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Self-tuning speed and flow control of micro turbojet engines based on an

improved evolutionary strategy

Q. Gao, Jiahao Li and Yuxin Zhang

School of Energy and Power Engineering, Xihua University, Chengdu, People’s Republic of China

ABSTRACT

At present, the controllable parameters of micro turbojet engines in engineering applications
are mainly speed-fuel flow (hereinafter referred to as flow) control, in which closed-loop propor-
tional-integral-derivative (PID) control is mostly used to achieve a stable control of engine speed
under slow engine conditions. For the optimal adjustment of PID parameters, this paper designs
an improved evolutionary strategy for the self-tuning of control parameters in the engine speed
and flow control system and formulates an improved PI controller based on a neural network.
The simulation experimental results show that the method can realistically achieve stable and

fast control of the engine under above slow conditions.

1. Introduction

At present, micro turbojet engines have been widely
used in small UAVs [1], small target aircraft and mis-
siles and other types of aircraft [2], drones have a
small size, flexible, low maintenance and manufactur-
ing costs, a wide range of scenarios and easy to use,
etc., and are currently used in a large number of mil-
itary, weather detection and address survey and many
other fields [3,4]. For micro turbojet engine control sys-
tem in the slow and above state, the micro turbojet
engine realizes the closed-loop control of engine speed
and flow rate through proportional-integral-derivative
(PID) link. However, the traditional engineering appli-
cations of PID controllers have problems such as poor
robustness and difficult parameter tuning. With the
improvement of hardware performance of electronic
controllers, the use of intelligent PID in engine con-
trollers has become possible.

Micro turbojet engines operate in a wide range of
operating conditions at and above slow speed, and
their dynamic characteristics change continuously with
changes in flight conditions and operating conditions.
The single-point controller designed by a small regional
linearization model cannot meet the control require-
ments of the engine in the full speed range in the
speed domain above the slow speed. To solve this prob-
lem, some scholars use the gain scheduling method to
dynamically adjust the control parameters under differ-
ent operating conditions according to the target speed
range. However, this method still has some limitations,
especially, if the speed adjustment is large. For exam-
ple, there is still a possibility that the overshoot exceeds
the maximum overshoot, which could cause the engine
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damage in the actual test run. To address this problem,
this paper proposes an improved PI controller based on
neural network to better adapt to the nonlinear system
of the engine [5,6].

For the selection of PI parameters in each oper-
ating interval, most of the current engineering uses
the trial-and-error method for selection, which has
strong subjective randomness, poor portability and the
selected parameters are generally not optimal control
parameters in the global range. With the improvement
of computer performance, Particle Swarm optimiza-
tion, Genetic Algorithm and Evolutionary Strategies
are widely used in the calculation of PID parameter
adjustment [7-9]. Some scholars have used the genetic
algorithm to adjust the PID controller parameters, but
the genetic algorithm itself still suffers from the prob-
lem of being trapped in local optimum and the loss of
good individuals due to random variation [10,11]. To
address this problem, in the present work, an improved
evolutionary strategy is proposed to optimize the pre-
and post-iteration processes of the evolutionary strat-
egy, respectively.

2. Micro turbojet engine system modeling

A micro turbojet engine studied in this paper is shown
in Figure 1.

If the micro turbojet engine is working in the slow
engine condition or above, some scholars have tried
to use BP neural to establish the engine speed predic-
tion model and achieved high prediction accuracy [12],
but because the engine runs with certain nonlinearity,
the generalization ability of BP neural network is poor
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Figure 1. A certain type of micro turbojet engine.

compared with RBF neural network and RBF has global
approximation ability, so this paper uses RBF neural
network to establish its speed prediction model. The
engine works in a relatively stable steady-state condi-
tion under slow running conditions with stable com-
bustion efficiency, and generally does not show large
fluctuations. Therefore, when the actual test data are
available, the RBF neural network with good nonlin-
ear fitting ability is used to build the engine speed
prediction model to have a better prediction accuracy.

