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ABSTRACT
Accurately predicting lane changes, a crucial driving activity for preventing accidents and ensur-
ing driver safety, is addressed in this study. An innovative predictivemodel that integrates game
theory for precise lane change intention detection and an optimized Convolutional Neural Net-
work (CNN) for trajectory prediction is proposed in this study. The CNN’s efficiency is enhanced
through metaheuristic optimization of both the convolution and fully connected layers using
the Whale Optimization Algorithm (WOA). Emphasizing robust data processing, a Wiener filter
is applied for pre-processing, and the Cascaded Fuzzy C means (CFCM) technique is employed
for segmentation. The resulting Whale Optimization Algorithm-based CNN (WOA-CNN) effec-
tively forecasts the trajectory of lane-changing vehicles. Validation of the proposed approach in
Python demonstrates exceptional accuracy, reaching 96.5%. This study showcases the effective-
ness of the WOA-CNN model in advancing the prediction accuracy of lane-changing behaviour,
contributing to enhanced driver safety and accident prevention.

ARTICLE HISTORY
Received 24 July 2023
Accepted 3 March 2024

KEYWORDS
WOA-CNN; CFCM; weiner
filter; game theory; lane
change prediction

1. Introduction

Traffic accidents are mainly caused by the reckless and
negligent nature of human drivers, especially in the
form of over speeding, over taking, fatigue, distrac-
tions, rash driving and drunken driving. Moreover,
eighteen percent of the traffic accidents are mainly due
to lane changing, which is a prominent driving activ-
ity in terms of motorway driving. The lane changing
process executed without caution results in an angled
clash, side swap or rear end [1,2]. The process of lane
changing is considered to be the most serious factor
in terms of road safety, since it is the cause of many
accidents, which ultimately impairs traffic flow stabil-
ity. Technologies such as lane departure and blind spot
warning systems are successful in preventing accidents
only if the driver is capable of accurately using the turn
signal lights [3]. Thereby the application of autonomous
smart vehicles [4] has gained immense prominence in
recent times because it overcomes human based driv-
ing errors. However, in order to enhance the commer-
cialization of smart vehicles, ensuring safety in lane
changing is deemed necessary [5].

A lane changing cycloid reference trajectory based
double-layer steering controller is proposed in [6] for
studying vehicle collision avoidance behaviour. In [7],
the issues persisting around vehiclemotion tracking are
studied by developing a PID tracking controller, but its
tracking accuracy is very low. The driving behaviour

of drivers was studied by the scholars of the Univer-
sity of Michigan Transportation Research Institute by
collecting the headway data of thirty-six driving ele-
ments [8]. The recognition and training processes were
accomplishedwith the application of aNeural Network.
This is one of the earliest known studies conducted for
predicting driver behaviour, but its efficiency is lim-
ited due to the shortcomings in data and technology.
The rapid technological advancements seen in the field
of sensors and communication have in turn increased
the availability of high qualityvehicle data. Addition-
ally, connected vehicle technology aids in the creation
of an environment where the concerned vehicles col-
laborates and function together by integrating factors
such as sensing capabilities, processing power, vehicle-
to-road communications and vehicle-to-vehicle com-
munications [9–11]. The use of historical data in some
of the recent behaviour prediction approaches is detri-
mental to its ability to alert the drivers about potential
threats. Thus, the development of a real-time accurate
networking data-based methods helps in prompt and
precise determination of lane changing (lateral oper-
ation). Moreover, for accurate lane change prediction,
the determination of lane changing intention, along
with accurate trajectory estimation is deemed neces-
sary. Recently, the application of deep learning tech-
niques [12–14] for trajectory prediction has become
increasingly popular. Many algorithm models such as
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the machine learning algorithm model, game theory
model [15,16] and Hidden Markov Model (HMM) are
used for resolving issues of evaluation, prediction and
identification. In [17], Neural Networks are used for
lateral motion prediction and it is possible to extend
this to predicting lane change using SVM. The Long
Short-Term Memory (LSTM) [18] technique is also
prominently used for trajectory prediction; however,
the most promising approach is to use CNN [19] for
the prediction of lane change.

Existing methods for predicting lane-changing be-
haviour in the context of traffic accidents and autono-
mous driving suffer from several shortcomings. Firstly,
the accuracy of trajectory prediction is often limited.
These limitations can hinder the effectiveness of exist-
ing models in real-world scenarios where precise tra-
jectory forecasting is crucial. Additionally, technologies
such as lane departure and blind spot warning systems
heavily depend on the driver’s use of turn signals, intro-
ducing a reliance on human behaviour that may not
always align with system requirements. Earlier studies
also faced efficiency challenges due to limited data and
technological constraints, impacting the overall efficacy
of predicting driver behaviour. Some recent behaviour
prediction approaches relying on historical data may
introduce delays in responding to immediate threats,
and integrating diverse algorithm models can pose
challenges in terms of complexity and efficiency. These
shortcomings underscore the need for more advanced,
accurate and real-time methods to improve the relia-
bility of lane-changing predictions and enhance over-
all road safety. By understanding and overcoming the
shortcomings of existing methods, the survey aims to
pave the way for the development and deployment of
more effective and reliable lane-changing prediction
systems, ultimately advancing road safety in the era of
autonomous driving.

