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ABSTRACT
An innovative approach to enhance image alignment through affine transformation, allowing
images to be rotated from 0 to 135 degrees. This transformation is a crucial step in improv-
ing the diagnostic process, as image misalignment can lead to inaccurate results. The accurate
alignment sets the stage for a robust U-Net model, which excels in image segmentation. Precise
segmentation is vital for isolating affectedbrain regions, aiding in the identification of PD-related
anomalies. Finally, we introduce the DenseNet architecture model for disease classification, dis-
tinguishing between PD and non-PD cases. The combination of these DL models outperforms
existing diagnostic approaches in terms of acceptance precision (99.45%), accuracy (99.95%),
sensitivity (99.67%), and F1-score (99.84%). In addition, we have developed user-friendly graph-
ical interface software that enables efficient and reasonably accurate class detection via Mag-
netic Resonance Imaging (MRI). This software exhibits superior efficiency contrasted to current
cutting-edges technique, presenting an encouraging opportunity for early disease detection. In
summary, our research tackles the problem of low accuracy in existing PD diagnostic models
and addresses the critical need for more precise and timely PD diagnoses. By enhancing image
alignment and employing advanced DLmodels, we have achieved substantial improvements in
diagnostic accuracy and provided a valuable tool for early PD detection.
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I. Introduction

Parkinson’s disease (PD), a neurological condition
affecting movement with symptoms like tremors and
rigidity, necessitates early detection to enhance life
expectancy. In this context, brain images acquired
through magnetic resonance imaging (MRI) [1] have
been pivotal in understanding brain functionality and
neurological disorders [2]. PD’s hallmark is neu-
ronal cell loss causing synaptic dysfunction and cog-
nitive impairments, making early prediction crucial
for effective management despite existing treatment
challenges [3]. This neurodegenerative disorder results
from dopamine neurotransmitter deficiency in the
substantia nigra, posing challenges in early diagno-
sis due to obscure onset symptoms [4]. Establishing a
comprehensive understanding of PD’s manifestations,
causative factors, and treatment becomes imperative to
streamline management and reduce time-consuming
diagnostic procedures.

Advanced imaging techniques play a pivotal role in
diagnosing and distinguishing PD from related con-
ditions. Magnetic resonance imaging (MRI) and its
sophisticated variants, including magnetic resonance

spectroscopy imaging, diffusion-weighted imaging,
and functional MRI, offers valuable insights into early
PD detection by differentiating it from a typical parkin-
sonian disorder [5]. Functional MRI and diffusion ten-
sor imaging techniques specifically reveal aberrations
within the olfactory systemduring the prodromal phase
of PD, aiding in its identification [6]. These imaging
modalities enable clinicians to visualize and analyze
intricate brain patterns, contributing significantly to
earlier and more accurate diagnoses of PD, crucial for
timely intervention and management.

In recent studies, innovative methodologies have
emerged to address challenges in image analysis and
cancer classification. One approach involves a self-
supervised machine learning algorithm designed for
live cell image segmentation across diverse imaging
modalities, using optical flow for pixel self-labelling and
generating objective cell/background classifications [7].
Another study introduces a comprehensive method-
ology combining binary particle swarm optimization
with decision trees (BPSO-DT) and convolutional neu-
ral networks (CNN) for classifying various cancer types
based on RNA sequence data. This method involves
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preprocessing for optimal feature selection, dataset aug-
mentation, and a robust deep CNN architecture for
precise cancer classification [8]. Deep learning (DL)
models, such as Dense-U-Net, have shown promise in
segmenting high-resolution medical images [9]. How-
ever, challenges persist in accurate automated verte-
bra segmentation within CT images due to the diver-
sity in spinal architecture among individuals [10]. In
medical imaging, dealing with unbalanced datasets in
supervised learning poses a challenge [11]. Estimat-
ing six-dimensional (6D) posture in computer vision
remains a complex task, hindered by the scarcity of
annotated data [12]. In dentistry, automatic dental
image analysis for caries identification using DL meth-
ods faces obstacles due to the limited availability of
labelled clinical images [13]. Moreover, research in
transmission systems has explored learning-based solu-
tions like online coherency-based controlled island-
ing, offering potential benefits for power grid man-
agement [14]. This encompasses various approaches
investigating the impact of input data and measure-
ment errors on methods like feed-forward neural net-
works (FFNN) and support vector machines (SVM)
[15]. These advances in imaging techniques, DL mod-
els, and innovative approaches in different domains
underline ongoing efforts to address challenges inmed-
ical imaging analysis, posture estimation, dentistry, and
power grid management.