2.1. Introduction to RBF neural networks

RBF neural network was proposed by Moody and
Darken in 1988, and has been receiving academic atten-
tion. It is a three-layer feed-forward network with a
single hidden layer that can approximate any function
with arbitrary accuracy and has some advantages in pat-
tern classification. It consists of an input layer, a hidden
layer, and an output layer. The signal is passed through
the input layer to the hidden layer, and it is the hidden
layer function (usually radial basis function) that deter-
mines the characteristics of the hidden layer. The signal
output from the hidden layer is linearly operated by the
output layer to obtain the output of the RBF neural net-
work, which is the linearly weighted sum of the hidden
layer outputs. The structure of the RBF neural network
is illustrated in the Figure 2.

From the above figure, we can see that the RBF neu-
ral network mainly contains two parts, the hidden layer
and the output layer, in addition to the input layer. The
second layer is the hidden layer, and the hidden layer

Hidden layer

Input layer Output layer

Figure 2. RBF neural network structure.
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mainly consists of radial basis functions, which can
realize the nonlinear mapping from the input layer to
the output layer. At present, the radial basis function is
most often used as the basis function is Gaussian kernel
function, and its formula is as follows:

1
G(x) = exp (—ﬁnxn —~ hp||2) (1)

In the above equation, x;, is the nth input point, h;, is the
pth centroid, and o is the centroid width. The width
of the centroid determines the sensitivity of the radial
neuron, which is activated only when the distance of
the given input point from the centroid is less than the
width of the radial base neuron, thus indicating that the
RBF neural network is a local approximation network.
After passing the hidden layer output through a fully
connected layer, the output of the RBF neural network
can be finally obtained as:

h
1 .
yj = Zwijexp (—20—2||xn - hp||2) y=123...n
i=1

(2)
Other important radial basis functions are:
(1) Inverse S-type function
1
p(x) = " 3)
1+ eo?
(2) Proposed multi-quadratic function
1
p(x) = (4)

(x2 + cz)l/2

The selection of radial basis functions for RBF neural
networks needs to be decided according to the actual
problem, and the performance gap between different
kernel functions is large. In this paper, we use Gaussian
basis functions, which are simple in form and not too
complicated even when there are more input variables.

2.2. RBF neural network prediction model building

The operation of a miniature turbojet engine has strong
nonlinear characteristics, so the RBF neural network
can be better applied to this nonlinear system than the
multi-segment tacho partition transfer function model
established by the system identification method. Like
the system identification method, the RBF neural net-
work is used to build the speed prediction model for
the micro turbojet engine, which only requires a large
amount of test data in the full speed domain of the
engine for the training of the model. The accurate speed
prediction model built by RBF neural network can be
effectively used for simulation experiments and valida-
tion of speed control algorithms.

For a micro turbojet engine, the fuel supply and its
corresponding speed at a certain time can be used as the
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WFac(kg/h)
(t=n)
WFac(kg/h)
(t=n+1)

WFac(kg/h)
(t=n+10)

Ncor%(t=n)

Ncor%(t=n+1)

Ncor%(t=n+9)

Input layer

Figure 3. RBF neural network input/output structure.

input value of the neural network, and the speed at the
next time can be used as the output value of the neu-
ral network to build a speed prediction model for the
micro turbojet engine. Based on the above principle, the
sampling interval of 0.25s is taken as the input feature
value of the RBF neural network, and the fuel sup-
ply at a certain sampling moment (t = n) and the fuel
supply for the next 10 sampling periods (t = n+ 10),
as well as the actual RPM value for the next 9 sam-
pling periods (t = n+ 9) are selected as the input fea-
ture values of the RBF neural network, and the RPM
value for the 10th sampling time after that moment
(t = n+ 10) after that moment as the output values of
this RBF neural network. The structure is shown in the
Figure 3.

In this paper, we use matlab for programming and
simulation experiments. The newrbe function that
comes with matlab software can build a radial basis
function more easily and quickly, and the newrbe func-
tion automatically increases the number of neurons
according to the input vector of the training set when
building a radial basis neural network, so that it can
minimize the error.

1
G(x) = exp(- - Il 3= 12, 1)

Hidden layer

2.3. RBF neural network speed prediction model
simulation validation

In this paper, we use the open-loop control test data
of a certain engine under slow-motion conditions and
above as the model sample, and divide it into two parts:
the training set data are firstly brought into the model
for training, and then the test set data are used for test-
ing to verify the accuracy of the model. The test data
and the prediction results of the test set obtained by the
model are shown in the Figure 4.

From the above figure, it can be seen that when
using the test set data for speed simulation, the overall
error is small, the maximum error does not exceed 3%,
and the average error is 1.35%, and its prediction accu-
racy meets the control performance for the subsequent
speed control algorithm tests.