The primary focus of this study revolves around pre-
dicting lane-changing behaviour, a critical aspect of
driving activity with significant implications for road
safety and autonomous vehicle systems. The integra-
tion of Game Theory models the strategic interac-
tions between vehicles during lane changes, captur-
ing the decision-making dynamics of each vehicle as
rational players in a game scenario. Furthermore, the
study introduces an Optimized Convolutional Neural
Network (CNN) enhanced by the Whale Optimiza-
tion Algorithm (WOA) to improve trajectory predic-
tion accuracy. The study’s notable contribution lies
in the synergy between Game Theory and Optimized
CNN, combining strategic decision modelling with
advanced trajectory prediction capabilities. This inte-
gration offers a holistic approach to understanding
and forecasting lane-changing intentions, crucial for
autonomous driving and road safety. The results of the
study demonstrate the effectiveness of the proposed

approach, which significantly contributes to the body
of knowledge in the field of intelligent transportation
systems and enhances the understanding of predictive
modelling for complex driving behaviours.

2. Proposed system description

A predictive model for identifying a vehicles lane
changing intention is proposed in this research work.
The game theory is used for intention identification and
a Stackelberg game model is developed by combining
the data about the distance, acceleration, speed, lane
number, etc. of the vehicles involved. The environmen-
tal intermittencies and data variations in the conven-
tional lane changing model are resolved by obtaining
dynamic interactions among vehicles. Moreover, it is
also capable of identifying whether the current envi-
ronmental condition is suitable for lane changing. The
structure of the proposed predictive model for lane
change detection is given in Figure 1. Moreover, here
a wiener filter is used for pre-processing the input data
owing to its capability of delivering an image of pristine
quality with no variation in the image structure. The
segmentation process is subsequently carried out using
CFCM. The segmentation process is carried out in two
stages using CFCM. For the predictive model to be
effective in identifying the lane changing behaviour of
a vehicle, an intention detection and trajectory predic-
tion model is considered necessary. Thereby, a WOA-
CNN is used for trajectory prediction in this work. The
kernel of the convolution layer and the weights of the
fully connected layer are optimized using whale opti-
mization algorithm. Finally, the WOA-CNN success-
fully predicts the trajectory in which the vehicle intends
to change lanes. It identifies if the vehicle is moving to
the left lane or right lane or if it is staying in the current
lane. Game Theory, with its focus on strategic interac-
tions, models the decision-making dynamics between
vehicles during lane-changing maneuvers. It consid-
ers each vehicle as a rational player making choices to
maximize its payoff, taking into account the potential
actions of others. On the other hand, the Optimized
CNN, enhanced through metaheuristic techniques like
WOA, serves as a powerful predictive engine. TheCNN
is adept at learning intricate spatial features from data,
and the optimization algorithm fine-tunes its convo-
lution and fully connected layers for improved perfor-
mance. The integration of these two approaches aligns
strategic decision-making, captured by Game Theory,
with the precision and efficiency of CNN-based trajec-
tory prediction. This amalgamation enables the model
to not only comprehend the strategic aspects of lane
changing but also optimize its predictive capabilities,
resulting in a robust and accurate system for antici-
pating lane-changing intentions in real-world driving
scenarios.
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Figure 1. Structure of the proposed predictive model for lane changing.

3. Proposed systemmodelling

3.1. Image preprocessing usingweiner filter

The irrelevant noise components in the input data
are removed using wiener filter, thus ensuring that an
image of enhanced quality is obtained for further pro-
cessing. The wiener filter is an effective filter in terms
of elimination of high frequency elements and noises
along with significant minimization of mean square
error. Its ability to deliver an image of utmost clarity
without any variation in the image structure, accred-
its to its choice as an effective filter for pre-processing.
This statistical approach based lowpass filter is an adap-
tive filter that obtains optimumbalance in bias-variance
trade off. In a neighbourhood, it estimates the variance
and mean and subsequently for lower variation applies
stronger smoothening and for higher variation applies
minimal smoothening. The error measure is given as,

e2 = E
{
(f − f̂ )

2}
(1)

where, the estimated image and uncorrupted image are
specified as f̂ and f respectively, while the expected
value of argument is specified as E{.}. Thus by deter-
mining quadratic error function minimum value, the
estimated image F̂(u, v) is obtained.

F̂(u, v) =
[ H∗(u,v)Sf (u,v)

Sf (u,v)|H(u,v)|2+Sf (u,v)

]
G(u, v) (2)

The above equation is derived in the frequency
domain and both the image and noise are assumed to
have a zero mean along with being uncorrelated. Here
u, v represent the spatial frequency variables used in
the Fourier domain. Moreover, liner function is used
for degradation of estimated image intensity levels. The
transform of degraded image and degradation func-
tion are specified as G(u, v) and H(u, v) respectively,
H∗(u, v) is the complex conjugate of H(u, v). The non-
degraded image’s power spectrum is,

Sf (u, v) = |F(u, v)|2 (3)
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F̂(u, v) =
[

1
H(u, v)

|H(u, v)|2
|H(u, v)|2 + Sη(u, v)/Sf (u, v)

]

× G(u, v) (4)

where, the noise power spectrum is represented as,

Sη(u, v) = |N(u, v)|2 (5)

Here,N(u, v)denotes the Fourier transform of the noise
in frequency domain. For images that are affected
by constant power additive noise, the application of
wiener filter is the most preferred solution. The pre-
processed images obtained as output from wiener filter
then undergo segmentation using CFCM.

