
Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/taut20

An anomaly affected discrete LTI systems: a
moving horizon approach for estimating position
and temperature measurements

Anees Fathima Bashir, M. P. Flower Queen & Irfan Habib

To cite this article: Anees Fathima Bashir, M. P. Flower Queen & Irfan Habib (2024) An
anomaly affected discrete LTI systems: a moving horizon approach for estimating position and
temperature measurements, Automatika, 65:3, 842-851, DOI: 10.1080/00051144.2024.2314914

To link to this article:  https://doi.org/10.1080/00051144.2024.2314914

© 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 26 Feb 2024.

Submit your article to this journal 

Article views: 316

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

https://www.tandfonline.com/journals/taut20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2024.2314914
https://doi.org/10.1080/00051144.2024.2314914
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2024.2314914?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2024.2314914?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2314914&domain=pdf&date_stamp=26%20Feb%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2314914&domain=pdf&date_stamp=26%20Feb%202024
https://www.tandfonline.com/action/journalInformation?journalCode=taut20


AUTOMATIKA
2024, VOL. 65, NO. 3, 842–851
https://doi.org/10.1080/00051144.2024.2314914

An anomaly affected discrete LTI systems: a moving horizon approach for
estimating position and temperature measurements

Anees Fathima Bashira, M. P. Flower Queenb and Irfan Habibc

aDepartment of Electronics & Communication Engineering, Noorul Islam Centre for Higher Education, Kumaracoil, India; bDepartment of
Electrical and Electronics Engineering, Noorul Islam Centre for Higher Education, Kumaracoil, India; cDepartment of Electronics &
Communication Engineering, Madras Institute of Technology, Chennai, India

ABSTRACT
A real-time systemmaybe subjected to various anomalies that can affect thequality of the obser-
vations. The main motivation of the article arises from the need in addressing challenges posed
by the presence of anomalies in discrete linear time-invariant (LTI) systems with a focus on the
estimation processes, in the context of position and temperature measurements. The proposed
approach leverages the properties of discrete LTI systems and takes advantage of the predictive
capabilities of the moving horizon strategy (MHS). It operates recursively updating estimates of
newmeasurementwhile fairly considering its past estimates that occurwithin thewindowof the
moving horizon. The estimation frameworkwill be designed to handle disturbances and provide
robust estimates, to ensure the effectiveness of the system. In order to validate the proposed
approach simulation studies were conducted on different and only scenarios in different order
LTI system. Comparative studies with different estimation techniques demonstrate the capabil-
ity of the proposed approach in terms of performance and efficiency. The proposed approach
can be applied to systems with changing system dynamics. Future research may be conducted
to utilize this strategy in other domains to mitigate anomalies while enhancing performance.
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1. Introduction

The discrete linear time-invariant (LTI) system accepts
a sequence of discrete inputs, linearly processes them,
andoutputs a sequence of discrete outputs. It is amathe-
matical representation of the behaviour of a system, the
behaviour of which is exclusively governed by its inputs
and outputs, both present and past [1]. This indicates
that the system’s behaviour is linear and time-invariant,
and it is independent of present-day inputs or outputs.
When a system is linear, it indicates that it fulfils the
superposition principle, which states that if an input is
a linear combination of numerous other inputs, the cor-
responding linear combination of the outputs produced
by each individual input will be the output [2]. These
systems are time- invariant, which implies that their
behaviour remains constant across time. As a result, if
the input signal is advanced in time, the output signal
will also be advanced by the same amount of time [3].
Digital signal processors, control systems, and filters are
a few examples of discrete LTI systems. Applications for
these systems include robotics, image processing, and
audio processing. Digital signal processing, communi-
cation systems, control systems, and audio processing
are all applications of discrete LTI systems [4].

A deviation or irregularity in the behaviour of
the system that cannot be explained by the system’s

mathematical model is referred as an anomaly in dis-
crete linear time-invariant systems [5]. These anoma-
lies can be brought on by a number of things, such
as measurement mistakes, outside disturbances, sys-
temnonlinearities, andmodel restrictions [6].When an
anomaly happens, the system may exhibit unexpected
behaviour or make inaccurate predictions, which may
cause users to make poor decisions or take inap-
propriate actions based on the output of the system
[7]. Many methods, including as statistical analysis,
machine learning algorithms [8], and adaptive control
strategies, can be used to identify and manage anoma-
lies in discrete linear time-invariant systems. These
methods can assist in determining the root causes of the
abnormalities, making real-time corrections for them,
and enhancing the output of the system’s correctness
and dependability [9].