This study emphasizes the superiority of Deep
Learning (DL) models over Machine Learning (ML)
in feature extraction through convolution and pool-
ing procedures. DL models, being nonlinear net-
works, offer scalability and enhanced performance with
increased training data, although their stochastic train-
ing approach can lead to sensitivity issues to train-
ing information and variations in predictions based
on weights discovered during training. To address
this, we’ve adopted an ensemble approach, employing
a U-Net segmentation model followed by DenseNet
architecture to sort the segmentation outputs from
raw DaTscan images for Parkinson’s disease diagnosis,
departing from simpler DL algorithms used in prior
PD detection studies. The system workflow is visually
depicted in Figure 1, illustrating the sequential appli-
cation of the U-Net and DenseNet models for efficient
disease diagnosis.

Figure 1 presents the proposed system’s flowchart,
delineating the sequential steps involved in the uti-
lized approach for Parkinson’s disease diagnosis from
DaTscan images. Our objective in this research is
to enhance disease diagnosis by employing a novel
Deep Learning-based methodology integrating affine
transformation, U-Net segmentation, and DenseNet
classification. Alongside diagnostic advancements, our
aim includes developing a user-friendly Graphical
User Interface (GUI)-based software tool. This tool

aims to facilitate rapid and accurate disease detec-
tion, potentially aiding in early diagnosis and improv-
ing patient outcomes. The integration of cutting-edge
DL techniques with a user-friendly interface is poised
to enhance diagnostic precision and accessibility for
Parkinson’s disease.

The following is the framework for this study:
In Section 2, we’ll talk about a few scholarly works
that might help with PD classification. The experi-
mental design, including the models and ensemble
method used, is described in Section 3. We compare
the suggested model’s performance to that of existing
approaches and provide our findings in Section 4. Here,
we take a look at what the suggested process would
yield: a sample application. The paper is concluded and
summarized in Section 6.

II. Literature review

The literature reviewed herein encompasses diverse
applications of machine learning techniques across var-
ious domains, highlighting their efficacy in data-driven
enhancements. the study [17] addresses spectral iden-
tification improvement through robust Pareto analysis,
consistently outperforming existing methods [16]. Fol-
lowing this, semi-supervised machine learning is uti-
lized in the ANN-SoLo tool to bolster the identification
of post-translationally changed peptides, significantly
enhancing spectral IDs [17].

A novel strategy is used for supervised voice aug-
mentation using deep auto encoder and neural net-
workmodels, surpassing traditional approaches in non-
stationary conditions and achieving superior outcomes
in coding feature estimation [18]. Moreover, a self-
supervised learning approach in a neural network
is employed to denoised microscope-integrated 4D-
OCT images, enhancing image quality and preserving
anatomical details in real-time [19].

A distinctive encoding method using CGR repre-
sentations and supervised autoencoders is introduced
for peptide/protein sequences, significantly impact-
ing drug sensitivity studies, notably outperforming
existing approaches in HIV protease mutants and
hemolytic/non-hemolytic peptide analysis [20].

This research delves into diverse applications of
machine learning in medical imaging and data aug-
mentation methodologies. Primarily, a representation
learning strategy is demonstrated to autonomously
enhance data without requiring prior information,
thereby refining labels for better applicability to new
cases in various machine learning settings [21]. Subse-
quently, a notable contribution lies in a proposed archi-
tecture for image segmentation tasks using U-Net net-
works, showcasing exceptional accuracy in segment-
ing CT thorax and 3D MRI brain scans without pre-
processing, surpassing human specialists in accuracy
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Figure 1. Proposed system flowchart.

[22]. This architecture, available under an open-source
license, exhibits potential applicability in improving
segmentation outcomes across different tasks.

