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ABSTRACT
This paper introduces KnowledgeDistillation of Vision Transformer (KDViT), a novel approach for
medical image classification. The Vision Transformer architecture incorporates a self-attention
mechanism to autonomously learn image structure. The input medical image is segmented
into patches and transformed into low-dimensional linear embeddings. Position information is
integrated into each patch, and a learnable classification token is appended for classification,
thereby preserving spatial relationships within the image. The output vectors are then fed into a
Transformer encoder to extract both local and global features, leveraging the inherent attention
mechanism for robust feature extraction across diversemedical imaging scenarios. Furthermore,
knowledge distillation is employed to enhance performance by transferring insights from a large
teacher model to a small student model. This approach reduces the computational require-
ments of the largermodel and improves overall effectiveness. Integrating knowledge distillation
with two Vision Transformer models not only showcases the novelty of the proposed solution
for medical image classification but also enhances model interpretability, reduces computa-
tional complexity, and improvesgeneralization capabilities. TheproposedKDViTmodel achieved
high accuracy rates of 98.39%, 88.57%, and 99.15% on the SARS-CoV-2-CT, COVID-CT, and iCTCF
datasets respectively, surpassing the performance of other state-of-the-art methods.
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1. Introduction

COVID-19, also known as the coronavirus disease, is
a highly infectious respiratory illness caused by the
SARS-CoV-2 virus [1]. The impact of COVID-19 has
resulted in increased research across various fields,
including epidemiology, immunology, virology, and
medical imaging. While the initial surge of COVID-19
cases may have subsided, the importance of developing
effective diagnostic tools remains crucial for manag-
ing potential future outbreaks and addressing lingering
health concerns. In the Health Technology field, sys-
tems based on Artificial Intelligence (AI) have been
widely implemented to enhance service quality and
the efficiency of diagnosis and treatment processes
[2]. Medical imaging, specifically, has been pivotal in
diagnosing and treating COVID-19, with techniques
such as chest CT scans and X-rays used to identify
lung abnormalities associated with the disease. AI and
machine learning are also being applied to medical
imaging to assist with the detection and diagnosis of
COVID-19. The practical application of the proposed
model in COVID-19 diagnosis on CT scans lies in
its ability to accurately and efficiently identify pat-
terns associated with the disease, facilitating timely and
accurate diagnoses even in post-pandemic scenarios.
Furthermore, the model’s capabilities extend beyond

COVID-19 to encompass various respiratory illnesses,
enabling its continued relevance in ongoing healthcare
efforts.

In this research,medical image analysis presents var-
ious challenges that hinder the development of effective
AI models for classifying medical images. One prob-
lem encountered is the limited dataset size due to pri-
vacy considerations and the cost of data collection.
Moreover, automatic detection of the regions of inter-
est (ROIs) over the image global features is challenging
due to the complexity and nonlinear nature of medical
images. Extracting useful and important features from
medical images can be challenging when datasets are
collected from different sources and institutions, result-
ing in domain shift. Another challenge in training a
good model with medical images is the class imbalance
for each class or label in the dataset. Manymedical con-
ditions can be rare, leading to imbalanced datasets and
causing the model’s performance to be less accurate.

A deep learning framework is introduced, adopting
the Vision Transformer (ViT) model with Knowledge
Distillation to improve model performance and over-
come challenges encountered in medical image anal-
ysis in this work. The Vision Transformer model was
initially introduced in [2] as an alternative to Convo-
lutional Neural Network (CNN) models for addressing
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computer vision problems, such as image classification.
The self-attention mechanism is the main component
thatmakes thismodel distinct. Thismechanismconsid-
ers three components: query, key, and value, to compute
the attention weight from the image features. Several
patches are created as input from the image before
passing into the transformer encoder, similar to the
original transformer model used to solve natural lan-
guage processing tasks. Besides utilizing the Vision
Transformer as the backbone model, Knowledge Dis-
tillation [3] is also applied. The concept of Knowledge
Distillation involves a teacher-student model where
the teacher model guides the student model’s learn-
ing process by transferring the rich knowledge encoded
in the teacher model, which has better generalization
ability. By distilling the knowledge from a larger ViT
model into a smaller one, KDViT strikes a balance
between model performance and computational effi-
ciency, making it well-suited for resource-constrained
medical imaging applications. Gou et al. [4] conducted
a survey on knowledge distillation, identifying various
types of knowledge distillation algorithms, including
knowledge-based types, distillation schemes, teacher-
student architectures, and more. The implementation
of the proposed KDViT model primarily focuses on
the teacher-student architecture. It is crucial to deter-
mine the right teacher model to effectively capture and
distill knowledge for the student model. Additionally,
data augmentation and class weighting are employed
to address limited training samples and class imbal-
ance problems. The implementation of fine-tuning and
early stopping in the KDViT model lies in their syner-
gistic enhancement ofmodel performance. Fine-tuning
allows the model to adapt its pre-trained parameters
to better suit the specific characteristics of the dataset,
thereby refining its ability to capture relevant features
andpatterns.Moreover, by stopping training at the opti-
mal point, early stopping helps prevent the model from
memorizing noise in the training data and promotes
better generalization to unseen data.

The dominant contributions of this paper to perform
image classification for medical images are:

• Vision Transformer model is employed as the foun-
dation of the proposed KDViT allows for efficient
representation learning in medical image classifi-
cation. ViT’s self-attention mechanism, considering
query, key, and value components, allows the model
to learn the complex patterns and dependencies
present inmedical images, contributing to enhanced
feature extraction and classification accuracy.

• Knowledge Distillation in the proposed KDViT
facilitates a seamless transfer of rich knowledge from
a complex teachermodel to a smaller studentmodel.
This process boosts the student model’s generaliza-
tion capability, enabling it to inherit the valuable
insights encoded in the teacher model. The result

is a more compact yet proficient model in medical
image classification tasks, contributing to improved
performance and computational efficiency.