3.2. CFCMbased image segmentation

The pre-processed input is segmented using CFCM,
where clusters c is based on the minimization of a
quadratic function. The following definition gives the
optimal solution to minimize:

JFCM =
c∑

i=1

n∑
k=1

umik||xk − vi||2A =
c∑

i=1

n∑
k=1

umikd
2
ik (6)

Here the input datas are specified as xk and is given
by k = 1, 2, 3, . . . , n, the centroid or prototype value
is represented as vi, cluster element as i where i =
1, 2, . . . , c, dikdenotes distance between xk and vi, fuzzy
membership function as uik ∈ [0, 1] and fuzzification
parameter as m > 1. Since FCM employs a probabilis-
tic partition, any input vector xk fuzzy memberships
with respect to courses satisfies the probability con-
straint

∑c
i=1 uik = 1. The optimum values are found by

iterations utilizing zero gradient criteria and Lagrange
multipliers, and are then estimated as follows:

u∗
ik = d−2/(m−1)

ik∑c
j=1 d

−2/(m−1)
jk

∀ i = 1 . . . c
∀ k = 1 . . . n (7)

v∗
i =

∑n
k=1 u

m
ikxk∑n

k=1 u
m
ik

∀ i = 1 . . . c (8)

Here, u∗
ik denotes the optimal fuzzy membership

value whereas v∗
i denotes the optimal centroid of

clusters. As part of the FCM algorithm’s alternat-
ing optimization approach, Equations (7) and (8) are
performed alternately until cluster prototypes settle.
This criterion for terminating compares the sum of the
norms of variations of prototype vectors vi inside the
most recent iteration with a minimal threshold value
set ε.

3.2.1. Cascaded fuzzy C-Mean
The fundamental objective of the FCM cascaded
algorithm is to efficiently separate homogeneous zones
in the volume. Further, it separates aberrant from nor-
mal images using decision support based on earlier

information. FCM frequently positions the cluster pro-
totypes in regions with a high density of adjacent input
vectors. In order to offer accurate clustering, it should
be able to initialize a cluster prototype in close vicin-
ity to each of these accumulation sites in the 4D colour
space. Evidently, this is untrue. Even if we managed to
accomplish this in some way, the hundreds of clusters
and millions of input vectors, make clustering a very
computationally intensive process. The suggestion is to
perform FCM in two steps in order to prevent this sce-
nario. The first stage assists in eliminating the majority
of input data, namely those vectors that are far from
the full range of abnormal intensities that stored in an
image. Only extracted features with intensities that are
somewhat similar to the affected patterns are present
in the second stage. To distinguish between abnormal
clusters and normal clusters, the second stage’s cluster
prototypes are individually examined.

In the first stage, the entire set of extracted fea-
tures is applied with fuzzy c-means. The clusters vary
between 8 and 16. At the moment when the first stage
is ready, the features are classified into c-clusters and
the clusters are specified as prototype vi. The decision
support system examines each of these cluster proto-
types independently before determiningwhether or not
it suspects them of carrying abnormalities in the image.
The latter stages do not include clusters whose cen-
troid vector is far from the intensity of the image. At
this point, the decision support typically preserves up
to three clusters attained from first FCM. The second
step of cascaded FCM uses the remaining n′ features,
or more accurately, the collection of extracted features
that represent them, as input data. Next time, the FCM
is applied with c′ clusters varying between 8 and 16.
The decision-support system rechecks final cluster pro-
totypes. This time, any clusters with prototypes close to
affected intensities will be classified as positive, while
all others will be classified as negative. The components
of fuzzy changes from stage to stage, which is denoted
asm andm′ the exponents used in the first and second
stages.

3.2.2. FCM initialization
Theprototype activation of FCMalgorithm is extremely
important, especially in multi-dimensional problems.
In general, it is best to try positioning initial clus-
ter prototypes far from one another, perhaps in input
vector accumulation areas. High variability between
various runs is produced by input vectors that were
chosen randomly. So a stable solution requires a deter-
ministic rule. An initial of 16 sets of potential clus-
ter seeds with 4-dimensional hypercube is produced
by the algorithm. The scalar data of FCM cluster-
ing log(x(d)

1 ), log(x(d)
2 ) . . . log(x(d)

n ) is accomplished in
every dε{T1,T2,T1C, FLAIR} dimension. The output
obtained using two prototypes clusters is specified as
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v(d)
1 and v(d)

2 .

w1...16 =

⎡
⎢⎢⎢⎣

v(T1)
1 orv(T1)

2
v(T2)
1 orv(T2)

2
v(T1C)
1 orv(TIC)

2
v(FLAIR)
1 orv(FLAIR)

2

⎤
⎥⎥⎥⎦ (9)

The representation of average square distance is
expressed by,

�(wi) =
n∑

k=1

xk − wi
2 (10)

Here, xk indicates the input data point and wi indi-
cates ith prototype of cluster seed. For each stage of cas-
caded FCM, potential cluster seeds wi, i = 1, 2, . . . 16
are organized in ascending order depending on �(wi)

values, and the initial cluster prototype is assigned as
first c seeds.

