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ABSTRACT

The current version of imaging equipment cannot quickly and effectively make up for the reduc-
tion of visibility triggered by bad weather. Traditional strategies minimize hazy impacts by
employing an image depth model and a physical model. Following experts, erroneous depth
data reduces the efficacy of the dehazing algorithm. Dehazing methods based on CNN are
imperfect to handle region which is bright or similar to atmospheric light and thus leads to
oversaturation of pixels. These challenges can be addressed by proposing a novel model that
incorporates the idea of a Graphical Neural Network. The amount of light coming from the atmo-
sphere is estimated using normalization where the contrast of the image gets adjusted using
Bias Contrast stretch Histogram Equalization. An enhanced Transmission map estimator is used
to render the hazy scene. Finally, the cross-layer graphical neural network-based CNN model is
applied to produce a haze-free image and eliminate the over-saturation of pixels. Extensive eval-
uation findings show that the proposed approach can significantly recuperate misty imagery,
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even if the images have a substantial amount of haze.

1. Introduction

Photos taken with cameras, smartphones, or comput-
ers always need to undergo post-processing to improve
their aesthetic appeal and usefulness in a variety of
application scenarios, such as object recognition and
detection. Raising the visual quality, including visibility,
contrast, and brightness, is one of their key objectives.

The hazy substrate in the surroundings often
degrades exterior photographs. The perception of the
scene can be greatly diminished by atmospheric abnor-
malities. [1]. As the illumination travels from the eye to
the lens, these particles consume and diffuse it, lead-
ing to blurry images which typically lack perceptual
luminance and consequently give imagery depletion
[2]. The Mortal Perception System (MPS) implies visu-
als that are linked to actual notions. Computers are
unable to learn human visual abilities. To learn the per-
ceived things, specific algorithms and applications are
required. To replace the human visual system, Com-
puter Vision Technology (CVT) made it possible for
any visual activity to be processed quickly and simply.

CVT, a discipline of computer science, aims to repli-
cate some of the nuances of a vision-based system so
that machines may recognize and grasp images and
videos in the same way that humans do. Systems that
utilize computer vision strive to mimic human per-
ception. These tools can help computers process and
respond to visual input more efficiently.

1.1. Haze formation model

Traditionally, haze is an environmental abnormality
that impairs visual perception in computers. Attenua-
tion and airlight are combined to create haze. Images
are usually captured in a wide range of atmospheric
circumstances. With the line of sight, the intense light
that the camera captures fades [3]. The term “airlight”
refers to the light coming from all directions. A blend
of incident light from the camera and a skylight gives
more white pixels to the image. Figure 1 depicts the haze
formation process.

Figure 1 illustrates the haze formation process in
three main steps. First, sunlight enters the atmosphere;
it comes into contact with microscopic particles such as
dust and pollution, which scatters the light in different
directions. Second, the dispersed light eventually makes
its way to the camera, giving the picture an unclear
appearance. The amount and size of the particles, as
well as how far light travels through the atmosphere, all
have an impact on how intense this haze is. In the end,
this series of occurrences results in impaired visual per-
ception and difficulties with picture processing, espe-
cially in situations with low contrast, low colour satura-
tion, and high brightness. For computer vision applica-
tions to build effective dehazing solutions, it is impera-
tive to comprehend this haze creation process. Haze can
be characterized as a linear framework, while obscurity
is outlined by the Atmospheric Scattering model, which
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Figure 1. Haze Image Formation.

is illustrated below:

s(x) = P(x) * Q(x) + A(1 — Q(x)) 1

The above equation describes, s(x) represents the
observed intensity of light at a given pixel location x on
the screen. The term p(x) denotes the intrinsic inten-
sity of light emitted by objects in the scene, while Q(x)
represents the fraction of light that reaches the cam-
era from these objects. The parameter A corresponds to
the natural ambient light of the atmosphere, which con-
tributes to the overall observed intensity s(x) when light
is scattered or obscured along its path. Poor contrast,
low colour saturation, and strong brightness are issues
with natural images taken during hazy conditions. Pro-
cessing sophisticated vision tasks using haze images as
input can become substantially more challenging.

Dehazing refers to haze elimination strategies that
attempt to elevate the perceived quality of visuals
degraded by mist particles that reflect light. Dehazing
the image is a crucial step before carrying out advanced
vision activities [4]. By boosting the contrast and
highlighting the fine details, conventional techniques
increase the visual impact of foggy images. Image Inten-
sification Strategies and Picture Preservation Methods
(PPM) [5] may both conduct single-image dehazing.
Formerly, visual augmentation [6] innovations failed
to establish the main cause of image degradation and
instead focused on improving image-distinctive fea-
tures. Probabilistic Equalization, Wavelet assessment,
and Retinex hypothesis, for example, aimed towards
enhancing visual contrast without using any physical
models.

PPM builds a framework by recognizing the phys-
ical principles of ocular pictures, extrapolating the

Air Light

Transmission

Image

degrading process, and mitigating the aberrations
triggered by these pictures. Using Prior-Based (PB)
approaches combined with air scattering theory, the
preciseness of the depth map may be accurately esti-
mated. Several PB methods were presented to separate
ambient light from the source image.

Based on the Haze-Lines method [7], the hues of
an image without haze could be represented by hun-
dreds of various colours. Color Attenuation Prior [8]
employs a linear model of a pixel’s hue and intensity
to estimate the spatial extent of a scene. Assessing the
transmission will restore the radiance. It was possible
to discriminate between sky and dark areas using near-
thermal radiation [9]. Picture matting was developed
to calculate feature map deviation. The Atmospheric
veil correction approach resulted in the production of
a transmit sequence for typical sectors and a transmit
map. These techniques, however, did not distinguish
between the structure and texture of fuzzy images. In
general, Prior-based approaches use ASM to accom-
plish dehazing, which causes inaccurate estimation of
the transmission map because the prior may be easily
broken.