Furthermore, the study introduces a novel deep
learning approach, PaDBNs, for automating CT verte-
bra segmentation. Leveraging patch-based techniques,
this model efficiently performs feature selection, class
differentiation, and fine-tuning, markedly reducing
processing costs while significantly improving segmen-
tation results compared to established methods [23].
Additionally, an innovative Implicit Semantic Data

Augmentation (ISDA) method is presented, diversi-
fying augmentation samples through deep character-
istic translations along semantically relevant orienta-
tions, especially beneficial for underrepresented classes.
Utilizing meta-learning to automate altered semantic
directions, the ISDA approach proves successful across
various image datasets [24].

In the field of machine learning, focusing on diverse
strategies that advance unsupervised image represen-
tation learning, semi-supervised training, and enhanc-
ing model performance. One such advancement is the
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Bootstrap Your Own Latent (BYOL) approach, intro-
ducing a cooperative learning paradigmbetween online
and offline networks to enhance image representa-
tions without negative pairings. BYOL demonstrates
superior performance on transfer and semi-supervised
models, achieving state-of-the-art accuracy on Ima-
geNet classification tasks [25].

In a study, the Wild6D dataset takes centre stage,
addressing category-level 6D object position estimation
challenges. The Render for Pose network (RePoNet)
emerges as a novel model, leveraging silhouette-
matching objectives on both synthetic and real-world
data. This model attains state-of-the-art performance
without relying on 3D annotations, signifying its effi-
cacy in object pose estimation scenarios [26].

Another significant contribution,MixMatch,merges
MixUp and generative model-based label uncertainty
propagation approaches to improve semi-supervised
learning outcomes. MixMatch showcases substantial
accuracy improvements on various datasets with lim-
ited labelled data, achieving significant error rate
reductions on STL-10 and CIFAR-10 datasets. More-
over, MixMatch demonstrates its utility in enhancing
accuracy-privacy trade-offs in differential privacy sce-
narios [27].

In the dental radiography a self-training-based
approach is proposed caries for identification and
segmentation. By training a student model on a
large collection of unlabelled images and leveraging
centre-cropped decayed area photos with enhancement
techniques, this method outperforms traditional self-
supervised learning, exhibiting notable gains in mean
intersection over union and average pixel accuracy
[28].

In the realm of power distribution networks, a rapid
load-shedding methodology is introduced, streamlin-
ing prediction and optimization following network dis-
turbances. Unlike previous optimization-based tech-
niques, this method employs a classification model to
quickly forecast splitting schemes, simplifying load-
shedding optimization problems and demonstrating its
effectiveness through simulations on a 16-machine, 68-
bus system [29].

Another facet of interest involves estimating dis-
tribution network conditions, particularly challenging
in scenarios lacking regular monitoring. Addressing
this, studies have explored state estimation techniques
to manage the complexity of distribution networks,
considering uncertainty factors in load profiles for
improved accuracy [30].Moreover, the research investi-
gates the potential of deep learningmodels in analyzing
and forecasting biomedical signals. This exploration
holds promise for medical diagnosis and therapy by
utilizing deep learning’s capabilities to analyze biomed-
ical data [30–34].

This study is focused on early (PD) detection by
utilizing non-motormanifestations, which significantly

impact patients’ lives. It employs nine machine learn-
ing algorithms to differentiate PD patients from con-
trols, using diverse non-motor clinical features from the
PPMI datasets. This research highlights the promise of
non-motor variables for accurate PD screening and the
role of interpretable rules in this context [35].

III. Proposedmodel

A. Dataset description

Progression Markers Initiative (PPMI) dataset consists
of 449 early-stage PD individuals and 210 healthy con-
trols (HCs). Baseline scans and subsequent scans at
1, 2, 3, and 5 years are available for PD individu-
als. HCs mostly have one scan each. It available at
https://paperswithcode.com/dataset/ppmi.

• Image Characteristics: Images have a resolution of
2mm3 per voxel and measure 109× 91× 91 voxels
in size. They are mapped to the Montreal Neurolog-
ical Institute’s (MNI) atlas by PPMI.

• Data Cleaning:Misregistered photos were discarded,
resulting in 208 HCs and 365 PD individuals for
analysis.

• Participant Information: Mean age of participants:
60.6± 11.2 years. The male/female ratio was not
specified.

• Imaging Details: The DaTscan images were rotated
to ensure the more affected hemisphere was on the
right due to PD’s asymmetric effects.

• Normalization and Classification: Occipital lobe
served as the normalization area (N), and the stria-
tum was used for classification (C) in normalized
classification.