3.3. Game theorymodel for lane-changing
intention prediction

The game theory model is used for predicting the
intention of the driver to change lanes and active lane-
changing behaviour is examined in this study. Game
theory, rooted in the analysis of strategic interactions
among rational decision-makers, proves to be a suit-
able framework for modelling the intricate decision-
making dynamics involved in lane-changing scenar-
ios. By treating each vehicle as a rational player mak-
ing decisions to maximize its payoff, the model cap-
tures the complex interplay of factors influencing lane-
changing behaviour. This background sets the stage
for a more nuanced understanding of the dynamics at
play, paving the way for a predictive model that goes
beyond conventional approaches, thereby contributing
significantly to the domain of intelligent transportation
systems. The adoption of this model for lane-changing
intention prediction presents notable advantages in the
realm of road safety and autonomous driving systems.
Game theory excels at modelling the strategic interac-
tions and decision-making processes of multiple intel-
ligent entities, such as vehicles on the road. By framing
lane-changing as a strategic game, the model accounts
for the dynamic interplay between vehicles, acknowl-
edging that each decision impacts others. The inclusion
of payoff considerations, particularly related to safety
and spatial factors, enhances the accuracy of predict-
ing lane-changing intentions by evaluating the per-
ceived benefits and risks for each vehicle. Furthermore,
the model’s adaptability to changing environments and
encouragement of collaborative decision-making con-
tribute to a more harmonized approach to lane chang-
ing, fostering safer and more efficient driving scenar-
ios. Overall, the game theory model provides a com-
prehensive framework that considers the intricacies

of multi-agent decision-making, contributing to the
advancement of predictive models for lane-changing
in autonomous and connected vehicle environments.
This model entails three factors including the players,
their techniques and the corresponding payoffs of those
techniques. In this model all the players are assumed
to be intelligent and it aims to increase the profit of
every player in response to a specific strategy devised
by the opponent. The players (drivers) are not sub-
jected to strict restrictions and they base their decisions
in accordance with the knowledge obtained by moni-
toring neighbouring vehicles. While making a decision
about changing lanes, the driver has to consider the
position of the leading vehicle (V3) in its lane, leading
(V2) and the trailing vehicles (V1) in the adjacent lane
in addition to the position of his/her own vehicle (SV)
as seen in Figure 2. Among all these vehicles, the one
with the highest impact on the position of SV is V1, so
it is assumed that both of them are in game relationship.
The two options that are available for SV are to either
remain in the current lane or shift to the adjacent lane.

3.3.1. Lane-change behaviour
The four phases that make up a vehicle’s lane-change
behaviour are described as follows.

• Generation of Lane Change Intention:

This phase involves the initiation of a driver’s inten-
tion to change lanes. Drivers decide to change lanes
based on various factors, such as traffic conditions,
speed, the behaviour of surrounding vehicles and the
driver’s destination. In the presented model, the gen-
eration of lane change intention is implicit in the
decision-making process initiated by SV. SV considers
information from neighbouring vehicles, such as V1,
V2, and V3, to determine whether a lane change is
warranted.

• Judgment of Lane Change Conditions:

Drivers assess the feasibility and safety of chang-
ing lanes during this phase. Critical factors include the
positions and behaviours of surrounding vehicles, the
available space in the target lane, and the current speed
of the subject vehicle. The game model explicitly con-
siders safety and spatial conditions in the determination
of payoffs (Usafety and Uspace). The decision-making
process involves evaluating the time headway, spatial
distance, and potential impact on safety during a lane
change.

• Selection of Lane Change:

Once a driver decides to change lanes, they need
to choose the specific lane and execute the maneuver.
The driver considers the desired lane, the relative speed
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Figure 2. Schematic representation of lane changing vehicles.

of vehicles in the adjacent lanes, and the gap between
vehicles for a safe lane change. While not explicitly
stated, the model inherently involves the selection of
lane change through the decisions made by the SV and
V1. The optimization process aims to find the optimal
strategy for both SV and V1, influencing the selection
of lane change actions.

• Implementation of Lane Change:

This phase involves the actual execution of the lane
change maneuver by the driver. The driver needs to
smoothly merge into the target lane, adjusting speed
and position to ensure a safe transition. The continuous
circulation of information between SV and V1 repre-
sents an ongoing interaction until both players reach
a satisfactory outcome. This can be seen as the imple-
mentation phase, where decisions are communicated
and adjusted iteratively until equilibrium is reached.
Table 1 lists out the lane changing intention recognition
features.

3.3.2. Lane-changing recognitionmodel
The Lane-Changing Recognition Model aims to inte-
grate the principles of game theory to accurately rec-
ognize when a driver intends to change lanes. The
explanation of the key components and considerations
related to the Lane-Changing Recognition Model are
given below:

• Data Input:

Themodel takes input data from various sensors and
sources, including information about the SV and sur-
rounding vehicles (e.g. V1, V2, V3). This data typically

Table 1. Lane-changing intention recognition feature.

Lane-changing
intention
recognition
feature

Description

Generation of Lane
Change Intention

Initiation of a driver’s intention to change lanes
based on factors such as traffic conditions,
destination, and surrounding vehicle behaviour.

Judgment of
Lane Change
Conditions

Assessment of the feasibility and safety of lane
changing, considering factors like time headway,
spatial distance, and potential impact on safety.

Selection of Lane
Change

Decision-making on the specific lane to change
into, considering factors like desired lane,
relative speeds, and the gap between vehicles
for a safe maneuver.

Implementation of
Lane Change

Execution of the lane change maneuver, involving
the actual transition into the target lane,
adjusting speed, and ensuring a smooth merge.

Game Theory Model
Integration

Implicit consideration of these features through
the Stackelberg game model, where SV and V1
iteratively make decisions based on safety and
spatial considerations.

includes details such as distance, acceleration, speed,
lane number and environmental conditions.