Another method for addressing the dehazing issue
is image fusion technology. When using these tech-
niques, blurry images are often enhanced using specific
enhancement technologies. Then, using a particular
fusion approach, the images are combined, and the
resulting image is referred to as being dehazed [10].
Applying white rebalancing converts the blurry picture
into the photograph, and subtracting the mean bright-
ness value of the entire hazy image from the first hazy
image transforms the second hazy image into the other
image. The brightness, chromaticity, and saliency of the



original images are then taken into account during the
fusion of both these images. After applying Normalized
Gamma correction to the shaky photos, they are inte-
grated utilizing multi-scale picture fusion technology.
The four photos with their intensities modified are then
blended to create the final, haze-free image.

Deep Learning (DL) and artificial intelligence (AI)
have advanced to the point that they can learn use-
ful representations of features directly from data. Since
DL models recognize complex patterns Learning-based
Based Dehazing methods were proposed. [11] finds
low-intensity pixels by applying a filter. [12] Struc-
tural and statistical attributes of hazy images are cap-
tured. [15-18] Relevant features are extracted through
a designed network that generates a transmission map.
Encoder decoder architecture is adopted in DL-based
methods. Skip connections are added from convolution
layers to yield better dehazed results.

The results of dehazing are strongly impacted by
photos having colour artefacts. This has led to a notice-
able rise in normalization-based image dehazing tech-
niques. Even though learning-based techniques must
evaluate the atmospheric light and transmission map,
they do not concentrate on non-spatial pixel aspects.
Because of this, learning-based techniques fail (1) to
influence the area that is bright or similar to atmo-
spheric light, which causes an issue with supersatura-
tion and (2) inaccurate transmission map estimates.
This gave rise to the proposed approach that empha-
sizes Cross Layer Graphical Neural Network as a means
of eradicating the monochromatic super saturation
issue.

The novelty of the proposed approach lies in inte-
grating a Graphical Neural Network with Bias Contrast
Stretch Histogram Equalization and Enhanced Trans-
mission Map Estimation to effectively address even and
uneven haze in indoor images, overcoming limitations
of existing dehazing methods based on CNN and mit-
igating issues such as oversaturation in bright regions.
The cross-layer graphical neural network-based CNN
model uniquely enhances visibility in misty scenes,
offering a robust solution for haze reduction in diverse
atmospheric conditions.

Contributions of this article

e The model emphasizes on the aspect change area
throughout the rebuilding process, and the model’s
ability to discriminate between fuzzy pictures is
strengthened by dehazing the feature difference
information at various stages rather than all at once.

e Graphical neural network models are presented with
a full examination. Additionally, research on theo-
retical and empirical investigations of GNN models
is discussed.

e Vision spatial distortions, such as perceived loss and
pixel-centric Eculidean loss, can be reduced by uti-
lizing an improved transmission map. As a result,
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solutions that are more aesthetically pleasant can be
offered.

The remaining portion of the article is divided into
the following parts. Section II presents the literature
review for this subject. Section III provides a detailed
explanation of the proposed method for the transmis-
sion map estimation-based image dehazing algorithm.
Section IV concludes with the results and discussion.
Section V provides an overview of the article.

2. Literature review

Despite the simplicity of conventional image dehaz-
ing techniques, their effectiveness is constrained by
the challenge of locating global prior information. In
recent times, methods that utilize CNN have seen
widespread use in the computer intelligence sector.
Dehazing strategies based on deep learning can be
broadly classified into two types. The first group cre-
ates transmission maps using network learning. It then
calculates the atmospheric light estimation and deter-
mines the outcomes of the image dehazing. The second
category, which does not rely on ASM, uses network
learning to produce picture-dehazing results directly.

A duplex-stream visual hazing dazzling network
called HDNet was developed by [10]. It can distinguish
between images that are artificially and naturally hazy.
The first stream retrieves properties especially from
the picture saturation channel, while the second stream
gathers information on hazy distribution from the dark
channel and grey level co-occurrence matrix. For real-
time computer vision applications, Som and Jatoth [11]
developed a quick and effective image dehazing solu-
tion with decreased computing complexity. Dehazing
image is a crucial problem that has been widely studied
in image processing and computer vision. The tech-
nique was first created and tested for single photos
before being expanded to real-time images. This DCP
approach produced erroneous transmission and dis-
torted output since it failed at a few unique sequences.
Because of the dispersion of the haze particles in the
environment, Figure 2 depicts the model of how a haze
forms in an image.

Singh et al. [12] concentrated on describing a few
key methods, particularly GANs, to address the issue
of dehazing. The advantages and disadvantages of the
various methods have been presented after being qual-
itatively assessed. The relevance of dehazing and its
applicability in the actual world are finally discussed.
Dehazing images are one of the most difficult computer
vision jobs. For adaptive residual learning, Preethi et al.
[13] employed an attenuation module to filter away fea-
tures from the preceding layers that are unnecessary.
Notably, meticulous residual learning and wavelength-
driven multi-categorical design are not advised for UIR.
To allow underwater vision, pre-processing techniques
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Figure 2. Progression of the suggested methodology.

for low-quality image augmentation are needed since
underwater lighting is limited.

End-to-end tightly coupled coder decoder-based
GAN was used by Parihar et al. [14] to dehaze a picture
from a foggy input image, making it easier to extract
and use image features. To optimize and enhance the
use of the obtained traits, a Contrast-aware Channel
Attention Module was developed. As a result, we were
able to create dehazed photos that were more appealing
and realistic-looking, with better edges and structure
recognition. The “Multiple-Factor Fusion Cascade Net-
work (MFFCN)”, which combines a multi-patch image
codec, a multi-channel feature enhancement module,
and a multi-level feature fusion module, formed the
foundation for the IR image dehazing technique created
by Gao [15].