3. Improving the design of evolutionary
strategies

3.1. Traditional evolutionary strategy design

The basic methods of traditional evolutionary strategies
are:
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Figure 4. Model test set prediction results.
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(1) Determining the variable space: the parameters K,
Ty, and Ty in the PID controller are used as the
parameters to be optimized for the evolutionary
strategy and as the population composition of the
evolutionary strategy.

(2) Confirmation of the target adaptation function: In
the PID control link, the system transition time can
be used as the performance indicator of the system,
the transition time refers to the period from the
occurrence of disturbance to the controlled quan-
tity and the establishment of a new equilibrium
state. It is an important indicator of the rapidity
of the transition process, so it can be used as the
target adaptation function, namely: Fitness = t—i;
Furthermore, the primary goal of the system is to
ensure that the control process can converge, so
the need to join the penalty function for whether
the oscillation, when the system oscillation will be
adapted to the minimum 0; at the same time, the
overshoot of the system should not be too large, in
the actual turbojet engine engineering control, if
the overshoot is too large may cause the engine to
be rich in oil for a short period of time, may cause
the engine to overheat and damage the engine,
so also need to join the penalty function for the
overshoot, based on actual engineering experience
overshoot should not exceed 110% of the target
value that is:

Fitness =0, op > 1.1sv (5)

(3) Confirm the basic parameters of the evolution-
ary strategy: population ecological niche size
POP_size = 30, number of iterations N_gener-
ation = 30, and generation of offspring of size
K _size = 30.

In the first step, a random initial population is cre-
ated with its corresponding variation intensity, after
which the second step starts to generate new popula-
tions from the parents, the third step the population
performs mutation and crossover to achieve population
evolution, the fourth step calculates the fitness of each
individual, the fifth step iterates the population accord-
ing to the fitness and repeats the second to fifth steps
until the calculation is completed [13].

In the design of the above traditional evolutionary
strategy, it is easy to fall into the situation that the PID
parameters are locally optimal when applied to the self-
integration of the PID parameters, and there is a con-
vergence boundary problem when the PID parameters
are integrated. This will lead to the elimination of some
individuals who may be in the optimal convergence
region but have not reached the optimal point because
of their low fitness, and the top ranked individuals will
form a genetic monopoly and lead to the problem that
the final result is a local optimal solution instead of a
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global optimal solution. In addition, when the num-
ber of iterations enters the middle and late stages, the
variation cross evolution of the population becomes
completely random, which may lead to the deteriora-
tion of the best individuals and their elimination, as well
as the slow convergence of the population.

3.2. Improving evolutionary strategies

To address some of the problems in the design of the
traditional evolutionary strategy in Section 3.1 above,
this paper designs an improved evolutionary strategy to
optimize the traditional evolutionary strategy.

The improved evolutionary strategy divides the
computational process into two major parts, the pre-
iteration process and the post-iteration process, whose
specific functions and design steps are as follows.

3.2.1. Improving the pre-evolutionary strategy
iteration process

The pre-iterative process will optimize two major
aspects of individual variation rate and population iter-
ation selection.

(1) Individual variation rate improvement: variation
rate is determined by introducing a probability
function together with the current fitness of the
individual and the median fitness of the whole
population, so that individuals with fitness lower
than the median fitness of the current population
have a larger variation rate; while individuals with
fitness higher than the median fitness of the cur-
rent population slow down their variation rate to a
certain extent according to their fitness, where the
variation probability function is shown below [14]:

mut_P,,;, Fitness < Fitnessys
mut_P,, = { mut_P,,», Fitness > Fitnessy
mut_P,3, Fitness =0
(6)
'mut_Pml =24 C;
Fitnessy; — Fitness 0 < C; < 2
Fitnessyg
mut_P,, =2—C, (7)
Fitness — Fitnesspy 0 < Cy <1
Fitness
| mut_Pp3 =3

where C; and C, are penalty coefficients, adjust-
ing the values of C; and C, can change the rate of
population variation, the larger the C; is the greater
the rate of variation of individuals with backward
adaptation, and the larger the C, is the slower
the rate of variation of individuals with forward
adaptation. In this paper, weuse C; = 1,C, = 1.
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(2) Population iteration selection improvement: The
population iterations are selected by a popula-
tion probability selection function. The population
probability selection function makes its overall
semi-normal distribution as follows:

pm =F(@m),m =1,2,3...POP_size  (8)