• Game Theory Integration:

The recognition model integrates game theory prin-
ciples, particularly the Stackelberg game model, to
model the decision-making process among intelligent
players (drivers). The players’ decisions are influenced
by factors like safety payoffs, spatial distance and strate-
gic interactions.

• Decision Variables:

The Lane-Changing Recognition Model considers
decision variables introduced by the SV during the
lane-changing process. These variables are part of the
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optimization problem within the Stackelberg game
model.

• Continuous Interaction:

The Lane-Changing Recognition Model acknowl-
edges the continuous circulation of information between
SV and V1 until both players reach satisfaction in the
game. This ongoing interaction reflects the iterative
nature of the decision-making process.

• Recognition Features:

The model considers recognition features related to
the generation of lane change intention, judgment of
lane change conditions, selection of lane change and the
continuous process of implementation. These features
are essential for accurately identifying and predicting
lane-changing behaviour.

• Output Prediction:

The Lane-Changing Recognition Model outputs
predictions regarding the likelihood of a lane change,
the preferred direction of the lane change (left or right),
or the decision to stay in the current lane. These predic-
tions are based on the optimized strategies derived from
the game theory model.

If vehicle V1 predicts the lane changing decision of
SV, it has the choice of either deaccelerating or acceler-
ating or remain staying in its present lane. Equation (11)
is used to express the strategic space of these drivers,

SV : �1 = {C : changelanes, S : stay},
V1 : �2 = {K : keepstate, D : deceleration,

A : acceleration}
(11)

Here “�” signifies the strategic space available, “τ”
denotes the distinct choices made by the vehicles, and
“U” and “u” represent the benefits accrued to the SV
and V1, respectively, from their selected strategies.
Specifically, “U11” is the benefit to the SV for opting to
change lanes, while “u11” is the benefit to V1 for main-
taining its current state. Both vehicle operators aim to
optimize their outcomes by making informed choices
that maximize their benefits, which is a fundamental
principle in game theory. The determination of these
benefits in this study hinges on evaluating safety and
spatial considerations, represented asUsafety andUspace,
respectively. Table 2 represents the payoff matrix and

Table 2. Payoff matrix.

SV V1: Keep (K) V1: Decelerate (D) V1: Accelerate (A)

Change Lane (C) U11, u11 U21, u21 U31u31
Stay in Lane (S) U12, u12 U22, u22 U32, u32

Figure 3. A sample illustration of vehicle track parameters.

Figure 3 indicates a sample illustration of vehicle track
parameters.

During lane-changing process, the payoff obtained
for being safe is,

Usafety =
{

2|T(t)|−Tmin(t)
Tmin(t) , −Tmin(t) ≤ T(t) ≤ Tmin(t)

1, else
(12)

Where, the time headway during lane changing
between the current vehicle and the competing vehi-
cle is specified as T (t), the minimum safe time head-
way that ensures the safety of the concerned drivers is
specified as Tmin(t).

Tmin(t) = min(Tinitial,Ta) (13)

where, Ta = 3, and the headway between V1 and V2 at
time t is specified as Tinitial. In order to prevent acci-
dents, a headway of at least 3s has to be maintained.
During lane changing process, the payoffs with respect
to the spatial distance is represented as Uspace,

Uspace =
{

2|D(t)|−Dmin(t)
Dmin(t) , −Dmin(t) ≤ D(t) ≤ Dmin(t)

1, else
(14)

Where, the conflicting vehicle’s spatial distance is
specified as D (t),Dmin(t) is the minimum safe distance
that needs to bemaintained between the subject vehicle
and the conflicting vehicle at time t. At normal driving
conditions, the minimum safe distance required to be
maintained is,

Dmin(t) = max
(∫ t

0

∫ λ

0
(aV1(τ ) − aSV(τ ))dτdλ

+ (νV1(0) − vSV(0))t
)

(15)

Where, the vehicle V1’s longitudinal velocity and accel-
eration are specified as νV1 and aV1 respectively, while
the longitudinal velocity and acceleration are specified
as vSV and aSV respectively. The total payoff is estimated
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Figure 4. Space payoff and safety payoff weight coefficients.

as,

Utotal = αUsafety + βUspace (16)

Here, the weight coefficients are referred as α and
β. The driver’s space headway over the entire road
section is compared to the other vehicle’s average space
headway within a 100-meter range and then a sigmoid
function is used to process the space headway differ-
ence to obtain each driver’s space weight coefficient. It
is estimated as,

β = 1
1 + e−(|l−lave|/20) (17)

Here, the target vehicle’s average headway is repre-
sented as l and the average headway of nearby vehicles is
specified as lave. The weight coefficients are represented
as functions of difference in Figure 4. The optimal strat-
egy is obtained by introducing the estimated total payoff
in the game model. On analysing the driving environ-
ment, the SV initially gives decision variables during
lane changing. On the basis of these decision vari-
ables, the vehicle V1 provides an optimal response and
returns the decision to SV. The continuous circulation
of information takes place untilsatisfaction is reached
by both players of the game.