The multi-patch image encoder, which blends char-
acteristics from numerous picture patches to increase
responsiveness for varying quantities of haze in various
regions, is immediately removed using this technique.
A multi-channel feature enhancement module that
might promote interactions among various attributes
and expand the spectrum of discovered illustrations.
The capacity to find and recognize items at a distance
will be significantly impacted by this. Using CNN and
a multi-scale deep residual learning network developed
by Joy and Jayasree [16], a hazy picture is mapped to
its matching haze-free image to produce a dehazed out-
putimage. A multiscale residual network’s core element
passes through the output of one layer while feeding
it to the next. Ayoub et al. [17] modified the optimal
dehazing technique by pre-processing frames to reduce
noise and restricted dynamic range before dehazing.
As a result of sensor measurement mistakes, all frames

include some noise and a restricted dynamic range,
which may be disregarded and enhanced throughout
the haze removal process.

There are several issues with the image in pub-
lic spaces, including the hazing issue. Yoon and Cho
[18] developed an image-dehazing network to enhance
detection performance in bad weather owing to haze
and limited visibility. The network analyzes the mete-
orological conditions at the moment and uses the haze
level to remove haze.

The two YOLO object detectors get the recovered
image along with the thermal image, which allows them
to more accurately identify moving objects. Late fusion
is used to improve object recognition performance. The
channel mechanism of attention constitutes a base for
the broad image-dehazing neural network paradigm
created by Guo et al. [19].

A network structure made up of modules for
multi-scale residual, channel attention, and encoding-
decoding is the main component of this approach. They
undertake qualitative as well as quantitative research on
artificial and actual databases to show the resilience of
the proposed dehazing network model. Alenezie et al
[20] created a technique for calculating scene depth
using pixel differences between patches both local and
global. The channels that comprise the pixel variance
are red and blue, green and red, and green and blue.
These channels are not included in the absolute mean
luminosity estimates. Underwater image enhancement
has not received enough attention, which leaves the
potential for more study.

A network with three deep CNNs that can dehaze
4 K images in real-time on a single GPU was created by
Zheng et al [21]. The first CNN extracts haze-relevant
characteristics from the hazy input at a reduced resolu-
tion before fitting locally affine models in the bilateral
space. The majority of current deep dehazing methods
are computationally demanding, which prevents their
use for high-resolution photos, particularly for UHD or
4K resolution images. Two strategies for the hardware
implementation of the picture de-hazing algorithm are
provided by [22]. This work proposes the grey image-
based, pixel-wise dehazing method. The ability to pre-
dict an accurate transmission map is the main benefit
of the suggested strategy.

Fog drastically reduces the quality of the image that
is collected, which not only jeopardizes the surveil-
lance system’s dependability but also creates a risk. Two
objectives are set forth by Likhitaa and Anand [23]
and are carried out. The initial goal is to contrast deep
learning and machine learning models for hazy and
clear image categorization. The second goal is to use
a potent deep neural network to analyze foggy images
to remove them. The key challenge at hand is creating
a system that can both detect the presence of haziness
and provide a workable solution to get rid of it. Ismail
et al. [24] proposed a properly organized, adaptable



end-to-end CNN utilizing a semi-supervised frame-
work that restores perception in a variable environ-
ment. The training set for the suggested deep learning
network includes both synthetic and real-world fuzzy
pictures, and it is composed of decoupling CNNs. Zhai
et al. [25] address the rising prevalence of autism in
children and propose an interactive educational frame-
work utilizing Machine Learning-based Virtual Reality
Applications to enhance learning experiences for men-
tally challenged children, incorporating physical exer-
cise and cognitive methods for improved lifestyle and
skill development.

Bi et al. [26] introduces a rapid single-image dehaz-
ing algorithm that utilizes a piecewise transformation
model between the minimum channels of hazy and
haze-free images. By incorporating quadratic and lin-
ear functions for dark and bright regions, respectively,
along with an adjusted haze optical model, the pro-
posed algorithm demonstrates superior performance
with minimal artifacts and colour distortion. Li et al.
[27] addresses the challenge of single image dehaz-
ing in highway tunnels by proposing a novel algorithm
based on artificial multi-exposure image fusion. The
method leverages gamma correction, guided filter-
based two-scale decomposition, and linear saturation
adjustment to efficiently enhance visibility, yielding
clear and vibrant haze-free images in a fast and effective
manner.

Zheng et al. [28] introduces a novel single-image
dehazing approach, PADMEEF, which integrates adap-
tive structure decomposition and multi-exposure image
fusion. Unlike existing methods, PADMEF focuses on
local enhancement, effectively removing haze-induced
visual degradation without relying on physical model
inversion, depth estimation, or costly refinement pro-
cesses. Zhu et al. [29] introduces a novel dehaz-
ing algorithm specifically tailored for remote sens-
ing images, addressing challenges posed by suspended
aerosols under varying weather conditions. The pro-
posed method employs a differentiable function for
scene depth modelling, atmospheric light estimation,
and transmission map calculation.

In order to reduce aberrations in the brightest
regions of the image and enhance overall image clarity,
weakening techniques are applied in the study [30]. In
order to precisely estimate atmospheric light, a quad-
tree subdivision-based additional channel approach is
utilized, with average greys and gradients serving as
evaluation criteria. Ultimately, the atmospheric scatter-
ing model is used to create a haze-free image, showing
that the algorithm’s linear time complexity allows for
rapid processing and good image recovery, particu-
larly at depth edges. The paper [31] presents a novel
image Dehazing method that adheres to the fundamen-
tal assumptions of a physical haze model instead of
inverting it. By underexposing the fuzzy image using
gamma correction, depth estimation and refinement
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procedures are avoided. Then, to combine these under-
exposed photos into a haze-free output, a multi-scale
Laplacian blending technique is applied.

