB simulation model of proposed stacked MLIs based PMSM.
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Figure 7. Simulation wave form of proposed stacked MLIS based PMSM in Case.1.

Stator command currents are derived from speed con-

trol loops.

FOC (Field Orientation Control) entails control-
ling the stator current, represented by vectors [20-22].
These controls are developed from projections, which

change three-phase systems with time dependence into
two-coordinate systems which is time independence (d,
q coordinates). These projections result in structures
resembling controllers for DC machines. The foun-
dations of control approaches are Clarke and inverse
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Figure 9. Current THD of proposed inverter in 0.875 Nm case.1.

transformations. The rotating frames of the rotors may
be created from the stator’s (3®) currents. Clarke trans-
formations transform three phase values from three
phase frames of references into dual axis orthogonal
stable frames of references. Values are never in a fixed
frame since the rotor frame rotates continually. The
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Figure 10. Capacitor voltage of proposed inverter in case.2.

three-phase values are transformed by the Park trans-
formation into an orthogonally oriented frame of refer-
ence (direct axis 4+ quadratic axis). Figure 2 displays the
three repositories.

The joined Clarke and Park Transformations can be
depicted in a Matrix form as:

[Id] _2 [cos(d) cos (0 —Z) cos(0+2)

Iy 3 | sin(0) sin (9 ZT”) sin (9 + ZT”)
L
x| Ip (10)
I,

Where 14 and I are direct and quadrature axis respec-
tively, @ stands for angular positions of rotors. Similarly,
inverse transformations are given by:

I cos(0) —sin(0)
a
Iy =§ cos( —27”) —sin(@—%”)
L | cos (6 + 27”) —sin (6 + ZT”)
9
X 1, :| (11)

Rotation torque is produced by the quadrature axis
component, not the direct axis component, which
yields insignificant torque. Optimally, the direction and
magnitude of the current space vector in the d-q frame
are fixed in relation to the rotor, regardless of rotation.
The d-q frame of reference’s static current space vector
forces the PI controllers to work with DC values instead
of sinusoidal signals, significantly streamlining the con-
trol structure. The controller frequency response and
phase shift on motor torque and speed are thus no
longer limited since this isolates the controllers from
the time-variant winding currents and voltages.

30
S
< 20
o
>
10 : : :
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S
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Figure 11. Simulation wave form of proposed stacked MLIS based PMSM in case.2.

Several benefits are possible with the FOC algorithm
because it isolates the PI controllers from time-varying
currents and voltages. Figures 3 and 4. Shows the block
diagram and Flow chart of a typical FOC controller
respectively.

FOC algorithm offers multiple benefits, including:

e High efficiency, by shielding the PI controller from
time-varying currents and voltages.

e Smooth functioning across a wide speed range, both
at low and high speeds.

e Fast dynamic response and good transient and
steady performance;

e Convert complicated AC model and coupling into a
simple linear system.

The only drawback to the application of FOC is the
computationally expensive and challenging nature of
the changes that must be completed.

5. Simulation result

For the validation of the previously discussed control
approach, simulations on a 33-level STACKED MLI
inverter-fed PMSM motor have been carried out using

—FFT analy

Fundamental (41Hz) = 3.368 , THD= 2.53%
T T T T T

08|

Mag (% of Fundamental)

041

0 100 200 300 400 500 600 700 800 00 1000
Frequency (Hz)

Figure 12. Current THD of proposed inverter in 2500 rpm
case.2.

Matlab-Simulink. The simulated PMSM motor ratings
are given Table 3. Below. Then the proposed method
effectiveness is analyzed by comparing the different
technique and different case studies, i.e. case 1 and case
2 (Figures 5 and 6).

Case 1.

This section details the testing of the proposed 33-level
PMSM motor drive performance, which is compared
by rating the constant speed of 3000 rpm and altering
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Figure 13. Current THD of proposed inverter in 1500 rpm
case.2.

the motor’s torque from fully loaded to 25% loaded,
or 0.875 Nm. The torque at which the load is applied
is expressed as a step, changing from 3.5 Nm to 0.875
Nm in 0.2 s. Figure 4 demonstrates how the voltages
of the capacitors Vi, Ve, Vs, Ves, Vesand Vg pro-
gressively approach the required value. Figure 7(a)-(c)
show the filtered three-phase stator voltage of the
PMSM, which is disturbed by the presence of sta-
tor inductance. Figure 7(a) displays the output phase
voltage of the 31-stage inverter. Figure 7(e) displays
the motor’s output electromagnetic torque; the engine
speed is unaffected by the PMSM vector velocity control
as shown in 7(d) as the torque changes from 3.5-0.875
Nmin0.2s.

Case 2.

In order to examine the drive performance of the
planned 33-level PMSM motor, this section explains
how the motor’s torque was varied from fully loaded
to 25% loaded, or 0.875 Nm, at a ratted constant speed
of 3000 rpm. Step changes of the load torque from 3.5
Nm to 0.875 Nm are given in 0.2 s Figure 8 demon-
strates how capacitors V1, Vo, Vs, Vs, Vs and Vg
voltages self-balance to attain the target value lin-
early(Figures 9 and 10). Figures 11(b) and (c) display
the filtered three-phase stator voltage of the PMSM,
which is disturbed by the presence of stator inductance.
Figure 11(a) depicts the output phase voltage of the 31-
level inverter. Figure 11(d) depicts the PMSM motor’s
rotor speed. Due to PMSM vector speed controls, but
motor torques, the shift from 2500 to 1500 rpm is
accomplished in 0.2 s. muscles do not alter, as seen in
Figure 11(d).

6. Conclusion

This work proposes a new stacked multilevel inverter
topology for symmetric 3-phase PMSM drives, with
a single DC supply. The 3-phase stacked multilevel
inverter design with two DC sources for a FOC-based
PMSM drive is originally described in this work. Next,
it suggests a straightforward and innovative way to run

Table 4. Torque ripple comparison of proposed inverter for var-
ious conditions.

Torque
Ripple Torque
Condition THD (%) (Nm) Ripple (%)
Case1 3000 RPM 3.5Nm 3.31% 0.19Nm 5.74%
0.875Nm  537% 0.072Nm 8.22%
Case1 2500 RPM 3.5Nm 2.53% 0.12Nm 3.45%
1500 RPM 1.36% 0.08 Nm 2.28%

the three-phase stacked MLI using a single DC sup-
ply. Compared to conventional similar topologies, the
suggested topology minimizes the number of power
switches, diodes, total blocked voltage, system size, and
cost. Lastly, the efficiency and performance of the 33-
level STACKED MLI topology with PMSM drive that
has been suggested. The results demonstrate that the
PMSM power train with FOC provided adequate per-
formance in both simulations with only minor ripple in
torque and THD values for thirty three-stage inverter
as shown in Table 4. This showed how the high han-
dling capacity and high efficiency of these motors elim-
inate torque ripples caused by commutation and pro-
duce smooth torque with low transient voltage, which
improving the PMSM control’s performance and relia-
bility in electrical vehicles.
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