The optimization problem of this Stackelberg game
model at perpetual equilibrium is expressed as,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ ∗
1 = argmax(U(τ1, τ2)), τ2 ∈ �

′
2(τ1), τ1 ∈ �1

τ ∗
2 = argmax(u(τ ∗

1 , τ2)), τ2 ∈ �2

�1
2(τ1)

Δ= {τ ′
2 ∈ �2 : u(τ1, τ

′
2)

≥ u(τ1, τ2)∀τ2 ∈ �2, τ1 ∈ �1}
(18)

Equation (18) is subject to vSV , vV1 ≥ 0 and amin ≤
aSV , aV1 ≤ amax. Moreover, the decision of SV and V1
is represented as τ1 ∈ �1 and τ2 ∈ �2 respectively. The
set of choices available forV1 is specified as�′

2(τ1). The
best decisions of both V1 and SV are specified as τ ∗

2 and
τ1 respectively. The payoff values of every decision and
current decision are used to determine the probability
of lane changing.

3.4. Tragectory prediction usingwhale
optimization algorithm based CNN (WOA-CNN)

After predicting the lane changing intention using the
game theory model, the lane changing trajectory is
predicted using WOA-CNN. The WOA-CNN is effec-
tive in extracting the important lane changing related
data segments. The utilization of Trajectory Predic-
tion using WOA-CNN offers a significant advantage
in enhancing the accuracy and efficiency of trajectory
forecasting in the context of lane-changing. The inte-
gration ofWOA optimizes both the convolutional layer
and fully connected layer of the CNN, contributing
to improved model performance. WOA, as a meta-
heuristic algorithm, aids in finding optimal solutions
by simulating the social behaviour of whales. This opti-
mization technique enhances the learning capabilities
of the CNN, allowing it to better capture complex pat-
terns and dependencies in the trajectory data. The algo-
rithmic optimization not only bolsters the accuracy of
trajectory predictions but also facilitates quicker con-
vergence, making it well-suited for real-time applica-
tions in autonomous driving. This approach demon-
strates the potential to significantly advance the capa-
bilities of trajectory prediction systems, ultimately con-
tributing to safer andmore reliable autonomous vehicle
navigation.

The structure of WOA-CNN is given in Figure 5. In
order to improve the accuracy ofCNN in trajectory pre-
diction, theWOA is used for tuning the kernel values of
the convolution layer and optimizing the weights of the
fully connected layer. Game theory focuses on strate-
gic interactions between players, while optimization, in
this work, is applied to enhance the efficiency of the
CNN model. Both contribute to the overall effective-
ness of the lane-changing prediction system but operate
at different levels of decision-making and problem-
solving. Game theory models the strategic decisions
of intelligent entities, whereas optimization fine-tunes
parameters to improve the performance of CNN. The
visual cortex cells of the human brain are the inspira-
tion behind the development of this effective supervised
learning approach. Moreover, it is structured in such a
way that each of its layers is completely connected to its
adjacent layers. It is one of themost preferred choices in
many applications, owing to its capacity to resolve the
issue of overfitting as well as its swift high dimension
feature detection capability.

The convolution layer, max pooling layer, fully con-
nected layer and softmax layer, together constitutes
the CNN architecture. The prominent input features
required for trajectory prediction are extracted in the
convolution layer. The kernels (weights) of this layer
are optimized using WOA. The maxpooling layer aids
in the minimization of calculation complexity, without
compromising any vital information. It mainly mini-
mizes the computational complexity by reducing the
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Figure 5. WOA-CNN architecture.

dimension of its prior layer’s output. After undergo-
ing a series of convolution and max pooling layers, the
final output obtained from these layers is flattened and
provided as input to the fully connected layer. This
layer is effective in predicting the best label for describ-
ing the given input and its weights are tuned using
WOA. Finally, the trajectory of lane changing vehicle
is predicted by the softmax layer.

3.4.1. Whale optimization for convolution layer and
fully connected layer
The hunting technique used by the whales is the inspi-
ration behind the development of WOA [19]. It is an
evolutionary technique; hence it aims at identifying the
global optimum solution using a random population
set. The term candidate solution is an alternate term
referring to the population set. TheWOA continuously
improves and updates its solution, till the optimal value
is obtained. Its distinct way of creating rules and updat-
ing solutions, sets it apart from other available meta-
heuristic approaches. The hunting technique of whale,
which influenced the development of WOA, involves
trapping their prey in a bubble net before hunting. The
mathematical representation of the bubble net is,

X(t + 1) =
{
X∗(t) − ADp < 0.5
D′eblcos(2π t) + X∗(t)p ≥ 0.5

(19)

D′ = |CX∗(t) − X(t)| (20)

A = 2ar − a (21)

C = 2r (22)

Where, the terms r and p refers to random con-
stants within [0, 1] and the random constant within
[−1, 1] is given as l. The number of iterations is rep-
resented by t and the distance for the best solution
is given by D′. X(t + 1)indicates the updated position
of the whales in the population at the next iteration
(t + 1), X∗(t) denotes the current best known posi-
tion, A is the parameter that determines the distance
of a whale from its prey, D denotes a random vector
that is uniformly distributed in the range [0,1], b is the
parameter that influences the shape of the bubble net, p
denotes a random number between 0 and 1, C indicates
a constant parameter that influences the distance calcu-
lation. A random population is initially considered and
for every iteration, the solutions are updated in order
to mathematically model bubble net hunting and prey
encircling. Here, in order to heighten the accuracy of
CNN in trajectory prediction, the filter values are tuned
in both the convolution layer and fully connected layer
using WOA. The parametric optimization is achieved
by providing the WOA with orderly arranged weights
and filter values. The weights are given to the module
containing the replica of the model, where the fitness
or accuracy is evaluated by copying each weight. The
entire process is given in the form of a flowchart in
Figure 6. In order to make the algorithm more com-
patible with CNN, the following modifications were
made:

• The single point in space is replaced with
n-dimensional individual length.
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Figure 6. Work flow of WOA optimization.