• Mask Extraction:Otsu’s thresholding was applied to
the mean HC image to remove background, then
again to eliminate nonspecific binding voxels, result-
ing in the extraction of the striatum mask.

• Mask Range: The range of masks used was from slice
29 to slice 55 for analysis.

B. Data pre-processing

(a) Image alignment using affine transformation
The shape of the image’s contents may be altered
through transformations. Any alteration of an image’s
geometry will alter the spatial connections between the
image’s pixels. A pixel in the input picture located at
coordinates (x,y) is mathematically transformed to a
new location (x′, y′) in the resulting image. The spatial
connection between pixels may be altered in a linear
(Affine transform) or irregular (Projective transform)
fashion.

G(x, y) → H(x′, y′) (1)

The new coordinates for every pixel in the input picture
are determined by amapping function that results from

https://paperswithcode.com/dataset/ppmi
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an affine transformation, which is a linear transforma-
tion. It is possible to provide the mapping function as a
pair of functions, such as,

(x′, y′) = M(x, y)

x′ = Mx(x, y) (2)

y′ = My(x, y) (3)

It may be written in polynomial form as,

x′ = a0x + a1y + a2
y′ = b0 + b1y + b2 (4)

In matrix form,⎡
⎣x′
y′
1

⎤
⎦ =

⎡
⎣a0 a1 a2
b0 b1 b2
0 0 1

⎤
⎦
⎡
⎣xy
1

⎤
⎦ (5)

Matrix notation is often used in image processing.
Using the Affine Transform, you can keep the same dis-
tance ratio between points and maintain the image’s
parallelism. That example, the transformation may
turn squares or rectangles into a parallelogram, but it
wouldn’t produce a trapezium.

Commonly used Affine transformations include the
following:

• Translation
• Rotation
• Scaling

A linear translation of pixels in the X and Y axes
is the result of an affine transformation. Here is the
translation matrix, ⎡

⎣1 0 �x
0 1 �y
0 0 1

⎤
⎦ (6)

If you apply a rotation matrix to a picture, you may flip
it by a certain amount. Thematrix for rotation is written
as, ⎡

⎣cosθ −sinθ 0
sinθ cosθ 0
0 0 1

⎤
⎦ (7)

The picture is resized when the scale is applied. An
example of a scaling matrix is (Figure 2),⎡

⎣sx 0 0
0 sy 0
0 0 1

⎤
⎦ (8)

C. Classification

(a) U-Net for segmentation
The U-net architecture works effectively for a range of
biomedical segmentation applications. Figure 3 shows

the general architecture of the network. One path
widens as it moves to the right, and another nar-
rows as it moves to the left. Similar in design to all
other convolutional neural networks is the decreasing
path.

The total amount of feature channels is increased
by the factor of two for each downsampling step. The
process of ups the feature maps, performing 22 convo-
lutions (“up-convolution”) to divide the feature chan-
nels, combining with the resulting cropped include
diagram from the path of contraction, and perform-
ing two 33 convolutions, everyone which is tracked by
a ReLU operation, are all examples of operations on
the expansive path. Since convolution eliminates pix-
els at the image’s edges, cropping is always necessary.
The last layer uses a 1× 1 convolutional operation to
translate each feature vector with 64 components to a
class. Twenty-three convolutional layers make up the
network as a whole. Selecting an input tile number
that guarantees all 22 greatest pooling operations are
performed to an element having equal x and y sizes
results in an even tiling of the segment map’s output.
(see Figure 3). The total amount of feature channels is
increased by a factor of two for each down sampling
step.

Using segmentation maps and input images, Caffe’s
stochastic gradient descent (SGD) implementation
trains the network. The finished picture is proportion-
ately smaller than the original due to the unpadded
convolutions. In order to minimize overhead and make
the greatest use of theGPURAM,we select a large input
tile over a high batch size and compress the entire batch
into a single image. Therefore, we choose a high velocity
(0.99) to ensure thatmany previously observed training
samples are used to inform an update in the present-day
optimization phase.