The moving horizon strategy is a type of control
that makes use of a dynamic model of a system to
forecast future behaviour and optimize control actions
over a limited amount of time [10]. It is a dynamic
optimization method for resolving optimization issues
with time-variant constraints. The approach entails seg-
menting the issue intomoremanageable sub-problems,
each with a shorter time horizon, and resolving them
one at a time [11]. By adding new restrictions and
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deleting existing ones, new sub-problems are created
as the time horizon extends. The decision variables
are updated for the following time horizon using the
solution found in the time horizon [12].

To find the optimum solution for a specific set of
constraints, it continually updates a finite time hori-
zon of the future. To determine the control actions, an
optimization problem that attempts to minimize a cost
function while considering system restrictions must be
solved [13]. Over the course of the horizon which is
finite in nature, the problem of optimization is repeat-
edly resolved, and during every step of time, the system
is subjected to the first control action while a fresh cal-
culation is calculated on the problem of optimization
and built subject to changes in the state of the system
[14].

The fundamental principle of Moving Horizon Esti-
mation (MHE) is to predict the system’s response to a
control action over a finite time horizon and to optimize
the control action to achieve the desired performance
while taking into consideration the system’s restric-
tions. A cost function that penalizes deviations from
desired set points, control effort, or other performance
measurements can be used to formulate the optimiza-
tion problem [15]. Due to its capacity tomanage system
limitations and nonlinear dynamics, MHE is frequently
utilized in the process control, robotics, automotive,
and aerospace industries [16]. In systems with rapid
actuators and slow dynamics, where the control action
must be carefully planned to prevent overshoots and
other undesirable effects, it is very helpful [17]. It helps
to optimize the use of resources by enabling decision-
makers tomodify their plans and strategies in real-time
in response to shifting circumstances. The method is
often referred to as “reclining horizon control”. MHE
does have some drawbacks, though. The computa-
tional difficulty of tackling the optimization problem,
which can be prohibitively expensive for large-scale
systems [18] or high-frequency control applications,
is one of the key challenges. Moreover, MHE calls
for precise system dynamics models, which might
be challenging to come by in real-world applications
[19]. Finally, MHE might not function well when the
control objectives or system dynamics are constantly
changing.

The establishment of accurate geodesic coordinates
in a common Earth-wide coordinate system is a signif-
icant scientific problem with a very evident application
in daily life [20]. Nowadays, multi-satellite global posi-
tioning systems can be used to successfully resolve this
issue for the majority of those practical difficulties. The
effectiveness of the grouping of global positioning satel-
lites is supported by ongoing measurements of each
satellite’s orbital parameters, and it necessitates accurate
determination of the satellite’s spatial position that is on
parwithmeasurementsmade using ground coordinates
[21].

1.1. Contributions of the proposedmanuscript

(i) The proposemethod operates recursively updating
estimates of new measurement while fairly con-
sidering its past estimates that occur within the
window of the moving horizon.

(ii) MHE approach effectively handles nonlinearities
and anomalies in GPS position estimation by
employing amoving horizon optimization scheme.

(iii) A Kalman filter is used to determine the real tem-
perature data from the noisy observations when
random outliers are added to the simulated tem-
perature measurements.

1.2. Organization of the paper

The paper is organized as follow. The related works on
position and temperature measurements for anomaly
affected discrete LTI systems are covered in section 2.
In section 3, the proposed methodology is explained.
The section 4 presents an experimental analysis of the
proposed work. The conclusion part of the research is
finally displayed in section 5 with future directions.

2. Literature review

To effectively characterize the temporal dependence
among contaminated data, propose TopoMAD, a
stochastic seq2seq model in [22]. To aggregate mea-
sures from various component and use sliding window
overmetrics continually obtained to represent temporal
dependence, authors add system topological informa-
tion. A cluster analysis technique was presented in [23]
for finding anomalies. The process condenses the data
collected through the automation system to selected
unique operational patterns. Visualizing such unique
patterns, can help energy managers to find as well as
understand abnormalities. A novel dictionary learning-
basedML approach for anomaly identification was pre-
sented in [24] for telemetry time data. The technique
can handle simultaneously processed mixed discrete
and continuous values, allowing potential correlations
between these parameters to be captured. A methodol-
ogy for general-purpose anomaly detection that focuses
onmicro-services architectures and uses spatial service
query traces and temporal service execution logs was
proposed in [25]. It is compatible with well-performing
LSTMmodels, doc2vec and tracingmatrices, and unsu-
pervised anomalies identification techniques, but is not
confined to them.