• Theparameters are transformed into ann-dimensional
array and the individual size controls the value of n.

• The forward network evaluation is contained within
the objective function.

The flowchart of theWOA-CNN is given in Figure 7.
Thus, the trajectory of lane changing is predicted
successfully using WOA-CNN. The proposed concept
makes significant contributions to the entire lane-
changing process by enhancing the following aspects.

• Desire to Change the Current Lane – The integra-
tion of game theory into themodel allows for amore

nuanced understanding of the drivers’ decision-
making process when considering a lane change. By
incorporating strategic interactions between drivers,
the model captures the desire to change lanes as a
result of optimizing payoffs, considering safety, and
spatial distance.

• Target Lane Selection – The proposed model con-
tributes to target lane selection by utilizing theWOA
to optimize both the convolutional and fully con-
nected layers of the CNN. This optimization process
enhances the efficiency of theCNN in predicting tra-
jectories, thereby aiding in the precise selection of
the target lane.

• Ensuring Lane Change Feasibility – Through the
utilization of a Wiener filter for pre-processing and
CFCM technique for segmentation during data pro-
cessing, the proposed model addresses environmen-
tal intermittencies and data variations. This ensures
that the lane change process is executed in consider-
ation of the surrounding conditions, making it more
feasible and safer.

• Decision to Change Lane Based on Gap Accep-
tance – The game theory model explicitly incorpo-
rates payoffs related to safety (Usafety) and spatial
distance (Uspace) during the decision-making pro-
cess. The consideration of these payoffs contributes
to a more informed decision to change lanes based
on gap acceptance. The optimization of the game
model helps in determining the optimal strategy for

Figure 7. Flowchart of WOA-CNN.
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both the subject vehicle and the competing vehi-
cle, leading to improved decisions related to gap
acceptance.

Generally, autonomous vehicles operate in dynamic
environments where interactions with other vehicles
are crucial. Integrating game theory allows autonomous
vehicles to make strategic decisions considering the
actions of other intelligent entities on the road. The use
of optimized CNN is beneficial for processing sensor
data and predicting lane-changing trajectories accu-
rately. This contributes to the decision-making process
by providing a reliable understanding of the surround-
ing environment, enabling the autonomous vehicle to
anticipate and respond to lane-changing intentions. In
autonomous driving, continuous learning and adap-
tation to changing road conditions are essential for
effective decision-making. The optimization compo-
nent contributes to the adaptability of the autonomous
system.

4. Results and discussion

In order to ensure the accurate detection of lane chang-
ing behaviour, the selection of a proper dataset is cru-
cial. Accordingly, a dataset including high quality time
series data on continuous vehicle states is preferred,
while also taking into account the interactions of vehi-
cles with one another. The selected dataset is also
required to have several vehicle states such as, acceler-
ation, speed and coordinates. Thereby, the Next Gen-
eration Simulation (NGSIM) is selected as the dataset
in this work. The dataset includes data about 2706 cars
and the statistical description of the dataset is provided
in Table 3. The simulationmodel for the proposedwork
is developed in Python and the effectiveness of the
proposed approach in detecting vehicle lane changing
behaviour is ascertained.

On the basis of the vehicle ID, the dataset is pre-
processed using weiner filter and segmented using
CFCM. The coordinate distribution of vehicles in every
lane is computed in order to estimate the centre line of
every lane. Then, in accordance with the vehicle trajec-
tory from the centre line, the lane changing of vehicles
is determined.Moreover, a sample is obtained by slicing
the vehicle’s lane changing behaviour segment. Finally,
from 1243 vehicles, 1698 samples are obtained as the
verification and training sample sets. Among the total
samples, 1188 samples are left lane-changing and 510

Table 3. Dataset statistical description.

Variable Max Min Standard Deviation Mean

Time headway (s) 29.42 0 2.09 2.74
Space headway (m) 52.68 0 9.43 19.76
Acceleration (m/s2) 2.36 −3.12 1.39 0.06
Speed (m/s) 29.15 0 4.16 9.25

Figure 8. Lane-changing duration.

samples are right lane changing. Figure 8 illustrates the
duration of the segments, from which it is observed
that almost every vehicles travelled away from the cen-
tre line of one lane and towards the centre line of the
adjacent lane within 3-7s. During lane changing, the
acceleration and speed of the vehicle are illustrated in
Figure 9.

After undergoing the wiener filter based pre-
processing andCFCMbased segmentation, the obtained
processed data is subsequently sent for training. Ini-
tially, the vehicles within a specified range (100m), that
have an impact on the SV are identified according to
the relative position and ID of the SV. Then, for every
vehicle the payoff value is determined using game the-
ory model. The vehicle lane changing possibility, which
is obtained as an output of the game theory model
is added to the vehicle driving state data as a data
dimension.