• The proposed KDViT incorporates data augmenta-
tion and class weight techniques, addressing chal-
lenges related to limited training samples and class
imbalance in medical image datasets. Data augmen-
tation diversifies the dataset, enhancing the model’s
ability to generalize to different variations. Mean-
while, class weight adjustments mitigate the impact
of imbalanced class distributions, contributing to a
more robust and accurate classification model.

2. Related works

Commonly, research in medical image classification
can be broadly divided into two main directions: Con-
volutional Neural Network models (CNN-based mod-
els) and Non-Convolutional Neural Network models
(Non-CNNmodels).

2.1. Convolutional neural network

Convolutional Neural Networks (CNNs) have emerged
as a powerful and widely utilized tool in medical
image classification. These neural networks are partic-
ularly well-suited for processing visual data, making
them widely applied in tasks like diagnosing diseases
from medical images. Yadav and Jadhav [5]employed
three distinct methods to train Convolutional Neu-
ral Network models using a chest X-ray dataset for
pneumonia classification. Thesemethods encompassed
a Support Vector Machine (SVM) classifier utilizing
oriented fast and rotated binary (ORB), transfer learn-
ing models, and the implementation of a capsule net-
work. From the experimental result, it was found that
CNN-based transfer learning produced the best result
of 95.4% accuracy, followed by the capsule network
and the SVM with ORB model. Later, a medical image
dataset called the SARS-Cov-2 CT-scan dataset was
introduced by [6]. This dataset contained only two
cases, which were COVID and non-COVID cases. An
eXplainable Deep Learning model (xDNN) was also
proposed using CNN architeture to perform CT-Scan
image classification and the result of 97.38% accu-
racy and 97.36% AUC was recorded as its best perfor-
mance. A similar work by Yang et al. [7] also intro-
duced the COVID-CT dataset which contained two
labels. In their work, multi-task learning and self-
supervised learning were utilized in their pre-trained
transfer learning models, DenseNet-169 and ResNet-
50. The combination of the transfer learning model
and contrastive self-supervised learning was proved to
achieve 89% accuracy and 98% of AUC score. Another
larger dataset of CT-Scan medical images was pre-
sented by [8]. The chest CT images with three cases
(non-informative CT, positive CT and negative CT)
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and clinical features (CFs) were collected from 1,170
patients. A patient-centric resource, iCTCF, was devel-
oped to manage and share the data. A 13-layer CNN
model was created to predict the disease of COVID-
19 and the result of 97.8% AUC score was recorded. In
[9], another transfer learning CNN model, GoogleNet,
was used to classify a total of 749 chest CT Scan
images. This solution obtained a validation accuracy
of 82.14%. GoogleNet, which was known as Inception-
V1, integrated multi-scale convolutional transforma-
tions through the concept of splitting, transforming,
and merging. A later research by Saleh et al. [10] pro-
posed combining CNN with the SVM algorithm to
detect lung cancer when utilizing chest medical images
as the input. The model produced 97.91% of accu-
racy and 1.0 of AUC score. Aytaç et al. [11] intro-
duced a novel adaptive momentum applied to a CNN
model for testing and classifying over three different
medical datasets, including brain cancer, chest X-Ray,
andCT-scan images. Comparisons of adaptivemomen-
tum optimizers, such as Stochastic Gradient Descent
(SGD) and Adam, revealed that SGD produced the best
result by reducing the classification loss from 6.12%
to 5.44%. Salehi et al. [12] published a study of CNN
models which were used in medical imaging field. The
study explained clearly for each of the components
in CNN model and the application of CNN model
in transfer learning technique. CNN model became
the alternative solution of machine learning algorithm
because of its capability to learn high-level features
from the images. Wang and Yang [13] also made a
survey on the application of CNN models in image
classification, elucidating various model architectures
and their performance on ImageNet and CIFAR10
datasets, which demonstrated improvements of at least
2% to 3%. Different network optimization methods
were introduced as well. Some studies [14, 15] also
demonstrated the ability of DenseNet model to solve
object detection problem and achieved high accuracy
score when the models were enhanced with the inte-
gration of YOLO algorithm. DenseNet model was able
to improve feature propagation and support feature
reuse.

2.2. Non-convolutional neural network

CNN in medical image classification may face chal-
lenges in instances of limited annotated medical
datasets, hindering the model’s ability to generalize
effectively. Additionally, CNNs might struggle with
interpretability, making it challenging to explain the
reasoning behind specific classifications, a crucial
aspect in the medical field for gaining trust and under-
standing from healthcare professionals. In light of these
challenges, researchers have begun to explore alterna-
tive approaches to CNNs for medical image classifi-
cation. Rajeev et al. [16] proposed a solution utilizing