2.1. Problem statement

The atmospheric light is a major challenge to processing
hazing images because it scatters light and attenuates
light. As aresult of all these factors, hazing images suffer
greatly and their visibility and contrast are affected. This
paper discusses image enhancement techniques and
image quality enhancement using filters. Bias Contrast
Stretch Histogram Equalization (BCSHE) has been pro-
posed as a method for removing hazy images that suffer
from “significant contrast, texture, edge, and color dete-
rioration”. It is used to estimate the transmission of
input images from ambient light. With this method,
the haze can be removed and the image which has less
amount of hazing and a more improved image can be
achieved, but the actual colour contrast and equaliza-
tion are not improved.

3. Research methodology

The framework for image dehazing based on a cross-
layer graphical neural network and a convolutional
neural network will be thoroughly discussed in the fol-
lowing section. Figure 2 depicts the way the proposed
approach has evolved. The normalizing method can
be used to calculate the amount of light coming from
the atmosphere. After an image has been standardized,
BCSHE is employed to modify the intensity so that it
accurately reflects the atmospheric conditions in the
image. The rendering process employs the enhanced
transmission map estimator to produce the foggy scene.
The CLGNN-CNN model is then utilized to produce
the picture without haze. This is done to lessen the issue
of pixels becoming over-saturated which is related to
the various haze reduction techniques now in use.

By strategically integrating Graph Convolutional
Layers, Graph Pooling Layers, and Fully Connected
Layers and utilizing non-linear activation functions,
the suggested CLGNN-CNN structure is found to be
effective. This architecture addresses the particular dif-
ficulties related to image dehazing by providing a logical
and flexible framework for thorough feature extrac-
tion, cross-layer fusion, and effective classification. By
combining multiple feature representations and refin-
ing the dehazing process with adaptive architecture, the
CLGNN-CNN model successfully improves visibility in
foggy environments.

3.1. Dataset collection

A transport dataset accessible on the Kaggle open data
website is employed to evaluate the efficacy of the sug-
gested architectural layout. Figure 3 displays a subset of
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the dataset that was used for the study. The image has
2160 and 3840 pixels in height and width, respectively.

3.2. Atmospheric Light Estimation (ALE)

Scattering and attenuation are both caused by the reflec-
tion of particles in the atmosphere that are suspended,
such as fog, haze, and mist. The light that is transmit-
ted directly from the location to the lens is reduced
due to dispersing and diminution, developing a supple-
mentary layer of ambient light that is made up of the
encompassing dispersed light. Equation (2) describes
the mathematical model for the development of fuzzy
images.

l(p,q,1) = s(p, g, r)u(p, q)
+EQ—u(p,)p,q e K (2)

where E is the ambient light value, s(p, g, 1) is the scene
radiance, and u(p, q) is the scene transmission medium
- defining the amount of light that is not dispersed and
reaches the camera. [(p, ¢, r) is the acquired hazy image.
Finally, the number of channels is represented by p,
€ K3, and the coordinates of the pixels are denoted
by (p,q) € KP*Q, The quality of the input images is
diminished due to the atmospheric light; hence, an
appropriate approach is necessary to estimate the atmo-
spheric light There are a few different approaches to use
when calculating the amount of light coming from the
atmosphere. Estimates of the atmospheric light in each
colour channel have been produced for this investiga-
tion using the procedures outlined in Algorithm 1. This
would have the effect of transforming the surrounding
light into a three-dimensional vector E € K*P where
each value represents the atmospheric light for a single
channel.

3.3. Normalization

Most data mining systems use some kind of normal-
ization as a preprocessing step. A dataset’s attribute
values are normalized such that they all lie inside a

Algorithm 1 Process of ALE

Input: I(p, q, ) € KP*XQ*R : Hazy Source Image

s92K(p, q) € KP*Q: Dark Channel of Hazy Image.

Output:F € K'*P: ALE

andp1 [val, ind] = max?:0 (sdark(p, q s(p,q)

//Determine the g number of bright pixels and the positions of those
pixels using the s image

Step 2fori < 1to Cdo

Step 35(1,j) = I(ind,j)

// determine the q pixels of each channel that are situated at the places
ind.

Step 4 End

Step5F = S“q’x);

// Estimate the mean of s(1, X)

predetermined interval, often between 0.0 and 1.0. Nor-
malization is a pre-modelling step that smoothes and
normalizes the data. The technique is easier to put into
practice if standard mathematical transformations are
used [32]. Here, we choose the z-score normalization
method, although other common approaches include
“min-max normalizing”, “z-score normalization”, and
“decimal scaling method”.

e Z-score normalization

Every input feature vector is adjusted by employing
the Z-score normalization strategy. Applying the above
approach, the average and Standard Deviation (SD) of
each feature within a training data set are obtained and
then divided by the entire amount of attributes in the
training data collection. This technique is also known
as zero-mean normalization. For every single attribute,
the mean and standard deviation are calculated. It is
necessary to perform the subsequent transformation, as
indicated by the general formula:

qd = (y—w

o

©)

Where the average is 1 and the SD sigma for the value
of the attribute a that is being considered: Before begin-
ning the training process, the z-score normalization
technique is performed on every feature that is included
in the data set. After the standard deviation and mean
for each feature have been computed based on a set of
training data, it is essential to maintain these values to
utilize them as weights in the design of the system [33].

3.4. Bias Contrast Stretch Histogram Equalization
(BCSHE)

BCSHE is a technique that is used to increase the con-
trast in images, and it is commonly used and extremely
efficient. The greyscale levels of the input image are
remapped with the use of a “cumulative density func-
tion (CDF)”.