F(m) = C4€_C3m2 )

Cs is a distribution parameter, and adjusting the value
of C3 can change the weight of population selection.
Increasing C3 can make the population selection more
uniform and individuals with lower fitness have a
higher probability of being selected, and decreasing the
value of C3 can make the population iterative selection
more biased towards individuals with higher fitness,
while C4 needs to be adjusted so that it satisfies:

POP_size+K_size
/ F(m)dm ~ POP_size (10)
0

In the present work, C3; = —0.0008, C4 = 1.

3.2.2. Improving the evolutionary strategy late
iteration process

The later iterative process follows the earlier iterative
process, and the later iterative process mainly addresses
the problem of losing good genes and slowing down the
overall population convergence due to the completely
random evolution of individuals in the traditional evo-
lutionary strategy [15], so this paper introduces a direc-
tional evolutionary link at the beginning of the later
iterative process:

In the directed evolutionary link, the variation of the
individual is introduced into the gradient calculation,
and after the gradient calculation is introduced, the
evolutionary direction of the individual is selected by
calculating the gradient to evolve in the optimal direc-
tion for the current evolutionary link; the gradient is
calculated as follows:

Fitnessny1 — Fitnessy

gradN = (11)

distance
Among them: distance = mut_P,,

The gradient calculation can be used to obtain the
fastest convergence direction under this iteration calcu-
lation. The calculation steps of the improved evolution-
ary strategy after the introduction of the improvement
link are shown in Table 1.

3.3. Improved Pl speed controller design based on
neural network

3.3.1. Traditional PID controller design

PID control is obtained by giving the difference
between a target input value and the actual output value
of the current system, and then correcting the output

Table 1. Steps to improve evolutionary strategy.

Algorithm 2: Improved evolutionary strategies

Require: POP_size //Population size
Require: N_generation //Number of iterations
Require: K_size //Offspring size
Require: random pop //Initial random population
Repeat:
if (Enter the later iteration)
kids = get_dicMut(pop,K_size)

else
kids = make_kids(pop, K_size)
pop_mut(pop)
endif
Fitness = get_fitness(pop)
mut_Ppn1,  Fitness < Fitnessy
mut_strength of xjy<« 1 mut_Pmp, Fitness > Fitnessy ,i =
mut_Pp3,  Fitness =0
0,1,2...pop

Select samples by Probability selection function p,, = C4e‘C3’”2
Untile: stop iteration
Return: pop

value by three links: proportional, integral, and differ-
ential, respectively, so that it gradually approaches the
target input value. One of the traditional PID formulas
is as follows:

f d
y(t) =K, [e(t) + Tit/o e(r)dr + Tdy] (12)

From the above equation, it can be seen that the key
parameters of the PID control link is in the selection of
the rectification of the Kj, Ty and Ty parameters. The
main role of each of these links is as follows:

(1) Proportionallink: the proportional link reflects the
basic deviation of the system, and the larger the
proportional coefficient, the faster the adjustment
speed, but when the proportional coefficient is too
large, it will make the system less stable and even
cause the system to have unstable oscillations;

(2) Differential link: The differential link responds to
the rate of change of the deviation signal of the
system and has the foresight to predict the trend
of deviation change, thus producing an override
control effect, and before the deviation is formed,
it has been eliminated by the differential adjust-
ment effect, so it can improve the dynamic per-
formance of the system. However, the differential
has an amplifying effect on noise disturbance, and
strengthening the differential is unfavorable to the
system anti-disturbance [16].

The basic principle of PID control is shown in the
Figure 5.

3.3.2. Improved Pl speed controller design based on
neural network

Due to the strong nonlinear characteristics of the
engine in different speed domains, it is difficult to
achieve optimal control in the full speed domain using
a single PI control parameter, and there is even a risk
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Figure 5. The basic principle of PID control.
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Figure 6. Improved Pl closed-loop speed controller structure.

v

of engine damage due to uncontrolled speed control
or excessive overshoot due to the change of engine
characteristics. The miniature turbojet engine can be
considered as a benign nonlinear system in the above-
slow-speed domain, and the engine is divided into
multiple speed domains to calculate the optimal PI con-
trol parameters under different input conditions by the
improved evolutionary strategy designed in the previ-
ous subsection and based on the RBF neural network
speed prediction model designed in Section 4.2. Finally,
the improved neural network-based variable parame-
ter PI speed controller can match the appropriate PI
parameters under different input conditions.