Recurrent Neural Network (RNN) with Long-Short-
Term Memory (LSTM) and batch normalization. The
optimal batch size was determined using the Particle
Swarm Optimization (PSO) algorithm, with RNN effi-
ciently eliminating noise in medical CT scan images.
Their model achieved better performance in Peak
Signal-to-Noise Ratio (PSNR) and Mean Square Error
(MSE) metrics. Furthermore, Zhou et al. [17] intro-
duced a self-pretraining Masked Autoencoder (MAE)
and segmentation network with a Vision Transformer
model for medical segmentation and classification.
Usman et al. [18] demonstrated that transformer-based
models outperformed CNN models such as ResNet-
50, Inception-V3, and VGG-16 in classifying X-ray
images from two data sources, with the Vision Trans-
former achieving 87% accuracy and 86% F1-score. In
another work by Almalik et al. [19], a Self-Ensembling
Vision Transformer (SEViT) was proposed for clas-
sifying chest X-ray images and diabetic retinopathy.
The ViT model achieved 96.38% and 97.64% accuracy
for chest X-rays and diabetic retinopathy, respectively.
Shaker and Xiong [20] employed LSTM and RNN to
classify lung partial images, achieving 95.93% accu-
racy, surpassing VGG and Inception models. Leamons
et al. [21] compared Vision Transformer, CNN, and
Residual Neural Network models for medical image
classification, with the transformer model producing
superior results at 93% accuracy, compared to CNN
(81.4%) and RNN (87.9%) models. Lee et al. [22] stud-
ied the use of Vision Transformer models on smaller
datasets and proposed using Shifted Patch Tokeniza-
tion (SPT) and Locality Self-Attention (LSA) to address
the problem of low locality inductive bias inherent in
Vision Transformermodels. Their experiments showed
an improvement in accuracy scores of approximately
4.08% for both CIFAR100 and T-ImageNet datasets.
Jamil and Roy [23] proposed a Non-CNNmodel which
used Vision Transformer to detect Valvular Heart Dis-
eases based on the cardiac phonocardiogram. Self-
attention mechanism was proved to be effective when
extracting the MFCC and LPCC features from the
images and the model achieved a score of 99.90%
for accuracy, specificity, sensitivity and F1-score. Jiang
et al. [24] also proposed a Non-CNN model which
utilizing Multiple Graph Learning Neural Networks
(MGLNNs) model to perform semi-supervised classi-
fication.

Non-CNN based models have garnered consider-
able attention in recent years as a focus of study and
exploration. Bi et al. [25] has studied various type of
transformer models which are used in computer vision
for image and video datasets. Transformer-basedmodel
has outperformed existing models in terms of accuracy
metric. Therefore, vision transformermodels are gener-
ally perceived as more intricate compared to traditional
CNN models, particularly regarding the number of
parameters and computational demands. For example,
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employing Vision Transformer (ViT) models for clas-
sification tasks can present challenges, especially when
working with smaller datasets. To overcome this obsta-
cle, Knowledge Distillation is employed, involving
the transfer of knowledge from a larger, more com-
plex teacher model to a smaller student model with
fewer parameters for training. Moreover, addressing
the inherent limitations of smaller datasets, techniques
like data augmentation and class weight adjustments
play a crucial role. Data augmentation involves arti-
ficially expanding the dataset by performing several
transformations on the existing images, helping the
model generalize better to diverse scenarios. Addition-
ally, incorporating class weights aids in mitigating the
impact of imbalanced class distributions, ensuring that
the model does not exhibit bias towards the domi-
nant class and thus enhancing overall performance and
accuracy.

3. Knowledge distillation of vision
transformer (KDViT)

In this work, Knowledge Distillation of Vision Trans-
former, known as KDViT, is proposed for solving the
problem of classifying COVID-19 CT scan images. The
KDViT model, depicted in Figure 1, employs Vision
Transformer as the backbone model (as shown in
Figure 2) with a teacher-student architecture. Given the
input CT scan image, the KDViT model starts with
data augmentation, generating additional images with
diverse characteristics such as random rotation by a
specific degree and horizontal flipping. As pointed out
by [26], training ViT models with larger datasets can
lead to better results. These augmented images undergo
training in the teacher model, facilitating the distil-
lation of knowledge from the larger (teacher) to the
smaller (student) model. The ViT-Base 32 (ViTB-32)

Figure 1. The overview of the proposed KDViT model.

Figure 2. The illustration of the backbone model of Vision Transformer in the proposed KDViT model.
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model serves as the teacher, while the ViT-Base 16
(ViTB-16) model functions as the student, both uti-
lizing Vision Transformer as their feature extractor.
Han et al. [26] performed a survey on Vision Trans-
formermodels. The study explained the architectures of
Convolution and Attention with their backbone mod-
els. The transformer blocks in the Vision Transformer
model leverage self-attention mechanisms to analyze
complex relationships in CT-Scan images and capture
both local and global information. A few layers of fully-
connected layers are connected to the ViT-Base model,
and the last layer is an output layer with a softmax acti-
vation function to compute class probabilities. For the
classification task, a weighted average of two loss func-
tions, distillation loss and student loss, is employed to
enhance knowledge transfer between the student and
teacher models. Algorithm 1 presents the comprehen-
sive training steps for the KDViTmodel, encompassing
the training of both the teacher and student models.
In overview, the logic behind the KDViT model lies
in transferring knowledge from a larger teacher model,
such as a pre-trained Vision Transformer, to a smaller
studentmodel. This process aims to distil the rich infor-
mation captured by the teacher model into a more
compact student model, enabling it to achieve compa-
rable performance with reduced computational com-
plexity. By leveraging the soft labels and representations
learned by the teacher model, the student model learns
to mimic the teacher’s behaviour, leading to improved
generalization and performance on the target task.

Algorithm1Algorithmof training steps for the KDViT
model.
Require: Teacher Model Mteacher, Student Model

Mstudent , CT-Scan training data, Dtrain
1: Initialize temperature parameter: τ
2: for n epochs do
3: for b batch size do
4: x, y← Dtrain
5: while Not converged do
6: Forward pass through teacher model:

Mteacher(x, y)
7: Calculate teacher logits: Zteacher
8: Forward pass through student model:

Mstudent(x, y)
9: Calculate student logits: Zstudent
10: Calculate knowledge distillation loss:

LK =
DistillationLoss(Zteacher,Zstudent , τ)