To get the energy function, we use the function of
cross-entropy loss and performa soft-max over the final
characterization map, pixel by pixel. In this article, we
define the softmax as

pk(x) = exp(ak(x))/
(∑K

k′ exp(ak′(x))
)

where Z2 is the intensity of the activations and a_k (x)
is the amount of data being processed by channel k of
the set of feature channels at position x in the image.
If K is the overall amount of categories, then p_k (x)
is the approximate maximum function. In other words,
for the k with the greatest activation a_k (x), p_k (x)1 is
calculated, whereas for the remaining k values, p_k (x)0
is calculated. The distance of p_(l(x)) (x) from 1 is then
penalized at each position by the cross entropy.

E =
∑
xε�

w(x) log(pl(x)(x)) (9)

Where, l:1, . . . , K is the actual label for all pixels and w:
R is the amountmaps that we implemented to prioritize
certain pixels during training.
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Figure 2. Image alignment using affine transformation.

Figure 3. U-Net system for segmentation process.

As seen in Figure 3, we pre-compute the weight map
for each ground truth segment in order to account for
the varying frequency of the outcomes of a particular
group in the first training set. This forces the system
to determine the modest separation boundaries that we
create between touching cells.

The dividing line is determined by a series of mor-
phological calculations. After that, we get the weight
distribution by

w(x) = wc(x) + w0 · exp
(

− (d1(x) + d2(x))2

2σ 2

)

(10)

where w_c: R is the normalization weight map, d_1: R
is the distance that runs between the cell centre to the
first border, and d_2:R is the length from the cell centre
to the second border. We tested with w_0 = 10 and a
focal distance of 5 pixels.

An effective weight initialization is crucial for the
success of deep neural networks, which have several
convolutional layers and multiple potential routing
options. If not, certain network nodes might be always
active while others would never accomplish anything.
If the beginning weights are adjusted correctly, each
feature map in the network should have a variance of
around one.Wemay accomplish this by taking a sample
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of the initial weights for a network with our archi-
tecture (alternating convolution & ReLU layers) from
a Gaussian distribution with an average deviation of
(2/N), where N is the total number of input nodes for a
whole neuron. For instance, if the layer before it was a
33 convolution with 64 feature channels N = 9 · 64 =
576.

(b) Densenet architecture for PD classification
Recent years have seen a surge of interest in the study of
dense convolutional networks (DenseNet), which have
found useful applications in the processing of medi-
cal pictures. In this article, we will briefly discuss the
following elements of DenseNet.

the dense net architecture. (a) DenseNet’s founda-
tional layers include a transition layer, a convolutional
layer, a fully connected layer, and a dense block. a
transition layer, the convolutional layers, a layer that
is completely connected, and a dense block make up
DenseNet’s basic layers. (b) To provide faster network
training and better generalization performance, dense
blocks are composed of densely linked units that use
nonlinear mapping functions like BN, ReLU, and Conv.
These units are constructed using a preactivation tech-
nique. To prevent the algorithm from overfitting the
input data, we may minimize the number of dense
blocks inputs and the size of the map of features. By
integrating category parameters into network features
and performing a weighted categorization on the fea-
ture data, the fully connected layer, often referred to as
the categorization prediction layer, reduces the impact
of feature placement on classification.

DenseNet is distinguished by its feature-sharing and
freely interconnected layers. DenseNet’s strengths lie in
its ability to effectively reduce the difficult-to-optimize
gradient disappearance problem in deep networks, the
provision of compact as well as distinguished input
attributes by shortcut connections of varying lengths,
and the reuse of feature maps from multiple lay-
ers. The conclusion is that using features from every
layer will get the best results in terms of performance
and model resilience on a benchmark dataset while
requiring less computing effort and a smaller model.
DenseNet’s feature maps for each layer are combined
with those of preceding layers, as well as the data is
repeated many times over. The exponential develop-
ment in compute and memory cost during training
occurs because the number of parameters for themodel
grows linearly with the number of networks input
layers.

To begin, the vanishing-gradient issue is mitigated
via DenseNet. The second is that they minimize the
number of input parameter and boost feature propa-
gation and feature regeneration. Each layer’s outputs
are sent into the next dense layer and added together
along the depth axis. DenseNet is a technique that com-
bines Dense Blocks and transition Layers to classify

a given input data (see Figure 4). Picture of the Day.
DenseNet takes an input picture and processes it via
numerous layers of filters, each of which has the same
feature maps across layers but a different number of
filters. The transition layer follows the dense block.
The transition layer’s duties include both convolution
and pooling. The down-sampling procedures outside a
thick block are executed by the transition layer. The fea-
turemaps in the dense blockmust all have the same size
before feature concatenation can be performed. A bot-
tleneck convolution layer may be included before the
convolutions to minimize the amount of feature maps
and boost performance. DenseNet’s transition layers
include the batch normalization (BN) input layers, the
convolution input layers, and the average pooling input
layers.