Assuming that F, € {0,y — 1}, let F, be the average
of the image i. By Fy, the picture is divided into two sub-
images, Fy and F;.

i=ifUi (4)
Where
if = {i(xp)li(m, ) < Fy,Vi(x, y)ei} (5)
And
iy = {i(x,)]i(x,y) < Fx, Vi(x, y)ei) 6)

It should be noted that the sub-image i f is composed
of {Fo,Fy,...,Fx}, while the sub-image it is mainly
composed of {Fy41, Fxt+2,...,Fy+1)

Next, specify the probability density functions for
sub-images if and i; as follows:

nt

_
k¢ (Fp) = ny (7)
and
p
mm=% (8)

Where n}) and n‘f are the corresponding values of Fj, in
the two sub-images if and i; and n; and n; are the total
values of and irandi; respectively.

Fp » Fy_ »
subscribee, ny = > nom= > #, and n+
P:FO P:Fx+l

ng + n¢ The corresponding CDFs are then defined as
follows:

Fi—x

Ki(Fp) = > ki(Fp) 9)
p=0
Fy—;

Ki(Fp) = D ki(Fy) (10)
P=Fx+1

Note 1 byhat K;(F,) = 1 and K;(F,) = 1 by definition
Similarly, let’s define the following transformations
using CDFs

Jr(Fp) = Fo + (Fx — Fo).K¢(Fp) (11)
Jt(Fp) = Fxq1 + (Fx=y—1 — Fx41).K¢(Fp).Ki (Fp)
(12)

The histogram’s final image may therefore be described
as follows:

u(x,y) = JI(x,)), (13)
in which
Fx+1 + (Fx—l - Fx+1) . ]t(Fp), else

(14)

The output image for the BCSHE approach is depicted
in Figure 4.
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Figure 4. Output of the BCSHE approach.

3.5. Enhanced Transmission Map Estimator
(ETME)

The enhanced transmission map estimator is used to
render the hazy scenes. This technique demonstrates
the quantity of light that enters the camera after it has
been reflected off the subject. The amount of light that
the camera records after it has been reflected off the sub-
ject is demonstrated through this approach. It is very
difficult to de-haze an image if such information about
the depth is not available; hence the estimate of the
transmission map plays a significant part in the pro-
cess of image dehazing. Following the steps provided
in Algorithm 2, the percentage of light that reaches
the camera without being scattered is estimated. On
a typical day with no clouds in the sky, there are still
some very minute particles in the air; as a result, a
fixed component @ = [0, 1] is presented in Step 5 of
Algorithm 2 to maintain the appropriate level of haze
for the circumstances of the scenario. Finally, four kinds
of output are obtained using an enhanced transmission
map estimator which is shown in Figure 5.

Algorithm 2: Enhanced Transmission Map Estimation

Input: I(c, v, x) € KE*V*X : Hazy Source Image, and £ € K'*X
Atmospheric Light.
Output: d(c,v) € K*V:ETME
Step 1fori < 1to Cdo
Step 21(c,v, ) = V)
EQ1))
// dividing all the pixels of the original image with the corresponding
airlight estimation =/
Step 3 End
Step 4 Compute dark channel
Step 5 (x,y) « 1 — o * f%%%(x,y); // estimation map is computed

3.6. Recovery of hazy free images using
cross-layer graphical neural network-based CNN
model

This first introduces the proposed CLGNN-CNN.
Figure 6 depicts the procedure of the CL graph convolu-
tional neural network. The CLGNN-CNN is composed
mostly of three layers: the “Graph Convolutional Layer
(GCL), the Graph Pooling Layer (GPL), and the Fully
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Figure 6. Procedure of cross-layer graph convolutional neural network.

Connected Layer (FL)”. Through a Graph Convolu-
tion Technique (GCT), the characteristics of the layer
and its adjacent layer are collected in the GCL. Effec-
tive features are extracted from the image data by the
GCL, and the best values of various features are cho-
sen as representatives to represent new layer features
by the GPL, which then conducts the GP procedure.
High-quality parameters are provided by further GCL
or FL classification, substantially reducing the feature

dimension at the GCL output. More effective features
are obtained in the FCL via several graph convolution
and GPL processes. Three FCLs are employed to do
graph classification, as opposed to the one layer used
by the traditional GCNN.

3.6.1. CLGNN-CNN architecture
In the CLGNN-CNN framework, the local undirected
graph structure data that belongs to the kth image in



deep learning is S,(V,E, A)i € k, assuming that there
aisk image generally. The matrix y; € V symbolizes the
set of layers in the graph framework aj,i = (y}, ;) € E
governs the set of boundaries between layers ¢; € X,
and A is a symmetric matrix with only 0 or 1 elements.
This matrix indicates the interconnection relationship
between layers and is a representation of the graph’s
adjacency matrix. Equation (14) is utilized to amalga-
mate neighbour layer data and derive highly general-
ized effective layer characteristics.

At =4 (T-%ET-%Zfo) (15)

where E = E + J indicates adding the identity matrix to
the initial proximity matrix to store the layer informa-
tion. The trainable weight parameter for layer f is indi-
cated by Uy. The initial input data characteristics are
represented by Z°, and the degree matrix is represented
byT, where T(jj) = > E(.

3.6.2. GPL

In GPL, from the GCL a huge number of useful char-
acteristics are retrieved. The properties collected nev-
ertheless, may be replicated or comparable in nearby
layers. Costs associated with computing rise as a result
of information redundancy. In common convolutional
neural networks, a pooling procedure similar to what is
used in neural networks with great generality is needed
to acquire the layer characteristics. Consequently, we
increase the proposed GPL. Using an adaptive selection
process, the graph pooling layer creates a new, smaller
graph by convolutioning the layer characteristics.

First, using a trainable variable P, all layer char-
acteristics are projected into One-Dimensional (1D)
data. Additionally, the resulting one-dimensional data
is used to guide the Top K pooling procedure, which
chooses the layer with the greatest score. The pooling
process is illustrated in Equation (15).