11: Backpropagate and update student
weights: ∇LK

12: end while
13: end for
14: end for

3.1. Data augmentation

In Figure 1, data augmentation is deployed to generate
additional training samples, addressing the challenge of
limited data availability in the dataset. This technique
significantly expands the effective dataset size by intro-
ducing diverse transformations and alterations to the
original data. The primary purpose is to enhance the
proposed KDViT model, enabling it to handle a wide
range of data scenarios during model training, lead-
ing to improved performance and resilience. The key
advantage of data augmentation is its role in enriching
the model’s learning experience. Exposure to diverse
data variations allows the model to develop a more
comprehensive understanding of underlying patterns,
resulting in enhanced generalization for accurate classi-
fication of new, unseen data. Garcea et al. [27] explained
that medical images required suitable augmentation
methods to generate more samples and allowed the
deep learning model to improve the performance. In
this paper, it is found that data augmentation appears
to offer greater advantages in classification tasks com-
pared to segmentation tasks after conducting the sur-
vey on many researches, and not every augmentation
technique guarantees an improvement in the results, as
its effectiveness still depends on its compatibility with
the medical images. Goceri [28] introduced the data
augmentation techniques for different medical image
modalities such as MRI, CT images, mammography
and eye fundus images. The effectiveness for some aug-
mentation techniques are compared with the quantita-
tive results which obtained from the experiments. The
advantages and disadvantages are discussed as well.

From the study [28], transformation-based augmen-
tation methods are easier to be implemented when
compared to Generative Adversarial Network (GAN)
based augmentation methods. Therefore, the proposed
KDViT will be enhanced with transformation-based
augmentation methods. Transformation-based aug-
mentation methods encompasses an array of image
manipulation techniques, including but not limited to
rotations, cropping, scaling, flipping vertically or hor-
izontally, and adjustments to brightness, contrast, and
colour. These operations simulate real-world varia-
tions, such as different orientations and transforma-
tions, which the model should be equipped to handle.
Figures 3 and 4 show the examples of the CT scan
images when random flipping and random rotation are
applied.

3.2. Vision transformer

The augmented samples are input into the presented
KnowledgeDistillation ofVisionTransformer (KDViT)
model, where both teacher and student models utilize
Vision Transformer (ViT) as the backbone. This type
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Figure 3. Sample augmented CT scan images when random flip technique is applied.

Figure 4. Sample augmented CT scan images when random rotation technique is applied.

of model is initially used for Natural Language Pro-
cessing (NLP), has transitioned into Computer Vision
tasks. The augmented images are tokenized by patching
process as shown in Figure 5.

Firstly, the 3-colour channel image with width w
and height h, denoted as I ∈ R

w×h×3, will be chun-
ked into smaller patches with a shape of (p,p,c) and a
predefined patch size p, considering the channel value
of the image, as described in (1) and (2). The patches
will then be flattened into a sequence of vectors with
a certain dimension, producing linear embeddings of
dimension d as the output,E. The position of each patch
will be recorded by a positional embedding, Epos, which

is added to the vector. This addition enables the model
to not just encapsulate the content but also the spatial
position of these patcheswithin the image.Adimension
of (1, d) learnable class token, xcls, is also attached at
the beginning of the patch embeddings’ sequence. The
equations involved in this process are expressed in (3)
and (4).

Ip ∈ Rn×p2×3 (1)

n = w× h
p2

(2)

E ∈ Rd×(p2×3), Epos ∈ Rd×n (3)
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Figure 5. The processes in the Vision Transformer.

z0 = [xcls; x1pE; x
2
pE; · · · ; xnpE]+ Epos (4)

where n is the number of patches created from an
image, z0 is the sequence of embedded patches which
will be fed into transformer encoder, and xnp is the nth
patch.

The encoder will receive embedded patches as the
input, as depicted in Figure 5. According to [29], a
transformer encoder consists of three essential layers:
theMulti-Head Self-Attention layer (MSA), Layer Nor-
malization (LN), and Multi-Layer Perceptions Layer
(MLP). Residual connections are used between the lay-
ers. The Layer Norm layer is implemented to help sta-
bilize and improve the model’s training. Its primary
function is to normalize the activation (outputs) of
neurons within each layer of the network. Layer Nor-
malization involves scaling the features of each train-
ing sample using their mean and standard deviation.
These scaled features are then multiplied by learnable
scaling and addedwith shifting factors during the train-
ing process. In contrast, Residual connections provide
alternate paths for gradients, addressing the issue of
vanishing gradients in extremely deep architectures.

The output from the Layer Norm is then passed into
the MSA Layer. The purpose of the MSA layer, intro-
duced and explained in detail by [30], is to capture
the relationships anddependencies between the patches
and learn contextual representations by updating the
weight based on the similarities of the features. This
process is completed by mapping each patch to three
vectors, denoted as q for query, k for key, and v for value.
This self-attention mechanism is represented as scaled
dot-product attention, expressed in (5). Furthermore,
the attention weight of a Query vector and Key vec-
tor is multiplied by the Value vector. This calculation
of three vectors is considered as single-head attention.
For themulti-head attentionmechanism, a single atten-
tion with d-dimensional queries (dq), keys (dk), and
values (dv) is carried out for h times, as denoted in (6).

Utilizing multiple attention heads enables the model
to simultaneously focus on different segments of the
input and learn diverse features and representations.
Each attention head can focus on a different aspect or
relationship within the data, making the model more
expressive. A residual connection is implemented to
add the original input to the result obtained from the
MSA layer. The last step in the transformer encoder is
image classification through a Layer Norm and MLP
layer. The classification token, cls, is extracted and used
as the classification head in the MLP layer. This layer is
crucial for producing an accurate classification result.

Attention(Q,K,V) = softmax
(
QKT
√
dk

)
V (5)

where T is the length of patched embeddings, and dk is
the hidden dimensional for the key.

MultiHead(Q,K,V) = Concat(head1, . . . , headh)

W0 headi = Attention(QWQ
i ,KW

K
i ,VW

V
i )

(6)

3.3. Knowledge distillation

In this work, we propose Knowledge Distillation of
Vision Transformer (KDViT)models, amethod involv-
ing two different-sized models. The larger model,
referred to as the teacher model, disseminates its
learned information and knowledge to the smaller stu-
dent model by minimizing the loss function. The ViT-
Base 32 (ViTB-32) model acts as the teacher, whereas
the ViT-Base 16 (ViTB-16) model serves as the student.