Data obtained from real-time physical process is
tested in the model in [26]. The detection of anomalies
in time-series that are represented by two-state vari-
ables has not yet been the subject of any investigations.
A novel technique for the analysis of multivariate elec-
troencephalogram (EEG) signals abnormalities is pre-
sented in [27]. The authors evaluate the EEG data for
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patterns and anomalies using the Koopman operator
theory, amathematical framework for studying dynam-
ical systems. The authors point out the drawbacks of
these strategies, such as their reliance on pre-made
models, and suggest using the Koopman operator the-
ory as a substitute strategy. The authors in [28] suggests
unique hybrid convolutional auto encoder architecture
for unsupervised anomaly detection in log file system.
The need for labelled data, sensitivity to data prepara-
tion and inability to handle complicated temporal cor-
relations are just a few of these techniques’ drawbacks
that the authors point out. The performance of unsu-
pervised anomaly identification in log files is enhanced
by the hybrid CAE- VAE architecture that has been
proposed.

Support Vector Regression (SVR) algorithm-based
framework for real-time anomaly identification for
commercial aviation safety monitoring is discussed in
[29]. The dataset is preprocessed to address sampling
rate and noise concerns that limit direct use of historical
flight data. After performing correlation-based feature
subset selection, the feature is then used to train a
SVM (support vectormachine) that forecasts flight per-
formance. A cutting-edge method for filtering systems
vulnerable to impulsive measurement anomalies is dis-
cussed in [30]. To ensure that the filter output remains
confined inside a specified region despite the presence
of impulsivemeasurement outliers, the approachmakes
use of an eventually bounded constraint. The problem
of filtering systems vulnerable to impulsive measure-
ment outliers which significantly reduce performance
and cause instability, is introduced in the beginning
of the work. A unique method for finding anomalies
in time series data using a fine-grained Markov model
is suggested in [31]. The method entails creating a
Markov model for each of the time series’ data’s indi-
vidual granules after breaking it into a collection of
chunks. Themethod is assessed using a number of real-
world datasets and contrasted with other cutting-edge
anomaly detection techniques.

A live anomaly detection technique called GPR
which stands for Gaussian process regression and GA
which stands for genetic algorithm is described in [32]

to effectively identify an anomalous condition. Using
GPR, to build the normal output range, the DC/DC
output signal is mapped, and seven statistical factors
are taken into account as the detection indices. Alge-
braic state space theory (ASST) is an approach that
uses the semi-tensor product (STP), which is a matrix
analysis tool. ASST can be applied to dynamic sys-
tems, finite-valued systems, and discrete dynamic sys-
tems. The application of ASST to the field of finite state
machines (FSMs) is discussed in [33]. The application is
reviewed in various categories, like deterministic, non-
deterministic, probabilistic, networked and controlled
FSMs.

2.1. Research gap

The work that has been presented still has some unre-
solved concerns. For example, to obtain estimates for
general discrete-time linear systems with time vari-
ations, the method is simply can be expanded. The
work can be extended in the future by concentrating
on developing and expanding the suggested method to
estimation for higher order nonlinear systems and in
the presence of multiple anomalies.

3. Methodology

A series of discrete inputs are received by the dis-
crete linear time-invariant (LTI) system, which then
linearly processes the sequence of inputs to produce a
series of discrete outputs. It is a mathematical depic-
tion of a system’s behaviour, which is solely determined
by its inputs and outputs – past and present. A sys-
tem is said to be linear if it satisfies the superposition
principle, which says that if an input is a linear com-
bination of many other inputs, then the output will be
the equivalent linear combination of the outputs gener-
ated by each individual input. Because these systems are
time-invariant, their behaviour is assumed to be con-
stant over time. Because of this, the output signal will
advance by the same length of time if the input signal
advances in sync. A discrete LTI system’s block diagram
representation is depicted in Figure 1. It consists of

Figure 1. Linear time invariant system.
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blocks that stand in formathematical operations such as
multiplication, addition, and delay. The system receives
the input signal, the blocks process it, and then the
output signal is produced.

y[n] = b[0]x[n]+ b[1]x[n− 1]+ · · · + b[N]x[n−N]

− a[1]y[n − 1] − · · · − a[M]y[n − M] (1)

This mathematical equation represented in (1) can be
used to depict a discrete LTI system. At time n, y[n]
denotes the output, x[n] is the input and a, b are the
coefficients that control behaviour system.