Figure 4 depicts a comprehensive operational model
for the dense block’s operations. DenseNet architec-
ture’s dense block consists of a batch normalization
(BN) input layer, a rectified linear unit (ReLU) stim-
ulation, and convolution (convs). After the last dense
block, a pooling input layer with global averages is
used to provide input for a Softmax classifier. Since
DenseNet contains L levels, these connections will be
made directly between L layers: L(L+ 1)/2. See also:
Figure Inputs to layer x_l for non-linear H_l transfor-
mations are as follows:

xl = Hl([x0, x1, . . . , xl−1]) (11)

where [x0, x1, . . . , xl−1] represents to combining input
feature maps from layer zero to layer l-1. Layers’ input
features maps are utilized as inputs by the layer above
it, and layers’ input feature maps are used as inputs by
the layer below it. Consequently, as shown in Figure
5, the DenseNet displays the following results for
level l, and the collections of levels on top of depths
dimension H:

x[l] = f
(
w∗H (x [l − 1] , x [l − 2] ,

x [l − 3] , . . . , x[1])) (12)

At runtime, an ideal tensor is constructed by concate-
nating all of H’s inputs from Equation (2). By use
of convolution and pooling, feature-map sizes may be
adjusted in the DenseNet architecture.

Network inputs may be standardized using the batch
normalization method, which can be applied to either
the reactions of a preceding layer or the data inputs
themselves. Rectified linear action is used as the default
activation for building transfer and learning convolu-
tional neural networks. DenseNet splits up into Density
blocks, each with its filters but identical overall dimen-
sionality. The Transition Layer implements batch nor-
malization through down-sampling. One step of aver-
age pooling is averaging across the various feature map
segments. This indicates that the average value of each
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Figure 4. DenseNet architecture.

square in the function map is used to down-sample the
squares.

The training of the model took 250 iterations. Addi-
tionally, the Cross-Entropy measure of loss was uti-
lized, a batch size of 8 was utilized, a 1e3 learn-
ing rate was employed, and an Adamax optimization
was used to optimize the weights. In all, there are
6,955,906 parameters in the deep learning model that
was built. The proposedmodel was trained on theWin-
dows computers with the 64-core, 128-thread AMD
Threadripper CPU and 256MB of L3 cache. RAM was
about 128 GB, and the graphics card utilised was an
RTX3080.

To get the best accuracy of our suggested framework,
we have examined several optimizers based on deep
instruction and the DenseNet framework. The Spiral
Optimisation Algorithm as shown in Figures 6 and 7 is
one example of a divergence-creating optimizer. Each
parameter’s learning rate is calculated independently
by the SOA. The first two minutes of SOA are used to

derive the gradient. SOA is superior to other optimizers
because few models contain embeddings.

Adam : mn = E[An] (13)

Where m is the current value of the variable under
consideration, A is any other variable, and E is the
anticipated value of n variables.

Adamax : vt = β2vt + (1 − β2)|gt|2 (14)

ut = β∞
2 vt−1 + (1 − β∞

2 )|gt|∞ (15)

ut = max(β2 · vt−1, |gt|) (16)

If v_t is an updated norm and u_t is a survey of the
scope of that norm

D. Experimental setup

The dataset was divided into three distinct sub-
sets: training, validation, and testing. Specifically,
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Figure 5. Comparison of DL architectures.

Figure 6. Spiral optimization algorithm tuning.

approximately 70% of both PD individuals and healthy
controls were allocated to the training set for model
training purposes. The remaining 15–25% of the data
was distributed between the testing set, utilized to
objectively evaluate the final model’s performance,

and the validation set, employed for hyperparameter
tuning and model selection. This allocation strategy
aimed for a deliberate 70% split for training, ensuring
a significant portion of the dataset was dedicated to
training the model effectively.
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Figure 7. Healthy vs. PD disease prediction.

E. Evaluationmetrics

In this section, demonstrates the equations and the
metrics utilized to obtain their scores for evaluation of
the gathered findings,

Accuracy is a measure of overall effectiveness in
classification tasks.