9
=

Jm = topm (Vja m) (16)
cj.( = (c; © tanh(Vj))jm
E* = Ejm jom

where || - || stands for the two norms, y; is the 1D vector

output of AL li after the learning parameter p is applied,
topm(-) chooses the key j_m of the peak mark from the
specified input vector, and stands for the ® multiplica-
tion of the vector’s corresponding component by com-
ponent, allocating the appropriate weight tantoh(v;) to

c;-[ . Similarly, a basic multi-layer perceptron is used for
training in this research. Backpropagation can be used
to learn the tanh function’s observable attribute p. Due
to its discontinuous output without tanh, the projection
vector p cannot be learned by back dissemination.
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3.6.3. FCL

In FCL, efficient and reliable summary characteristics
were acquired after the preceding three sets of GCN
and GP procedures. The feature matrix is inconvenient
for tasks requiring categorization or forecasting of these
features, hence a classifier is needed to produce the
final output. The network topology in this study is thus
concluded with three fully linked layers. The retrieved
features need to go through some preprocessing, such as
cross-layer fusion and dimensional adjustments, before
being fed into the fully linked layer. (i) Cross-layer fea-
ture aggregation is required since the graph pooling
procedure will result in a reduction in the number of
layers, which will certainly result in the loss of some
relevant information. This procedure may excerpt the
features of various scales for processing (different GCL
and GPL). Additionally, the information may be effi-
ciently kept for graphs with a limited number of layers.
Otherwise, the layers of these short networks may be
swiftly eliminated (ii) To enter large-scale feature data
into the fully linked layer, those the features. In this pro-
cess, the concluded graph layer characteristics (i.e. the
number of neurons in the FCL) are stored at a specified
size. The specifics are displayed in Equation (16)

M

f
ﬁ=;%;%|wuﬁﬁo
J

F
Ye=>y (17)
f=1

Conventional CNNs feed convolutional data into the
fully linked layer after performing a single average
or pooling operation. The solution of the proposed
method employs to combination of two pooling results.
In other words, || stands for the concatenation oper-
ation. Following the GCT and GP procedures of each
layer, respectively, the layer is first subjected to average
pooling and maximum pooling introduces theffeature-
sature /|, The two outputs are then combined. Follow-
ing these procedures, the findings from every layer are
added to produce the multi-layer fusion effect.

In Equation (15), M/ signifies the qnumberoflayers,
MAX(.) denotes the maximum pooling operation, and
Y}, is the feature finally input to the FCL.

3.7. Training of CLGNN-CNN

An NLFA (Step 1), a loss function (Step 2), and an
optimizer (Step 3)” compensate the Graphic” Convo-
lutional Neural (GCN) network training. An extensive
introduction is provided as follows.

Step 1: The layer features and associated weight
matrix serve as the linear input processes for every
layer of the CLGNN-CNN. The challenge of clas-
sifying graph structures using the CLGNN-CNN is
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addressed in this paper. Non-linear classification meth-
ods are included in this classification. The effectiveness
of the CLGNN-CNN in this research is therefore crit-
ically dependent on the Non-Linear Activation Func-
tion (NLAF). The sigmoid function and ReLU activa-
tion function are used in various network components
in this paper. The GCL, the GPL, and the first two FCL
are all impacted by the ReLU activation function.

sigmoid(c) = (18)

1+a¢
ReLU(c) = max(0, ¢) (19)

Equation (16) shows that the sigmoid output range is
0 to 1. It’s symmetrical and derivable. Classification
results are smoother. The partial inverse of the sigmoid
function vanishes at very large and very small input val-
ues, so it is only used in the last fully connected layer to
produce classification results. ReLU is used in the inter-
mediary portion of a CLGNN-CNN to avert gradient
disintegration.

Step 2: The training of models is assessed using the
loss function. The difference between the label and the
estimated value can be quantified with a good loss func-
tion. Considering that the kth client’s data consists of
feature x and label y, T;(x, y); the labels are coded using
one-hot representation; only one digit is used for effec-
tive representation; and the labels contain C categories,
v = v =[v],V2,...Vg]. In this study, the layer feature
X is input to obtain G as an output G(X), and the GCN
model is denoted as G. Equation (18) represents the
cross-entropy loss function for the study.

my

FO58(e) = = D [vflogS(c))

i=1

+ 1+ vjr)log(l — S(cjr)] (20)

where m, is the quantity of data that the ry, image and
fr is the associated loss function.

Step 3: The loss function was developed in the pre-
vious section and is used to continuously evaluate the
benefits and limitations of the current model during
the training phase. Stated otherwise, the model is often
better if the loss function is lower. Nevertheless, even
with an outstanding loss function, it remains ineffective
without a means to ascertain the optimal model param-
eter solution [34]. Model parameters are adjusted by
the optimizer to minimize the loss function. “Stochas-
tic gradient descent (SGD)” is the most popular opti-
mizer for neural networks or other machine learning
techniques, as shown in Equation (20).

0 =60—nVi(,80,c)) (21)

If the parameter to be optimized is represented by 6, the
updated 6 parameter is signified by 8, the loss function
is denoted by 1,.(-), the gradient is symbolized by V, and

the step size is represented by #, By this way, the hashed
image is converted into dehazed image.

The individual components in the CLGNN-CNN
model, including the Graph Convolutional Layer
(GCL), Graph Pooling Layer (GPL), and Fully Con-
nected Layer (FCL), collectively enhance feature extrac-
tion, cross-layer fusion, and classification, contributing
synergistically to improved dehazing performance [35].
The integration of these components enables effective
handling of haze by leveraging graph-based informa-
tion processing, leading to enhanced visibility in hazy
scenes.

4. Result and discussion

This section examines image dehazing utilizing a con-
volutional neural network architecture based on a
cross-layer graphical neural network, and compares the
performance of the suggested method to that of other
systems currently in use. The tests were carried out in
Jupyter Notebook on a PC using the specifications listed
in Table 1 below.