The temperature response of a heater to variations
in the applied power is modelled using a first-order
dynamic system. The system uses a transfer function of
the following shape to connect the input signal (heater
power) to the output signal (temperature)

G(s) = K/(T ∗ s + 1) (2)

In the above Equation (2), the Laplace variable is repre-
sented by “s”, whereas the gain of the system is defined
by “K”, and “T” represents the time constant. The sys-
tem’s response time to input signal changes is measured
by the time constant. When the time constant is larger,
the reaction is slower and when it is smaller, the answer
is faster. The input signal for this system is a linearly
spaced vector of 30 values in the range of 0–50, which
represents the supplied power to the heater. By simulat-
ing the system’s reaction to the input signal, the output
signal is calculated.

The equation for the noiseless pseudo-range ρ, in
GPS is as follows:

ρ = (tr + Δtr) − (tt + Δtt) × c (3)

Based on Equation (3), the time as indicated by the
receiver’s clock is termed as receiver’s clock time which
is denoted by tr, the term receiver clock bias denoted
by Δtr would refer to the distinction between the val-
ues of GPS time in s and receiver clock time. Time of
the signal transmission by the transmitter refers to the
time atwhich the signal was transmitted asmeasured by
the GPS satellite’s clock which is denoted by tt , Trans-
mitter clock bias denoted byΔtt refers to the difference
between GPS time and the clock of a GPS satellite,
Light-speed limit is denoted by c is the equivalent of
speed of light in vacuum. The distance between theGPS
receiver satellite, as determined by the arrival time of
signal, is known as the pseudo-range. Unfortunately,
the actual range measurement is impacted by a variety
of inaccuracies and noise sources. Hence, the pseudo-
range is a guess at the genuine range and could be inac-
curate. The geometry of the satellite constellation or the
location of the receiver is not taken into consideration
by the pseudo- range equation, which merely provides
an approximation of the distance between the GPS
receiver and the satellite. A GPS receiver must mea-
sure the pseudo-ranges to several satellites and solve for

its position using methods like trilateration or multi-
lateration in order to determine its exact location. The
following gives the measurement vector equation for
GPS pseudo-range:

ρ = ||P − X|| + cdt + ε (4)

In the Equation (4), ρ is the observed pseudo-range
between the GPS receiver and satellite, dt refers to
error of receiver clock, which represents the distinc-
tion between the GPS clock time of receiver’s and the
GPS satellite’s clock time, ε is the measurement error,
which includes errors caused by atmospheric effects, P
refers to the position of the GPS satellite at a known
system of coordinates, X is the GPS receiver position
in the same coordinate system, whereas c refers to light
speed in vacuum. Because it does not account for the
signal’s temporal delay as it travels through the atmo-
sphere, which can lead to measurement mistakes, the
pseudo-range is known as “pseudo.” Other measure-
ments, such as differential or precise-point positioning
methods, are utilized to account for this.

Moving Horizon Estimation (MHE) is a technique
used to estimate how a system will react to an action
being controlled over a finite time horizon and opti-
mize the control action tomaximize performance while
accounting for system constraints. MHE is superior to
conventional control methods in a number of ways. It
can manage system restrictions including input caps,
state caps, and safety restrictions. Also, a wide vari-
ety of performance requirements, including set point
tracking, disturbance rejection, and energy efficiency,
can be incorporated. It can also manage uncertain sys-
tems, time-varying systems, and nonlinear dynamics.
There are five basic steps in the MHE algorithm for
discrete-time linear system with measurements sub-
jected to anomaly. Defining the system model in terms
of state, input, and output variables is the first stage in
MHE. The linear difference equations of the following
kind can be used to represent this model:

x(k + 1) = Ax(k) + Bu(k) + w(k) (5)

y(k) = Cx(k) + v(k) (6)