The structure of the closed-loop speed controller
after the introduction of the improved neural network-
based PI speed controller is shown in the Figure 6. After
the target speed is input, the target speed nl and the
actual speed n2 are input to the neural network gain
scheduler in a single control cycle, and then the PI
parameters of the current control cycle are obtained and
substituted into the PI controller.

According to the actual engine design requirements,
the engine transition state control speed overshoot
should be no more than 2% in the speed range of
27,500-40,000 rpm, no more than 1.5% in the speed
range of 40,000-50,000 rpm, and no more than 1% in
the speed range of 50,000-55,000 rpm. The optimal PI
parameters for each speed are obtained by using the
improved evolutionary strategy according to this con-
straint, and are substituted into the RBF neural network
as the training set for training. Some of the PI parame-
ters obtained by the improved evolutionary strategy are
shown in Tables 2 and 3.
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The improved PI speed controller is obtained by
bringing the superscript PI parameters into the neural
network for training. The improved PI controller can
realize variable parameter PI control under different
input conditions, so that the engine can realize stable
and fast speed transition control under different input
conditions in each speed domain under slow running
and above operating conditions.

4. Experimental results and analysis

4.1. Improving the pre-evolutionary strategy
iteration process

Firstly, the simulation experiments are conducted with-
out adding the post-improvement iterative process, in
which the pre-improvement iterative process mainly
addresses the problem that the traditional evolution-
ary strategy is easy to fall into local optimum, and
the genetic diversity of the whole population can be
reflected by analyzing the Euclidean distance variance
of the population in the iterative process. Its Euclidean
distance variance is calculated as follows:

(1) First, the Ky s, Tim, and T4, in DNA are normal-
ized by the following normalization formula:

X — Xmin
X = Kp,m’ Ti,m» Td,m>

Xnorm =
Xmax — Xmin

m=1,2,3...POP_size (13)

(2) The Euclidean distance variance is calculated from
the normalized Ky, T m, and T, values with the
following equation:

i Fp(K ) + Fi(T; )
distance x = | P‘ 'pnormm i(Tinormm) 4y
B \/ +Fd(Td,norm,m)

2
F (K ) _ (Kp,norm,m - Kp,norm,avg)2
PR RO T POP_size
2
F(T ) _ (Ti,norm,m - Ti,norm,avg)2
1 bnormm POP_size ’
2
Fy(T ) = (Td,norm,m - Td,norm,avg)2
a1 dnormm] = POP_size
m=1,2,3...POP_size (15)

The main reason for normalizing K, Tj, and Ty sep-
arately is that in the actual calculation process gener-
ally the value of K, is larger than the value of T; or
T,. Therefore, in order to equally reflect the degree of
difference between the three values and avoid the dif-
ference of a certain value being ignored, they should be
normalized. The simulation results of the average varia-
tion of its Euclidean distance variance with the number
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Table 2. Partial Kp parameters for each speed domain.

n1(rpm) n2 27,500rpm n2 35,000rpm n2 40,000rpm n245,000rpm n2 50,000rpm n2 55,000rpm
27,500 - 0.0619 0.0697 0.0695 0.0611 0.0532
35,000 0.0543 - 0.0685 0.0652 0.0463 0.0429
40,000 0.0487 0.0451 - 0.0395 0.0379 0.0366
45,000 0.0436 0.0403 0.0241 - 0.0231 0.0286
50,000 0.0386 0.0212 0.0196 0.0208 - 0.0116
55,000 0.0274 0.0186 00152 0.0149 00131 -
Table 3. Partial Ki parameters for each speed domain.
n1(rpm) n2 27,500rpm n2 35,000rpm n2 40,000rpm n2 45,000rpm n2 50,000rpm n2 55,000rpm
27,500 - 0.0112 0.0107 0.0104 0.0110 0.0125
35,000 00112 - 00111 00131 0.0136 0.0162
40,000 0.0121 0.0140 - 0.0166 0.0176 0.0191
45,000 0.0128 0.0149 0.0171 - 0.0240 0.0256
50,000 0.0168 0.0169 00211 00313 - 0.0407
55,000 0.0217 0.0248 0.0284 0.0368 0.0535 -

§ 215 peaks between about the 23rd and 26th iterations, when

g —— Improvement group . . . L R .