During training, the student model learns not only
from the original dataset but also from a modified
dataset containing soft labels generated by the teacher
model. These soft labels, represented as probability dis-
tributions over classes, replace traditional hard one-hot
encoded labels. Two loss functions are considered dur-
ing training: Distillation loss, measuring the disparity
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between the student and teacher model’s predictions
on the soft labels, encourages mimicking the teacher’s
behaviour. Simultaneously, Student loss, the standard
loss function for the original task (e.g. cross-entropy
loss for classification), ensures the student model per-
forms well on the primary task. The overall loss is a
linear combination of both, with a hyperparameter, the
temperature (τ ), controlling the relative weight. The
softmax layer converts logits (zi) into probabilities (qi),
as expressed in (7).

qi = exp(zi/τ)∑
j exp(zi/τ)

(7)

The temperature parameter influences the smoothness
of soft labels; a higher temperature leads to softer labels
providing more training information, while a lower
temperature makes labels closer to one-hot distribu-
tions, yielding sharper predictions.

Knowledge distillation finds application in various
machine learning domains, including computer vision,
natural language processing, and speech recognition.
It enables accurate model deployment in resource-
constrained scenarios by compressing largemodels into
smaller ones while maintaining performance and accu-
racy. Smaller models are more efficient for inference,
making them suitable for deployment on devices with
limited computational resources.

3.4. Class weight

Class weight is a well-established strategy extensively
used to address the challenges presented by imbalanced
datasets. The three datasets used in this study mani-
fest distinct distributions of data across their labelled
classes. Notably, the iCTCF dataset [8] illustrates an
imbalance in image count among the three classes,
with the largest class comprising 9979 images, while
the other two classes exhibit disparities of 5978 and
4274 images, respectively. These imbalances result in an
uneven training set, disproportionately favouring the
majority class and compromising the model’s ability to
generalize effectively across all classes.

To effectively tackle this problem, the class weight
technique is applied, acting as a mechanism to rebal-
ance the impact of different classes during the overall
training process. For the minority class, its contribu-
tion to the total loss in model training is strategically
enhanced. This adjustment counteracts the dispropor-
tionate influence of the majority class, helping to pre-
vent the pitfalls of overfitting driven by an overwhelm-
ing majority class representation.

Through the incorporation of the class weight tech-
nique, the proposed KDViT model can distribute its
learning efforts more equitably across all classes. This
promotes more balanced and accurate classification
outcomes within the context of imbalanced datasets,

ultimately contributing to a more robust and reliable
model performance.

3.5. Fine tuning

In the proposed Knowledge Distillation of Vision
Transformer (KDViT)models, fine-tuning significantly
enhances the model’s performance on specific tasks.
Fine-tuning involves refining a pre-trained Vision
Transformer model by training it with a downstream
dataset, tailoring its knowledge to the intricacies of
the target problem, in this case, the classification of
COVID-19 CT scan images. The fine-tuning process
begins by loading the pre-trained ViT-Base 32 (ViTB-
32) model, which serves as the teacher, and the ViT-
Base 16 (ViTB-16) model, which functions as the stu-
dent. These models have already acquired general fea-
tures from a broader dataset, providing a solid foun-
dation for understanding complex patterns in images.
The pre-trainedmodels are then fine-tuned on a dataset
specific to COVID-19 CT scan images. During this
phase, several hyperparameters are adjusted to opti-
mize themodel’s performance, such as the learning rate
of the optimizer, batch size, and the number of neurons
in the fully-connected layers.

Spolaôr et al. [31] conducted a study on the effec-
tiveness of applying fine-tuning to the VGG16 transfer
learning model to address the challenge of learning
from small medical datasets. The study demonstrated
that fine-tuning a pre-trained model by transferring
generic features learned to the medical domain features
can achieve better results than some existing models.
One of the key advantages of fine-tuning in the con-
text of the proposed KDViT models is the efficient
transfer of knowledge from the pre-trained models to
the task-specific COVID-19CT scan classification. Pre-
trained models bring a wealth of knowledge about gen-
eral image features, significantly accelerating the learn-
ing process on the new dataset. This approach allows
the models to leverage the pre-existing understanding
of complex relationships in images, facilitating quicker
convergence and enhancing their ability to generalize to
COVID-19 CT scan patterns. Additionally, fine-tuning
enables the models to adapt to the unique charac-
teristics of the medical imaging domain. COVID-19
CT scans may exhibit distinct features that are not
present in the original dataset used for pre-training.
Fine-tuning allows the models to refine their represen-
tations, capturing nuances specific to COVID-19 cases.
This adaptability is crucial in medical image classifi-
cation, where precise identification of disease-related
patterns is essential.

In short, fine-tuning in the proposed KDViT mod-
els optimizes the knowledge transfer from pre-trained
Vision Transformer models to the task of COVID-
19 CT scan classification. It expedites model train-
ing, enhances generalization capabilities, and enables
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adaptation to the specific nuances of medical imaging
datasets, contributing tomore accurate and robust clas-
sification outcomes.

3.6. Early stopping

In this work, early stopping is employed as a strate-
gic approach to enhance training efficiency and avoid
overfitting during the learning process. It entails con-
tinuously evaluating the model’s performance, such as
accuracy and loss, on a validation set throughout train-
ing and halting the training procedure when signs of
performance degradation emerge.