The existing methods are Defog-SN Algorithm
(Defog-SNA), Feedback Spatial Attention Dehazing
Network (FSAD-NET), and Generative Adversarial
Network Image Dehazing (GANID). The parameters
are Accuracy, precision, recall, fl1-score, PSNR, and
SSIM.

e True positive- TP: The class for which the model’s
predictions were true is represented by the positive
predictions in TP.

e True Negative- TN: The class’s negative predictions,
which the model correctly identifies, are shown by
TP.

e False Positive- FP: FP displays the class’s incorrectly
classified negative predictions made by the classifier.

e False Negative- FN: The model wrongly identifies
the class as negative, but FN shows the positive fore-
cast for it.

Accuracy can be expressed as the proportion of pre-
cisely predicted occurrences to all predicted instances.
The following formula can be used to compute it:

TP + TN
Accuracy = (22)
TP + TN + FP + FN

The Analysis of Competency in Recommended and
Conventional Methods is shown in Figure 7. The
suggested approach CLGNN-CNN has an accuracy

Table 1. Requirements for simulation.

Parameters Value

RAM 8GB

Memory 200GB

0S Windows 10 with 64-bit
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Figure 7. Accuracy in Suggested and Traditional Methods.

Table 2. Evaluation of Proposed CLGNN method using accuracy
with other popular methods for dehazing.

Epoch Defog-SNA FSAD-Net GANID Proposed — CLGNN
2 65.2 70.4 87.4 97.2
4 59.8 70.2 90.3 98
6 55.6 64.5 76.5 98.5
8 62.3 71 79.1 99.2
10 60.5 79 88 99.5

rate of 99.8% when compared to existing approaches
like Defog-SNA, FSAD-NET, and GANID, which have
accuracy ratings of 60%, 79%, and 89%, respectively.
Given this, the recommended method for removing
hazing is more effective than revolutionary methods.
Table 2 shows the comparative results of accuracy in
traditional methods and proposed methods.

The ratio of positive cases to all instances that were
predicted to be positive is known as precision. The
formula below may be used to compute it:
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Table 3. Evaluation of the Proposed CLGNN method using Pre-
cision with other popular methods for dehazing.

Epoch Defog-SNA FSAD-Net GANID Proposed — CLGNN
2 65.2 70.4 87.4 97.2

4 59.8 70.2 90.3 98

6 55.6 64.5 76.5 98.5

8 62.3 71 79.1 99.2

10 60.5 79 88 99.5

Figure 8 portrays the Assessment of precision in Sug-
gested and Traditional Methods. When compared to
current techniques such as Defog- SNA, FSAD-NET,
and GANID, which have precision rates of 62%, 78%,
and 90%, respectively, the recommended approach
CLGNN-CNN has a rate of 97%. In terms of dehazing
the image, the suggested way is more effective than the
contemporary methods. Table 3 shows the comparative
results of accuracy in traditional methods and proposed
methods.

It displays the proportion of occurrences of true
positives with accurate labels. It may be computed as:

TP
Recall = —— (24)
TP + FN

The comparison of recall in suggested and traditional
methods is shown in Figure 9. The suggested approach
CLGNN-CNN has a rate of 97% recall compared to
existing techniques like Defog-SNA, FSAD-NET, and
GANID, which have recall values of 63%, 79%, and
91%, respectively. This indicates that the suggested
technique works much better for image dehazing than
the other method currently in use. The accuracy results
of the suggested method and the traditional methods
are compared in Table 4.

Precision — (23) It con)lbmes recall and accuracy, and it is regarded as
TP + FP a model’s balanced and accurate performance. The F1
= Defog-SNA [Chen et al. 2021]
® FSAD-Net [Zhou et al. 2022]
4 GANID [Manu and Sreeni 2022]
v CLGNN-CNN [Proposed]
v v
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v
90 < a
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&
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Figure 8. Precision in Suggested and Traditional Methods.
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Figure 9. Recall in Suggested and Traditional Methods.

Table 4. Evaluation of Proposed CLGNN method using Recall
with other popular methods for dehazing.

Epoch Defog-SNA FSAD-Net GANID Proposed - CLGNN
2 65.2 704 87.4 97.2

4 59.8 70.2 90.3 98

6 55.6 64.5 76.5 98.5

8 62.3 71 791 99.2

10 60.5 79 88 99.5

I Defog-SNA [Chen et al. 2021]

I FSAD-Net [Zhou et al. 2022]

I GANID [Manu and Sreeni 2022]
| I CLGNN-CNN [Proposed]

ol

F7 - ch,-e (%}

Figure 10. F1-score in Suggested and Traditional Methods.

Table 5. Evaluation of Proposed CLGNN method using F1-Score
with other popular methods for dehazing.

Epoch Defog-SNA FSAD-Net GANID Proposed — CLGNN
2 60.2 72 80 90
4 55.2 75 81 92
6 55 76.5 79 95
8 54 77 85 96
10 62 78 90 99

score is the harmonious average of recall and accuracy.
It could be ascertained by using

Precision X Recall
Flscore = 2 x — (25)
Precision + Recall

The disparity of the f1-score in the recommended and
standard techniques is shown in Figure 10. The sug-
gested method CLGNN-CNN has a rate of 99 per-
cent when compared to existing techniques like Defog-
SNA, FSAD-NET, and GANID, which have 62%, 78%,
and 90%, respectively. Thus, the proposed method for
image dehazing achieves better performance than the
currently available methods. The F1-Score comparison
results between the suggested method and the conven-
tional methods are displayed in Table 5.

The PSNR (Peak Signal to Noise Ratio) measures
the maximum difference in signal strength (in decibels)
among two images. A higher PSNR indicates that the
method used to recover clear images performed better.

2

I
PSNR = lologm]\:[";; (26)

Whsquared and MSE represent, respectively, the maxi-
mum possible value in the image and the Mean Squared
Error (MSE).