In Equation (5) and (6), A, B, and C are the indica-
tion of the system dynamics,w(k) is termed as the noise
included in the process, and v(k) is the noise mdf mea-
surement, and the state vector is represented by the
termed x(k), whereas the input vector is defined by the
term u(k), and lastly output vector can be represented
by the term y(k). The objective function can be defined
at the second phase. Subject to a set of restrictions, blur
the line between the estimated state and the measure-
ments, the goal function is used inMHE. The following
is how the objective function is stated:

J =
k+N−1∑
i=k

(y(i) − Cx[i|k]TR(i|k)(y(i) − Cx(i|k))
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+
k+N−2∑
i=k

(x(i + 1|k) − Ax(i|k)

− Bu[i|k]TQ(i|k)(x(i + 1|k) − Ax(i|k) − Bu(i|k)
(7)

In Equation (7) if R (i|k) denotes the noise measure-
ment covariancematrix at time i andQ (i|k) denotes the
process noise covariance matrix, N denotes the predic-
tion horizon. The constraintsmust then be defined. The
MHE constraints make sure that the estimated input
and state trajectories are in line with the system model.
The limitations are expressed as follows in Equations
(8)–(10):

x(i + 1|k) = Ax(i|k) + Bu(i|k) + w(i|k),
i = k, . . . , k + N − 2; (8)

y(i) = Cx(i|k) + v(i|k),
i = k, . . . , k + N − 1; (9)

x(k|k) = x̂ (10)

where x̂ represents the state vector’s initial estimation.
In order to address the optimization problem, objec-
tive function is minimized using the MHE technique
while taking the limitations into consideration, using
a numerical optimization approach. An estimation of
the state and input trajectories over the prediction hori-
zon is provided by the best solution. The estimation
updating process is then completed. After the optimiza-
tion issue has been solved, the best solution is used to
update state vector estimation at time k. The estimate is
then used as the starting point for the algorithm’s fol-
lowing iteration. For each newmeasurement, the MHE
algorithm is run again, this time estimating the state
and input trajectories over the prediction horizon using
a sliding window of recent data.

A first-order system is a common system type in
the likes of control theory and engineering, where
the output and input are connected by a first-order
differential equation. A system of this nature can be
used to simulate a variety of physical and artificial
systems, such as temperature systems, chemical pro-
cesses, electrical circuits, and more. The parameters of
a statistical model are estimated using sequential data
using the recursive estimating approach. If new data
become available, the estimations must be updated.
Traditional recursive estimation techniques, however,
can be extremely susceptible to anomalies in the pres-
ence of anomalies and result in erroneous estimations.
Here, we talk about simulating location estimation
when LTI system anomalies taint the pseudo measure
(Figure 2).

The system is modelled as shown by Equations (11)
and (12).

ρi = ϕ + b + vi (11)

Figure 2. MHE implementation.

where

ϕ =
√
[Xi − x]2+(Yi − y)2 + (Zi − z)2 (12)

As shown in Equation (11), b is the clock bias, and vi is
an unidentified pseudo-range measurement noise that
is zero-mean Gaussian, with the exception of anoma-
lies, which are unpredictable and have an unidentified
and very high covariance. The state’s definition is as
follows

X = (xvxyvyzvzbd)T (13)

The velocities are represented in vx, vy, and vz as shown
in (13), whereas the clock drift is represented as d,
when a position is represented in x, y, and z coordi-
nates. Here, a case where the assessment of position is
paired with a fictitious rangemeasurement is taken into
consideration. Let’s define the covariance matrix as:

Q = (QxQyQzQb) (14)

Qx =
(

Svx + Svx T
3

3 Svx T
2

2
Svx T

2

2 SvxT

)
(15)
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Qb =
(

Sf T + Sg T
3

3 Sg T
2

2
Sg T

2

2 SgT

)
(16)

As represented in Equations (14)–(16), where the
power spectral densities for frequency drift noise, clock
bias noise, and speed noise, respectively, are Sg, Sf,
and Svx. The initial values of X and f (.) are selected,
and the measurement noise covariance R is set. The
MHF (moving horizon filter) configuration with addi-
tive running criterion is the same as what is shown in
[34].

4. Results and discussion

MHE approach effectively handles nonlinearities and
anomalies in GPS position estimation by employing
a moving horizon optimization scheme. It can adapt
to dynamic and uncertain environments, resulting in
improved robustness and accuracy. Traditional estima-
tion methods may struggle to handle significant non-
linearities and anomalies, leading to less accurate esti-
mates and potential divergence in challenging scenar-
ios. MHE takes into account measurement noise and
model uncertainties within the optimization frame-
work, making it more robust in the presence of noisy
GPS measurements and other uncertainties.