One of the primary advantages of early stopping
in KDViT models is its role in preventing overfitting.
Overfitting occurs when a model not only learns inher-
ent patterns within the training data but also noise or
specific characteristics unique to the training set, result-
ing in poor generalization to new data. By monitoring
validation performance and stopping training when the
model’s accuracy or loss on the validation set starts to
decline, early stopping ensures that the model does not
become excessively specialized to the training samples.
Moreover, early stopping enhances resource efficiency
by halting the training process upon detecting dimin-
ishing returns on the validation set and avoiding unnec-
essary computational costs associated with prolonged
training.

In the context of classifying COVID-19 CT scan
images in the medical field, where datasets may be
limited, early stopping is particularly valuable. Limited
datasets increase the risk of overfitting, and early stop-
ping acts as a regularization method to mitigate this
risk, striking a balance between model complexity and
dataset size. This ensures that KDViT models achieve
optimal performance without compromising their abil-
ity to generalize to new, unseen COVID-19 CT scan
images.

4. Experiment and result

This paper assesses the proposed KDViT using three
benchmark datasets: the SARS-Cov-2 CT-scan dataset
[6], COVID-CT dataset [7], and integrative CT images
and CFs for COVID-19 (iCTCF) dataset [8]. Addition-
ally, the performance of the KDViT model is compared
and contrasted against several existing models.

4.1. Dataset

The first dataset is called SARS-CoV-2 CT-scan dataset,
introduced by [6]. The total number of images in this
dataset are 2482, with two cases, COVID and Non-
COVID. Among all the 2482 CT scan images, there are
a total of 1252 SARS-CoV-2 cases belonging to infected
patients, further broken down into 32 males and 28
females. Another 1230 CT scan images correspond to
non-SARS-CoV-2 infected patients, consisting of 30
males and females, respectively.

Yang et al. [7] introduced the second dataset named
COVID-CT dataset, which consists of a total of
746 images from resources available online, such as
medRxiv, bioRxiv, LUNA, Radiopaedia website, and
PubMed Central (PMC). The ratio of males to females
in this dataset is 86 and 51, respectively, and the age
range covers from1 to 81 years old. Ages between 31–41
years old contributed the most cases, followed by the
41–51 age group, whereas 11 to 21 years old has the least
cases collected.

The third dataset, which is also the largest dataset,
was introduced by [8]. In this dataset, it included three
classes: positive CT images (pCT), negative CT images
(nCT), and non-informative CT images (NiCT), with a
total of 19,685 images available in the dataset. All the
data collected from 1170 patients in this third dataset
are all under the approval of institutional ethical com-
mittees ofUnionHospital andLiyuanhospital inChina.

An overview of the three datasets used in this
research work is outlined in Table 1.

4.2. Experimental settings and evaluationmetrics

In this work, each dataset is divided into training, val-
idation, and testing sets for model training, following
the standard protocol in existing works. The image
dimensions used for each dataset vary, as summarized
in Table 2. During data splitting, stratified data splitting
is employed to create subsets of data while maintain-
ing a similar class distribution to the original dataset.
This ensures that the model’s performance evaluation
is not skewed by class imbalances that may exist in
the data, a critical consideration when dealing with
imbalanced datasets such as the iCTCF dataset, where
some classes may have significantly fewer samples than
others. Additionally, data augmentation is applied to
every image, and various transformation techniques are

Table 1. Details of the three datasets used.

Dataset Type of Labels Number of image Total Images

SARS-CoV-2 CT-scan COVID-19 1252 2482
NON-COVID-19 1230

COVID-CT COVID-19 349 746
Non-COVID-19 397

iCTCF pCT 4001 19, 685
nCT 9979
NiCT 5705
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Table 2. The experimental settings for the three datasets.

Dataset
Training
ratio

Validation
ratio

Testing
ratio

Image
dimension

SARS-CoV-2 CT-scan 60 20 20 224× 224
COVID-CT 80 10 10 224× 224
iCTCF 60 10 30 96× 96

tested to identify the combination that yields the best
results, including random rotation, horizontal or verti-
cal flipping, random cropping, brightness adjustments,
and others. Moreover, class weights are computed to
address class imbalance issues in the dataset, ensur-
ing that the performance metrics accurately reflect the
model’s ability to classify all classes, including minority
classes.

In the experiment, the ViTB-32 model, acting as
the teacher model, has a total of 87,455,232 trainable
parameters, with a patch size set to 32. Meanwhile, the
studentmodel, ViTB-16, has a total of 85,798,656 train-
able parameters, and a patch size of 16. Fine-tuning
is applied to both the teacher and student models to
enhance classification results, with the last 5 to 12 lay-
ers of ViT models unfrozen to enable modification and
updates of pre-trained weights over epochs, empower-
ing the model to adapt to specific tasks or data distri-
butions. The dropout rate is set to 0.5, and the Adam
optimizer is usedwith a learning rate of 0.001 and a clip-
ping value of 0.5. In the Knowledge Distillation setting,
the temperature parameter is also tested with differ-
ent values to obtain the optimal value. Both teacher
and studentmodels are implementedwith binary cross-
entropy loss for binary-class datasets and categorical
cross-entropy loss for three-class datasets. For the dis-
tillation loss function, Kullback-Leibler divergence is
computed to measure the loss between the true label
and predicted label, teaching the student to make pre-
dictions similar to the teacher. The teacher model is
trained for 100 epochs, followed by training the stu-
dent model for 80 epochs. The batch size is set to 64
for the SARS-CoV-2 CT-scan and COVID-CT datasets
and 128 for the iCTCF dataset. Early stopping is imple-
mented to track validation set accuracy throughout the
training process and preserve the model’s best-trained
weights.