S 18- Control group the population genetic diversity is at its maximum

3 and the population individuals are widely distributed
g 157 among multiple convergence domains, and the direc-

wn

'-'u; 124 tional variation link in the later iterative process can be
2 0 introduced in the subinterval to accelerate the popula-
S tion convergence and prevent the loss of excellent genes
261 due to random variation.

.- ;. The graph above shows the change of population
E fitness, and it can be seen that the average speed of pop-

o . .

~ 0 T T y - y ulation fitness convergence is better than that of the
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Herations traditional evolutionary strategy after introducing only

Figure 7. Variation of population Euclidean distance variance.
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2.5
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Figure 8. Plot of population adaptation.

of iterations are shown in Figure 7, and the average sim-
ulation results of the variation of the fitness with the
number of iterations are shown in Figure 8.

From the above figure, it can be seen that after the
introduction of the improved pre-iteration process, the
population genetic diversity of the improved group is
better than that of the control group, and the popula-
tion Euclidean distance variance of the control group
is always lower and its genetic diversity is poorer. In
addition, it can be seen that the population variance

the pre-improvement iteration process.

4.2. Improving the evolutionary strategy late
iteration process

According to the simulation results, due to the strong
stochasticity of the iterative calculations process itself,
the later iterative improvement link can be introduced
at the 24th iteration. The simulation results of the
change in the average fitness of the population after its
introduction are shown in Figure 9.

From the simulation results of the fitness change in
the above graph, we can see that the fitness increases

3.0
2.5
2.0

1.5

1.0

Average fitness of population
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Figure 9. Plot of change in population fitness after the intro-
duction of the post-improvement link.



faster after the introduction of the post-improvement
link in the 24th iteration than the improved evolution-
ary strategy without the post-improvement link and the
traditional control evolutionary strategy; and the fitness
increases smoothly and rapidly after the introduction of
the post-improvement link with almost no fluctuation.

4.3. Improved Pl speed controller simulation

The closed-loop control strategy designed in Section 3.3
is simulated numerically by programming in matlab.
The simulation results are obtained by comparing with
the single parameter PI controller as shown Figure 10.

As can be seen from the simulation results above,
when using only a single PI parameter, the overshoot is
too large in the low speed region, exceeding the maxi-
mum limit overshoot, while its response time is too long
in the high speed domain. After adding the improved
gain scheduler, the engine has a relatively stable con-
trol effect in different speeds. Afterwards, the simula-
tion results are compared with the conventional gain
scheduler PI controller as Figure 11.

From the simulation results, we can see that the
control effect of the traditional gain scheduling PI con-
troller and the improved gain scheduling PI controller
is similar when the difference between the target speed
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Figure 10. Comparison of simulation results for a single Pl
parameter controller.
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Figure 11. Comparison of simulation results of conventional
gain scheduling Pl controller.
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control value and the current actual speed is small.
However, when the speed adjustment is larger, the over-
shoot of the traditional gain scheduling PI controller
is about 5% which exceeds the maximum limit over-
shoot of the engine, while the improved gain scheduling
PI controller based on neural network can obtain a
smoother and faster control effect under different input
conditions.

5. Conclusions

In the closed-loop control process of slow train, opti-
mization is carried out to address some shortcom-
ings of traditional PID closed-loop control. Firstly, an
improved evolutionary strategy was designed. Com-
pared to traditional evolutionary strategies and genetic
algorithms, the improved evolutionary strategy has
stronger optimal search ability and can converge faster
in the later iterative calculation process; Afterwards, the
algorithm is used to calculate the optimal PI control
parameters of the engine under different input condi-
tions in various speed domains, and an improved PI
speed controller based on neural networks is estab-
lished. Finally, simulation experiments show that the
closed-loop control algorithm can achieve optimal con-
trol of the engine in various speed domains, without the
problem of a single parameter PI control with excessive
overshoot in the low speed domain and a long adjust-
ment time in the high speed domain. At the same time,
it can avoid the problem of overshoot exceeding the
maximum limit overshoot of the engine when the single
speed adjustment is large, and has great practical value
in engineering applications.
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