The predictive nature of MHE enables it to con-
sidermultiplemeasurements over a finite horizon, lead-
ing to more accurate estimates, particularly in cases
where anomalies and disturbances are present. Tradi-
tional estimators might suffer from reduced accuracy
in dynamic and uncertain environments due to their
reliance on linearization assumptions and limited con-
sideration of past measurements. The computational
complexity ofMHE can be higher compared to Kalman
Filters. However, advancements in optimization tech-
niques and hardware capabilities have made real-time
MHE implementation feasible in many practical appli-
cations. Kalman Filters generally have lower compu-
tational requirements, making them more attractive
for systems with stringent computational constraints.
MHE’s moving horizon approach enables it to adapt to
changing system dynamics and constraints, making it
flexible for various GPS position estimation scenarios.

MHE approach will be designed to be suitable for
real-time applications, making it ideal for time-critical
GPS position estimation tasks, such as autonomous
vehicles or real-time tracking systems. The predictive
nature of MHE enables it to consider multiple mea-
surements over a finite horizon, leading to more accu-
rate estimates, particularly in cases where anomalies
and disturbances are present. The positioning estima-
tion with anomalies is shown in Figure 3 for a period
of 25 s. The estimation solves x̂ t−N,t = x̂ k(t)

t−N , where
k∗
t εargminJkt (x̂ t−N,t) for k = 0, 1, . . . N + 1.
For the duration of 25 s, we replicate the pseudo-

range and satellite position of a GPS receiver at a fixed

Figure 3. Position estimation without anomaly.

point. At receiving time t = 9 s, a pseudo-range mea-
surement has a synthetic anomaly added to it. The
window size N is 4 and the tuning parameter µ is 0.6.
The simulation run T is taken as 25. The case in which
the pseudo range measurements are contaminated by
anomalies is shown in Figure 4 for a case of a syn-
thetic anomaly with a random value and fixed position
at t = 9s. The result of simulation shows that the pro-
posedmoving horizonfilter ismore robust to anomalies
still the effect of anomalies is observed for the measure-
ments following the time step of the anomaly occur-
rence, which can be improved with more simulation
runs and careful choice of the tuning parameter.

A Kalman filter is used to determine the real temper-
ature data from the noisy observations when random
outliers are added to the simulated temperature mea-
surements. The observation matrix and transfer func-
tion of the Kalman filter (KF) are used to map the sys-
temdynamics to themeasured temperature. First-order
linear system and then uses a moving horizon filter
(MHF) to estimate the temperaturemeasurements. The
RMSE between the true and estimated measurements
is calculated, and the true and estimated measurements
are plotted along with the measurements with outliers.
The filter’s effectiveness in estimating the states of a lin-
ear dynamic system is shown in the KF graph for first
order linear system.

The performance metrics such as robustness, accu-
racy, convergence, cost function, efficiency, and
complexity are explicitly calculated. Figure 5 shows
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Figure 4. Position estimation with anomaly.

the output signal with and without outliers, and then
applies a KF to estimate the system state from output
signal with noise also shows linear temperature esti-
mation. To assess the filter’s effectiveness, the output is
compared to the original output signal.

A variant of the KF, the Extended Kalman Filter
(EKF), handles non-linear systems by linearizing them
at each time step. From the noisy output signal, EKF is
used to infer the system’s state. The time updates are
calculated to predict the next state of the system, and
themeasurement update is calculated to adjust the state
estimate based on the latest measurement. The true

and estimatedmeasurements are plotted along with the
measurements with outliers. The filter’s effectiveness in
state estimation of linear and non-linear dynamic sys-
tem is seen in theKF graph for first order linear systems.
The specifications of the filter, such as its computa-
tional efficiency, complexity, cost and convergence are
analysed. A variety of applications for the EKF include,
including control systems, navigation, and signal pro-
cessing. However, the EKF’s performance may degrade
if the system is highly non-linear or if the noise statistics
are unknown. It identifies the difference between the
ExtendedKalman Filter’s estimated output signal (tem-
perature) and the actual output signal (temperature).