Ac = TP + TN
TP + TN + FP + FN

(17)

Precision is a metric that focuses on the accuracy of
positive predictions.

Pr = TP
TP + FP

(18)

The sensitivity of a model also called the True Positive
Rate or Recall,measures howwell it can recognize every
positive case.

Sn = TP
TP + FN

(19)

Specificity evaluates how well the model can recognize
every negative case.

Sp = TN
FP + TN

(20)

The harmonic mean of sensitivity and precision is
known as the F1-Score.

Fm = 2 × Pr × Sn
Pr + Sn

(21)

Where TP, TN, FP, and FN have the meanings given
below:

• Whenboth the actual lesson of the data piece and the
expected class are True (1), we have a true positive.

• ATrueNegative (TN) occurs when both the real and
forecasted classes of an information points are False
(0).

• When a data item’s expected class is True (1) but
its actual class is False (1), this is known as a false
positive (FP).

• When a data point’s projected class is False (0) but
its actual class is True (1), this is known as a false
negative (FN).

Table 1. Predictions of PD using DL models have been shown.

Prototypical Accuracy Precision Sensitivity Specificity F1-value

DenseNet 99.34% 99.51% 99.51% 99.02% 99.51%
VGG16 93.02% 95.29% 94.19% 90.69% 94.74%
Inception-V3 94.03% 93.32% 98.68% 84.73% 95.82%
Exception 96.35% 95.45% 99.85% 89.38% 97.58%

Figure 8. Performance of accuracy.

IV. Experimental results

Here, we provide our thoughts on the performance of
the four different base learners – DenseNet, VGG-16,
Inception-V3, and Xception – and the outcomes they
produced. The Grad-Cam explainability of the foun-
dational learners and the results obtained utilizing the
suggested approach is reported further in this section.
Table 1 represents the comparative analysis of existing
and proposed system.

VGG16, ResNet50, Inception-V3, & Xception were
all tested on the test set after they had been trained
using the training data. Table 1 displays the outcomes
achieved by the four foundational students. According
to Table 1 and the Figure 8, VGG16 & Xception mod-
els achieved 95.34% accuracy, which was the highest
of any of the base learners. The investigational analy-
sis shown in Figures 9 and 10 also demonstrates that the
Inception-V3 and Xceptionmodels are capable of mak-
ing accurate predictions about PD patients, with the
lowest probability of misclassification. DenseNet, on
the other hand, is superior at predicting which patients
would not get PD. The proposed method performance
shown in Figures 11 and 12.

The results of this approach will not only aid doctors
in making accurate diagnoses but will also allow them
to intervene before their patients’ conditions worsen.
Our technique is successful on the PPMI data set, with
an accuracy of 98.45%, as indicated in the Figure 13.
A wrong diagnosis may have serious physical, emo-
tional, and psychological consequences for the patient
and their loved ones, making it extremely important to
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Figure 9. Performance of precision and recall.

Figure 10. Performance of training accuracy and loss.

Figure 11. Performance of accuracy.

minimizemisclassifications in themedical sector analy-
sis domain.When comparing the deep learningmethod
to the absolute structure of the U-net (segmentation) &
DenseNet (PD classification), we found that the deep
learning method considerably decreased the amount of
false positives as well as false negatives.

Figure 12. Performance of precision and recall.

Figure 13. Performance of optimization algorithm.

A. Software application

The developed application, detailed at https://gitlab.
com/digiratory/biomedimaging/parkinson-detector. It
is a versatile tool intended to assist medical profession-
als in their rapid preliminary diagnosis tasks usingMRI
images. It is a Python-based application compatible
with both windows and linux operating systems. The
users-friendly interface is built utilizing the Qt library
and supports the seamless handling of various image
formats, includingDicom files fromMRImachines and
common image formats like jpg and png. Notably, the
application offers drag-and-drop functionality, enhanc-
ing user convenience.

This application employs a variety of ensemble tech-
niques, such as the Product Rule, Majority Voting, Sum
Rule, and the novel FRLF method. These ensemble
techniques leverage the capabilities of various neural
networks. The minimal system requirements of the
application call for an operating system without GPU
capability, including Windows 7 or later, Ubuntu 16.04
or later, or Mac OS 10.12.6 (Sierra) or later (64-bit). For

https://gitlab.com/digiratory/biomedimaging/parkinson-detector
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the initial neural networkmodel downloads, usersmust
have Python 3.6 or later, at least 4GB of free disk space,
an Intel Core i3 processor, and a broadband internet
connection. Admin privileges are not a prerequisite for
running this application.