Figure 10 represents the comparison for game the-
ory model with respect to average speed and number
of passed vehicles in which the game theory aids in
the generation of improved outputs. The segmented
samples and lane changing possibility data are given as
input to the WOA-CNN. Among the total samples, the
verification samples are 30%, while the training sam-
ples are 70%. The WOA-CNN predicts lane changing
behaviour in real time. Moreover, the input given to the
WOA-CNN includes the game theory model output,
steering angle, headway, time headway, longitudinal
acceleration, longitudinal velocity, lateral acceleration
and lateral velocity. The convolution step is unity and
the kernel is 3 × 3 matrix in the convolution layer. Fur-
thermore, the batch size is 8, the time step is three and
the learning rate is 0.001. The WOA is used to opti-
mize the model. An outstanding prediction accuracy of
96.5% is obtained as seen in Figure 11(b).

The effectiveness of the game theory in improving
the accuracy of CNN in determining lane changing
behaviour is also verified. Hence, the proposed model
is validated for its accuracy without the application of
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Figure 9. During lane changing (a) Acceleration and (b) Speed.

Figure 10. Comparison of game theory model for (a) average
speed (b) number of passed vehicles.

game theory. From Figure 12, it is noted that the pre-
diction accuracy of WOA-CNN reduces substantially
to around 86% without the application of game theory.
Thus, it is concluded that the game theory significantly
heightens the accuracy of the deep learning technique
in predicting lane changing.

Moreover, the proposed model only takes 0.15s in
advance to warn the neighbouring vehicles about lane
changing. The time taken by the proposed approach to
predict lane changes is illustrated in Figure 13. Other
existing works are also analysed using the same dataset
for their prediction accuracy and the obtained results
are tabulated in Table 4.

From Table 4, it is noted that the proposed approach
using game theory and WOA-CNN is effective in pre-
dicting the lane changing behaviour of the vehicles with
comparatively higher accuracy.

Table 5 compares the accuracy of the proposed lane-
changing prediction model with existing approaches
found in the literature. The accuracy percentages rep-
resent the effectiveness of each method in accurately
predicting lane-changing behaviours in driving scenar-
ios. The proposed model outperforms these existing
approaches, showcasing a significantly higher accuracy
of 96.5%. This indicates the superior predictive capa-
bilities of the novel approach, which combines game
theory, optimized CNN and advanced data process-
ing techniques. The higher accuracy suggests that the
proposed model is more adept at precisely identifying
lane-changing intentions and predicting trajectories,
contributing to enhanced driver safety and accident
prevention compared to the reviewed methods.

Table 6 provides a comprehensive performance
evaluation of the proposed lane-changing prediction
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Figure 11. WOA-CNN (a) Loss function and (b) Prediction accuracy.

Table 4. Comparison of different approaches.

Algorithm RBFNN BPNN CNN LSTM CNN-LSTM LSTM-CNN WOA-CNN

Hidden Layers 1 2 2 1 2+ 1 1+ 1 1
Parameters 473 90 47068 167200 90058 176804 186500
Prediction Accuracy (%) Without game theory 75.21 73.79 78.25 81.08 81.52 83.76 86.38

With game theory 85.76 84.76 88.31 92.06 92.78 94.43 96.50

Figure 12. WOA-CNN prediction accuracy in the absence of
game theory.

Table 5. Comparison of accuracy with existing approaches.

Methods Accuracy (%)

[20] 94.6
[21] 93.5
[22] 87.4
[23] 83
Proposed 96.5

model compared to existing approaches. The evalu-
ation metrics include Precision, Recall and F1-score,
which collectively assess the model’s ability to make

Figure 13. Accurate result prediction time cost.

Table 6. Performance evaluation with existing approaches.

Methods Precision Recall F1-score

[22] 0.927 0.880 -
[23] 0.85 0.85 0.85
Proposed 0.972 0.97 0.97

accurate predictions while considering false positives
and false negatives. The proposed model excels in all
evaluated metrics, with a Precision of 0.972, Recall of
0.97, and an F1-score of 0.97. These results highlight
the superior performance of the proposed approach
in accurately identifying lane-changing intentions and
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predicting trajectories. The higher Precision indicates
fewer false positives, while the higher Recall suggests
fewer false negatives, resulting in an overall balanced
and effective model. The F1-score, which considers
both Precision and Recall, reinforces the robustness
of the proposed model in comparison to the reviewed
methods.

5. Conclusion

A prediction model for accurate determination of the
lane changing behaviour of vehicles is proposed in
this work, since lane changing behaviour is consid-
ered to be the major cause of several road accidents.
The proposed model comprises game theory for lane
changing intention prediction andWOA-CNN for lane
changing trajectory detection. By combining both the
intention and vehicle driving state, an accurate pre-
diction of lane changing is accomplished. The deep
learning approach of CNN is optimized using WOA
and the proposed model is tested using the NGSIM
dataset. The entire approach is validated for its effec-
tiveness using Python. An excellent prediction accu-
racy of 96.5% is obtained, which accredits the signif-
icance of the proposed approach in determining the
lane changing behaviour of vehicles.Moreover, the pro-
posed approach exhibits comparatively better perfor-
mance than other available algorithms in predicting
lane changing behaviour for the same dataset. Thereby,
it is possible to greatly reduce the probability of road
accidents caused by lane changing using the proposed
approach. Further exploration and refinement of this
concept could involve enhancing themodel’s adaptabil-
ity to dynamic and complex traffic scenarios, includ-
ing factors like varied weather conditions, diverse road
types, and interactions with pedestrians. Furthermore,
investigating the scalability of the proposed approach
for large-scale deployment and its compatibility with
emerging autonomous vehicle technologies would be
crucial.
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