Implementing the proposed KDViT model to solve
medical image classification presents several chal-
lenges. Firstly, ensuring access to high-quality and
diverse CT scan datasets accurately representing
COVID-19 cases is challenging due to variations in
image acquisition protocols and data labelling inconsis-
tencies, necessitating data cleaning and preprocessing
before training the model. Limited RAM memory and
GPU capacity are critical challenges that can signif-
icantly hinder the training process, particularly with
large datasets and high-resolution images. Insufficient
RAM may lead to out-of-memory errors, preventing

the model from loading the entire dataset into memory
for training. Similarly, running out of GPU mem-
ory mid-task, often referred to as an Out-of-Memory
(OOM) error, is a common issue, with 8.8% of failed
deep learning jobs attributed to GPU memory exhaus-
tion. This makes it the leading cause of OOM failures
in deep learning tasks. Consequently, smaller image
sizes and batch sizes are employed to complete model
training and testing processes.

To assess performance, variousmetrics such as accu-
racy, precision, recall, and F1-score are calculated when
the KDViT model is tested by predicting the testing set
of each dataset. These metrics are computed based on
the counts of true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN). Each
metric is denoted in (8)–(11).

Accuracy = TP + TN
TP + TN + FP + FN

(8)

Precision = TP
TP + FP

(9)

Recall = TP
TP + FN

(10)

F1− score = 2 · precision · recall
precision+ recall

(11)

4.3. Experiment results and analysis

Within this section, we showcase the experimental
outcomes and result analysis of COVID-19 classifi-
cation utilizing CT-scan images employing our pro-
posed model, KDViT. We conduct an ablation anal-
ysis of the model’s performance over three bench-
mark datasets, discussing the impact of each enhance-
ment technique used to formulate the KDViT model,
including class weight, data augmentation, fine-tuning,
and early stopping. The classification accuracy, pre-
cision, recall, F1-Score, and AUC score achieved by
the KDViT model with the applied enhancements are
recorded in Table 3 for the SARS-CoV-2 CT-scan
dataset, Table 4 for the COVID-CT dataset, and Table 5
for the iCTCF dataset. The performance evaluation of
the KDViT model, incorporating various techniques,
reveals that slight improvements in classification accu-
racy are observed when using class weight and data
augmentation to address dataset limitations, such as
class imbalance and a small dataset size. Significantly,
fine-tuning contributes to enhanced KDViT perfor-
mance as the model effectively learns features from CT
scan images. In the SARS-CoV-2 CT-scan andCOVID-
CT datasets, KDViT model shows an improvement of
approximately more than 10% in accuracy after apply-
ing fine-tuning by unfreezing the last few layers in the
student model in KDViT.

We also compare the classification results between
the teacher model and the student model, as shown
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Table 3. The classification result of KDViT model on SARS-CoV-2 CT-scan dataset with different enhance-
ments (DA = data augmentation, CW = class weights, FT = fine-tuning and ES = early stopping).

Enhancement Accuracy Precision Recall F1-score AUC

KDViT 88.10 88.00 88.00 88.00 88.00
KDViT+ CW 88.30 88.00 88.00 88.00 88.00
KDViT+ CW+ DA 88.91 89.00 89.00 89.00 89.00
KDViT+ CW+ DA+ FT 96.57 97.00 97.00 97.00 97.00
KDViT+ CW+ DA+ FT+ ES 98.39 98.00 98.00 98.00 98.00

Table 4. The classification result of KDViTmodel on COVID-CT dataset with different enhancements
(DA = data augmentation, CW = class weights, FT = fine-tuning and ES = early stopping).

Enhancement Accuracy Precision Recall F1-Score AUC

KDViT 71.42 72.00 71.00 71.00 71.00
KDViT+ CW 73.33 73.00 73.00 73.00 73.00
KDViT+ CW+ DA 74.29 74.00 74.00 74.00 74.00
KDViT+ CW+ DA+ FT 87.61 88.00 88.00 88.00 88.00
KDViT+ CW+ DA+ FT+ ES 88.57 89.00 89.00 89.00 89.00

in Table 6. Noticeably, it is evident that all the student
models perform better after receiving knowledge distil-
lation from the teacher model, resulting in higher accu-
racy scores. This highlights the significant enhance-
ment that knowledge distillation can bring to the per-
formance of smaller student models. Specifically, in
the COVID-CT dataset, the student model ViTB-16
achieves a notable improvement in classification accu-
racy, increasing from 83.81% to 88.57% after receiving
knowledge distillation from the teacher model. In the
iCTCF dataset, while the improvement is not as sub-
stantial, the student model still maintains a classifica-
tion accuracy of over 99.10%. Similarly, in the SARS-
CoV-2 CT-scan dataset, the student model demon-
strates amodest accuracy improvement of 0.41%, rising
from 97.98% to 98.39%. This observation underscores
the suitability of simpler, lower-complexitymodels with
fewer parameters for smaller datasets, as they tend to
generalize better and are less susceptible to overfitting
issues.

Furthermore, to evaluate the classification result
based on the testing set of each dataset, we have plot-
ted and presented confusion matrices in Figure 6.

These confusion matrices illustrate the model’s abil-
ity to classify images accurately for all three datasets.
For instance, in Figure 6(a), the SARS-CoV-2 CT-scan
dataset, only 8 out of 496 images are classified incor-
rectly, and in Figure 6(b), the COVID-CT dataset, only
12 out of 105 images are predicted incorrectly. For the
multi-class classification in the iCTCF dataset, KD-ViT
achieves highly accurate predictions, correctly identify-
ing approximately 98.89% of non-informative CT-Scan
cases, 99.16% of negative cases, and 99.5% of positive
cases in the testing set.

Furthermore, we analyse and determine the classifi-
cation performance of the KDViT model on the testing
set, benchmarking it with some state-of-the-art solu-
tions [6, 32–39], as presented inTable 7. It is noteworthy
that the proposed KDViT model outperforms state-of-
the-art methods for COVID-19 diagnosis on CT-scan
images. In the SARS-CoV-2 CT-scan dataset, KDViT
demonstrates outstanding performance with an accu-
racy of 98.39%and achieves 98% for precision, recall, F1
score, and AUC. Similarly, in the smaller COVID-CT
dataset, the proposed model still delivers commend-
able results, achieving an accuracy of 88.57% and 89%

Table 5. The classification result of KDViT model on iCTCF dataset with different
enhancements (DA = data augmentation, CW = class weights, FT = fine-tuning
and ES = early stopping).