The discrepancy between a model’s projected values
and the actual values is measured by RMSE (RootMean
Square Error). It is frequently used to assess a regres-
sion model’s precision. Because it estimates the typical
error between the actual values of measurements and
predicted values of measurement, RMSE is important.
TheTable 1 shows that the above suggestedmodel offers
a practical technique for lowering RMSE values. The
system seems to be efficient in comparison (Figure 6).

To determine the control action at each time step
in the moving horizon technique, an optimization
algorithm is used. The control strategy’s performance
in controlling the output of a linear dynamic system is
shown in the graph of first order linear systems employ-
ing moving horizon method. The specifications of the
strategy, such as its ability to track setpoints, robust-
ness to disturbances, and control effort, can be analysed
from the graph. It is well suited for systems with con-
straints on the inputs or outputs and can handle both
steady-state and transient behaviour. The optimization
algorithm chosen, the control parameters chosen, and
the precision of the system model may all have an
impact on how well the strategy performs.

As seen in the Table 2, the proposed model
offers greater accuracy when compared to the EKF
mechanism. Robustness refers to the ability of a system
or process to remain stable and perform consistently

Figure 5. (a) First order linear temperature estimation using KF (b) First order linear temperature estimation using MHF.
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Figure 6. (a) First order nonlinear temperature estimation using EKF (b) First order nonlinear temperature estimation using MHF.

Figure 7. (a) First order linear temperature estimation using MHF (b) First order nonlinear temperature estimation using MHF.

Figure 8. (a) First order linear KF and (b) Second order linear KF.
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Table 1. Comparison of performance evaluation of MHS with KF in first order linear system.

Filter Type RMSE Robustness Accuracy Convergency Cost Efficiency Complexity

Kalman Filter (KF) 8.72 2.4392 78.06% 25 2001.91 66.7303 Low
Moving Horizon Filter (MHF) 6.93 1.4878 80.01% 30 1978.97 65.9657 High

Table 2. Comparison of performance evaluation of MHS with EKF in first order nonlinear system.

Filter RMSE Robustness Accuracy Convergence Cost Efficiency Complexity

EKF 3.91 0.94 98.51% 0.0418 321589 3.11E-06 Moderate
MHF 3.72 0.96 100% 0.0396 259731 3.85E-06 Moderate

Table 3. Comparison of performance evaluation of MHF with KF in second order linear system.

Filter RMSE Robustness Accuracy Convergence Cost Efficiency Complexity

KF 1.76 4.51 90% 1.78 Low High Low
MHF 1.01 2.96 73.77% 0.9 Low Low High

Figure 9. Second order linear system using MHF.

even in the presence of unexpected or challenging con-
ditions. The system seems to be more robust in com-
parison (Figures 7 and 8).

The MHF algorithm is compared to other estima-
tion algorithm namely the Kalman Filter (KF) and the
Extended Kalman Filter (EKF) in terms of comput-
ing efficiency. Second-order nonlinear systems refer
to systems of differential equations with second-order
derivatives that also contain nonlinear terms. Second-
order systems are those that involve second-order
derivatives of the output, while nonlinear systems are
those that cannot be represented as a linear combi-
nation of input and output. The lowest-order system
capable of oscillating in response to a step input is the
second-order system. Two distinct and separate types
of energy storage are required by second-order sys-
tems with possible oscillatory responses. The Figure 9
shows the temperature estimation in second order lin-
ear systems using KF, and MHS. From the Tables 1–3 it
can be evaluated that proposed system provides better
performance for first order linear systems.

5. Conclusion

We have developed a unique method based on
a moving-horizon strategy, for which stability and
robustness have been shown, to handle the issue of
position and temperature estimation for both types

of systems namely linear and nonlinear which con-
tains measurements impacted by anomalies. MHE is
a well-established method in control and estimation,
its specific application to GPS position estimation is
innovative. By formulating the GPS position estima-
tion as an optimization problem, MHE is harnessed to
leverage real-time measurements, constraints, and pre-
diction models, leading to a robust and accurate posi-
tion estimation in GPS navigation. The paper demon-
strates the viability of implementing MHE in real-time
systems, emphasizing its potential to deliver accurate
and dynamic position estimates. The effectiveness of
the proposed strategy has been shown through simu-
lations, where a slight increase in computational load
is required to compensate for the improved robustness
to anomalies and increased estimation precision. The
method is intended for usage in a variety of scenarios,
including those involving nonlinear sensor use and data
quantization for rate-limited network transmission.
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