B. Discussion

The central focus of this discussion revolves around
the profound impact of image segmentation on the
predictive results achieved in this study. By incorpo-
rating an image segmentation approach, specifically the
U-Netmodel, the study significantly enhances the accu-
racy and effectiveness of Parkinson’s disease prediction
utilizing MRI images from the PPMI datasets. The seg-
mentation process facilitates the isolation and extrac-
tion of pertinent features from the raw MRI images,
ensuring that the deep learningmodels work withmore
refined and relevant data.

The results clearly demonstrate that the utiliza-
tion of image segmentation has transformative effects
on the model’s efficiency. The incorporation of seg-
mentation notably elevates precision, sensitivity, and
specificity, showing substantial improvements. Seg-
mentation enhances precision to 99.51%, sensitivity
to 99.51%, and specificity to 99.02%. This technique
refines input data, notably boosting predictive accu-
racy to 99.34%. The results underscore segmentation’s
pivotal role in advancing model efficiency, leading to
robust early-stage disease detection. It allows for amore
precise analysis of the regions of interest, such as the
striatum, crucial for Parkinson’s disease diagnosis. This
segmentation step refines the input data, improving the
quality of information fed into the deep learning mod-
els. As a result, the predictive accuracy, precision, sen-
sitivity, and specificity are significantly enhanced, ulti-
mately providing a robust tool for early disease detec-
tion. The integration ofU-Net-based segmentation into
the proposed system showcases the pivotal role of image
preprocessing in medical image analysis. This discus-
sion underscores how the careful handling of medical
images through segmentation can yield more accurate
and reliable diagnostic outcomes. Furthermore, it high-
lights the potential for image segmentation techniques
to be applied in various medical imaging contexts, con-
tributing to improved disease detection and patient
care.

V. Conclusion

In this paper, we offer a set of DL models that
can efficiently predict Parkinson’s disease using PPMI
DaTscan pictures. To improve the overall outcomes of
the model, We built a deep learning model that uses
the trustworthiness assessments of VGG16, DenseNet,
Inception-V3, and Xception. Based on these findings,

it is secure to say that the suggested model outper-
forms the other current method alternatives. The sug-
gested model achieves an impressive 98.45% accu-
racy in recognition, 98.84% precision, 98.84% sensi-
tivity, 97.67% specificity, and 98.84% F1 score. Our
approach has also been implemented in a publicly avail-
able, software application with a graphical user inter-
face (GUI) for the fast parkinson’s disease diagnosis
by DaTscan scans. Potentially helpful for Parkinson’s
disease screening and early detection. We rely heavily
on DaTscan images as our starting point. While these
results are promising, we recognize the need for further
research to address limitations and enhance the mod-
els’ capabilities. Our future work will focus on refining
the hybrid deep learning architecture and expanding
the scope of diagnostic images to include MRI and
CT scans, thereby contributing to more comprehensive
and accurate Parkinson’s disease diagnosis and early
detection.

Nomenclature

Acronym Description
DL Deep Learning
DDL DaTscan and Deep Learning
ATIA Affine Transformation for Image Align-

ment
PPMI Parkinson’s Progression Markers Initiative
MRI Magnetic Resonance Imaging
SSL Self-supervised learning
FSL Few-Shot Learning
NCF Noise Classification And Fusion Strategy
OCT Optical Coherence Tomography
CGR Chaos Game Representation
CT Computed Tomography images
6D Six-dimensional
DAE Deep Autoencoder
CNN Convolutional Neural Networks
SAE Supervised Autoencoders
PaDBNs Patch-Based Deep Neural Networks
ISDA Implicit Semantic Data Augmentation
BYOL Bootstrap Your Own Latent
RePoNet Render for estimate of posture network
HCs Healthy Controls
MNI Montreal Neurological Institute
C Classification Region
N Normalization Area
SGD Stochastic Gradient Descent
DenseNet Dense Convolutional Networks
BN Batch Normalization
ReLU Rectified Linear Unit
conv Convolution
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