Enhancement Accuracy Precision Recall F1-Score

KDViT 90.98 90.89 90.98 90.82
KDViT+ CW 92.41 92.62 92.41 92.45
KDViT+ CW+ DA 92.80 92.99 92.80 92.84
KDViT+ CW+ DA+ FT 98.61 98.62 98.61 98.61
KDViT+ CW+ DA+ FT+ ES 99.15 99.15 99.15 99.15

Table 6. The classification result of the teacher and student models in the KD-ViT model.

Classification Result

Dataset KDViT Model
Trainable
Parameters Accuracy Loss

SARS-CoV-2 CT-scan Teacher model: ViTB-32 35,440,896 0.9798 0.1303
Student model: ViTB-16 21,265,152 0.9839 0.0882

COVID-CT Teacher model: ViTB-32 35,440,896 0.8381 0.9822
Student model: ViTB-16 21,265,152 0.8857 1.0446

iCTCF Teacher model: ViTB-32 70,880,256 0.9912 0.0426
Student model: ViTB-16 35,440,896 0.9915 0.0403
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Figure 6. Confusion matrix of the proposed KDViT model on all the datasets.

Table 7. Classification result comparison of the proposed KDViT with some existing methods.

Performance Result (%)

Dataset Source of Method Method Accuracy Precision Recall F1-Score AUC

SARS-CoV-2 CT-scan [32] SepNorm+ Contrastive COVID-Net 90.83 95.75 85.89 90.87 96.24
[33] CNN 91.13 95.00 94.00 95.00 –
[34] VGG-19 95.00 95.00 94.00 95.00 –
[35] DenseNet201 96.25 96.29 96.29 96.29 –
[6] xDNN 97.38 99.16 95.53 97.31 97.36

Proposed KDViT KD-ViT 98.39 98.00 98.00 98.00 98.00

COVID-CT [32] SepNorm+ Contrastive COVID-Net 78.69 78.02 79.71 78.83 85.32
[36] ResNet50 82.91 – 77.66 – –
[37] Ensemble model 85.00 85.70 85.20 – –
[38] Targeted self supervision with DenseNet169 86.21 – – 87.04 86.09

Proposed KDViT KD-ViT 88.57 89.00 89.00 89.00 89.00

iCTCF [39] Deep learning 1-Simple CNN 98.83 98.83 98.85 98.84 –
Deep learning 2-Multiheaded 98.49 98.49 98.52 98.50 –
Fusion deep learning model 99.08 99.08 99.08 99.08 1.00

Proposed KDViT KD-ViT 99.15 99.15 99.15 99.15 –

for the remaining evaluation metrics. In the iCTCF
dataset, our proposed method attains an impressive
classification accuracy of 99.15%, slightly surpassing
the performance of the compared models.

5. Conclusion

In summary, the proposed KDViT model leverages the
Vision Transformer as its backbone, integrating Knowl-
edge Distillation to transfer knowledge from a larger,
high-parameter model to a more compact one. Vision
Transformers, equipped with image patching and self-
attention mechanisms within transformers, play a piv-
otal role in interpreting and learning robust represen-
tations and features from images. Knowledge Distilla-
tion enhances training efficiency, especially in resource-
limited scenarios, without compromising performance.
Techniques like data augmentation and class weighting
substantially improve model performance by address-
ing limited samples and class imbalances. Data aug-
mentation augments the dataset by generating addi-
tional samples through diverse transformations, such
as rotation and random flipping, thereby enriching the
learning process. Class weight adjusts the contribution
of each class to the total loss during training, giving
more weight to minority classes. This helps to mit-
igate the effects of class imbalance and prevent the
model from being biased towards the majority class,
resulting in more balanced and accurate predictions.

Fine-tuning allows the model to adapt to the specific
data by updating its weights during training, improv-
ing its ability to learn relevant features from theCT scan
images. Early stopping prevents overfitting by monitor-
ing the model’s performance on a validation set and
stopping the training process when performance no
longer improves, thus helping to achieve better general-
ization and prevent the model from memorizing noise
in the training data.

Through experiments, optimal hyperparameter set-
tings are identified to achieve peak performance in
terms of accuracy, precision, recall, F1 score, and AUC
score. The KD-ViT model demonstrates its prowess
in classifying COVID CT-scan images, surpassing sev-
eral state-of-the-art methods with the highest accuracy
rates of 98.39%, 88.57%, and 99.15% for the SARS-CoV-
2 CT-scan dataset, COVID-CT dataset, and iCTCF
dataset, respectively.

However, there are some limitations of the proposed
KDViT model. The proposed model has high sensi-
tivity to teacher model quality. The effectiveness of
knowledge distillation heavily depends on the quality
and architecture of the teacher model. If the teacher
model is not well-trained or does not capture relevant
features, the distilled knowledge may not be benefi-
cial for the student model. Another limitation of the
proposed solution is having longer training time of
the models. Knowledge distillation involves training
both the teacher and student models simultaneously,
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which can increase the overall training time required
compared to training a singlemodel. Additionally, fine-
tuning the student model to distill knowledge from
the teacher model may necessitate more iterations and
epochs to converge effectively, further extending the
training duration.

For forthcoming work, exploring recent deep learn-
ing models to achieve better results in reduced train-
ing time and optimized computational and memory
resources is recommended. Additionally, studying and
comparing different knowledge distillation methods,
such as Self Distillation and Cross-Domain Knowledge
Distillation, can provide insights into further improv-
ing model performance.
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