Figure 11 depicts the Comparison of PSNR in Sug-
gested and Traditional Methods. When compared to
existing approaches such as Defog- SNA, FSAD-NET,
GANID, which have values of 10.22, 15.66, 25.75dB
respectively, and the recommended approach CLGNN-
CNN has a rate of 32.72 dB. So, the proposed method
for image dehazing achieves higher effectiveness than
the existing methods. Table 6 shows the comparative
results of PSNR in traditional methods and proposed
methods.

The SSIM is a parameter for quantitative assessment
of outcomes. SSIM is calculated by dividing the original
image by the distorted image, which has been trans-
formed into a vector. Figure 12 depicts the Evaluation
of SSIM in Suggested and Traditional Methods. When
compared to current techniques such as Defog- SNA,
FSAD-NET, and GANID, which have values of 0.4,
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Figure 11. PSNR in Suggested and Traditional Methods.

Table 6. Evaluation of the Proposed CLGNN method using
PSNR with other popular methods for dehazing.

Method PSNR
Defog-SNA 10.22
FSAD-NET 15.66
GANID 25.75
Proposed CLGNN 32.72
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Figure 12. SSIM in Suggested and Traditional Methods.

Table 7. Evaluation of Proposed CLGNN method using PSNR
with other popular methods for dehazing.

Method SSIM
Defog-SNA 0.4
FSAD-NET 0.6
GANID 0.7
Proposed CLGNN 0.9

Computational Time

i

Defog-SNA FSAD-NET GANID
Methods

Comuputational Time (s)
S = N WA Lo 9™

Proposed
CLGNN

Figure 13. Computational Time in Suggested and Traditional
Methods.

0.6, and 0.7 respectively, the recommended approach
CLGNN-CNN has a rate of 0.9. As a result, the pro-
posed image dehazing method outperforms the con-
temporary methods. Table 7 shows the comparative
results of PSNR in traditional methods and proposed
methods.

The proposed CLGNN-CNN method outperforms
existing dehazing techniques, achieving significantly
higher accuracy (99.8%) compared to Defog-SNA
(60%), FSAD-NET (79%), and GANID (89%). It excels
in precision (97%) compared to Defog-SNA (62%),
FSAD-NET (78%), and GANID (90%), indicating
superior performance in correctly identifying haze-free
pixels. The method exhibits notable improvements in
recall (97%) compared to Defog-SNA (63%), FSAD-
NET (79%), and GANID (91%), emphasizing its effec-
tiveness in retrieving true positive instances Figure 13.

The compared dehazing algorithms differ greatly
in terms of computing time. FSAD-NET takes 6.5 s,
whereas GANID takes 5.4 s. Defog-SNA takes 7.2 s.
By comparison, the CLGNN approach that has been
suggested performs noticeably better, taking only 3.2
s to compute. This shows how effective the suggested
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CLGNN methodology is in dehazing images when
compared to other approaches, suggesting advantages
for real-time applications and the optimization of CPU
resources.

4.1. Ablation study

The purpose of this research’s ablation study is to eval-
uate the efficacy of various additions or changes to the
suggested CLGNN-CNN picture dehazing approach.
The study assesses the effects of systematically delet-
ing or changing particular model components, such
as individual layers, loss functions, or architectural
aspects, on performance parameters including com-
putational efficiency, accuracy, precision, and recall.
Through a thorough research, it is possible to gain a
greater understanding of how each component con-
tributes to the overall success of the CLGNN-CNN
technique. This allows for the identification of essen-
tial aspects that are necessary to achieve superior out-
comes in picture dehazing tasks. The ablation study’s
results support the design decisions made for the sug-
gested method and can direct future improvements or
optimizations aimed at achieving even better dehazing
results.

The discriminator’s structure is improved using the
Defog-SN method. In the end, this results in a more
stable model by ensuring that the entire discriminant
network satisfies the 1-Lipschitz continuum. Models
that were prone to collapse and unstable training were
produced by the discriminant network’s poor control
performance Chen et al. [36]. FSAD allows us to pri-
oritize and selectively process information at a specific
location. The core spatial deficiency is caused by the
malfunctioning of a dorsal frontal-parietal network,
which regulates attention and eye movements as well as
depicts stimuli saliency. According to Zhou et al. [37],
this deficiency shows up as a bias in spatial attention
and salience that is represented in an egocentric coor-
dinate frame. Density Estimation is still unable to accu-
rately forecast the density of the assessed model and
claims that this picture is sufficiently dense to continue
using. Using the data’s statistical distribution as a start-
ing point, generative adversarial networks are implicit
probability models that produce data samples. They are
used to duplicate variations found in the dataset. When
the horizontal vision on the ground level is larger than
1km, they combine the generator and discriminator
networks to increase the visibility that has been harmed
by meteorological circumstances Manu and Sreeni [38].
A semi-supervised learning technique called CLGNN-
CNN can be used on graph-structured data. Because
it is based on an efficient variation of CNN that is
used in picture dehazing and is employed in a way that
was specially developed to handle pixel data, CLGNN-
CNN is superior to other approaches that are currently
in use.
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5. Conclusion

Haze, on the one hand, is an integral aesthetic aspect
that may be utilized to create special effects for spe-
cific films, such as those in the science fiction and
animation genres. On the other hand, under severe
environments, a large quantity of labelled data sets is
necessary to advance item detection and identification
technologies. A great deal of hazy marked data may be
generated by image hazing. The novel image dehazing
technique that is presented in this work is based on
the CLGNN-CNN. Experimental findings demonstrate
that the proposed method reduces the computational
time needed to recover the original, haze-free colour
image. The primary flaw in the recommended method
is that some shadowing is still visible around the edges
of the dehazed image. Future research will concentrate
on enhancing edge smoothing and detail retention.
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