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ABSTRACT

The domain of deep learning has seen significant advancements, particularly in the context
of detecting macular edema from images of the retina, in recent times. This study introduces
an innovative model for identifying macular edema, employing two deep learning models:
Deeplabv3 + and VGG with a vision transformer. The Deeplabv3 + model is used to segment the
macula region in the retinal images. The segmented macula region is then fed into the VGG for
feature extraction with a vision transformer model for detection. This approach leverages the
strengths of both models in detecting accurately and efficiently. The Deeplabv3 + model can
accurately segment the macula region, which is crucial for accurate detection. The VGG com-
bined with a vision transformer model proves highly efficient in detecting even subtle changes
in the macular region, signifying the existence of macular edema. The results of our exper-
iments with the dataset show that the proposed method outperforms current cutting-edge
techniques. With an outstanding precision rate of 99.53%, the suggested approach firmly solidi-
fies its superiority. The results highlight the effectiveness of the proposed technique in precisely
and effectively detecting pathological fluid accumulation in retina images. This ability can have
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a substantial influence on the early detection and management of eye disorders.

1. Introduction

In developed nations, there has been a notable surge in
the prevalence of diabetes-associated diseases, largely
attributed to modern dietary habits. [1]. Diabetes mel-
litus, a medical condition characterized by either the
impaired utilization of insulin or inadequate insulin
production, results in elevated levels of blood sugar,
instigating a gradual deterioration in various bodily
regions. Among the areas significantly impacted, the
delicate vascularity of the retinal and choroidal regions
warrants particular attention. As outlined in research
conducted by [2], common complications of diabetes
include the onset of Diabetic Retinopathy and the con-
dition known as Diabetic Macular Edema (DME). Dia-
betic Retinopathy is characterized by damage to the
blood vessels in the retina caused by diabetes [3]. Con-
versely, DME involves the accumulation of fluid in the
macula, the small central area of the retina. Vision
impairment often results from these ailments in indi-
viduals affected by different retinal disorders, including
diabetic retinopathy and age-related macular degener-
ation. Early detection and treatment of macular edema
are crucial to preventing permanent vision loss.
Accurate identification and division of macular
edema hold utmost importance in diagnosing the

condition and devising effective treatment strate-
gies. Advancements in AI technology have enabled
autonomous analysis of a patient’s condition, utilizing
significant medical history and associated data, to iden-
tify the condition in mere seconds [4]. Lately, there
has been an increasing application of computer vision
methods to automate the recognition and differenti-
ation of macular edema in retinal images. One such
approach involves utilizing segmentation and feature
extraction techniques to identify affected regions and
differentiate them from healthy areas [5] The accurate
detection and segmentation of macular edema remain
critical for successful diagnosis and treatment plan-
ning. Recent studies have emphasized the use of com-
puter vision techniques to facilitate automated detec-
tion and segmentation, with an approach involving the
use of segmentation and feature extraction techniques
to identify affected regions and distinguish them from
healthy areas [6]. Advanced automated methods incor-
porating segmentation and feature extraction have
been developed to detect macular edema. Deep learn-
ing techniques, notably using the DeepLabv3 4 model,
have enabled efficient and accurate categorization of
retinal images into healthy and diseased groups. While
models like VGG 16 and VGG 19 have demonstrated
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high accuracy [7], their computational complexity has
limited their accessibility. DeepLabv3 + addresses this
challenge by employing techniques like atrous convo-
lution to extract comprehensive context and informa-
tion from images, crucial for tasks related to semantic
segmentation.

The study is motivated by the crucial need for
early detection and treatment of diabetic macular
edema through routine fundus photo screening. To
address this, the study intends to improve segmenta-
tion accuracy when diagnosing macular edema from
fundus images. It aims to improve computer vision
applications by optimizing neural network designs,
namely VGG models. Combining advanced models
like Deeplabv3 4 and VGG with a vision transformer
presents a viable strategy for achieving higher perfor-
mance, thereby benefiting early diagnosis and treat-
ment of eye problems.

The main contributions of this research are,

e Integration of EfficientNet with DeepLabv3 4 for
Parameter Reduction

One significant contribution of this research is the
strategic integration of the DeepLabv3 + segmentation
approach with the EfficientNet framework. The objec-
tive here is to minimize the parameters within the VGG
architectures, which have traditionally been resource-
intensive. This integration not only streamlines the
model but also enhances its efficiency. By harnessing
the inherent capabilities of the EfficientNet, the model
is poised to achieve a more compact and resource-
efficient design. This step is instrumental in addressing
the challenges associated with parameter-heavy net-
works and paves the way for better real-world applica-
tions.

e Substitution of Dense Layers with Vision Trans-
former for Enhanced Performance

Another noteworthy facet of this research is the
replacement of dense layers within the VGG network
with a vision transformer. This transformation is cru-
cial for two main reasons. Firstly, it seeks to decrease the
count of model parameters during the training process,
thus alleviating computational and memory require-
ments. Secondly, the employment of the vision trans-
former ushers in a novel approach to feature extrac-
tion and representation, which, while utilizing a lim-
ited number of parameters, brings about a significant
improvement in the model’s overall performance. This
improvement reflects the potential of vision transform-
ers in advancing the capabilities of deep learning mod-
els in computer vision applications.

e Comprehensive Evaluation Metrics

To gauge the efficacy of the proposed model, a bat-
tery of comprehensive evaluation metrics has been
employed. These metrics include specificity, Jaccard
index, dice score coefficient, loss, sensitivity, F1 score,
positive predictive value, confusion matrix, number of
parameters, mean squared error (MSE), ROC (Receiver
Operating Characteristic) analysis, training and test-
ing times, accuracy, kappa score, and mean absolute
error (MAE). This multi-faceted evaluation approach
ensures that the model’s performance is assessed from
various angles, providing a thorough understanding of
its strengths and weaknesses.

Thus, this research aims to enhance deep neural net-
works such as Deeplabv3 4+and VGG efficiency and
performance through resource optimization and the
integration of vision transformers. By combining these
methodologies, the method improves the accuracy and
robustness of macular edema detection from retinal
pictures, addressing the crucial need for early diagnosis
and treatment of eye problems.

The remaining part of the text is organized as fol-
lows: Section 2 explores different models used to iden-
tify pathological fluid accumulation in fundus images.
Section 3 outlines the proposed methodologies. The
assessment metrics and outcomes obtained from the
selected dataset are discussed in section 4. Lastly,
concluding remarks for this research are provided in
section 5.

2. Related work

In [8,9]Despite convolutional neural networks (CNN)
having segmentation efficiency that is inferior to
these enhanced CNNs. The convolutional network’s
restricted depth, however, continues to present obsta-
cles, including over-segmentation, fault segmentation,
and the problem of multi-scale feature extraction.
Notably, several studies, including [10-12], have effec-
tively employed CNNss for tasks like subretinal fluid seg-
mentation, pigment epithelium detachment segmenta-
tion, and retinal vasculature classification, respectively.
To prevent loss of visual acuity, an integrated model
was presented by [13]. In another study, [14] intro-
duced a new technique for detecting diabetic mac-
ular edema (DME) which involved analyzing colour,
wavelet decomposition, and automated lesion segmen-
tation characteristics. In [15] mathematical morphol-
ogy techniques to create a framework capable of iden-
tifying and assessing diabetic maculopathy. Their sys-
tem relied on the identification and characterization of
hard exudates within the macula region, in addition to
evaluating the severity of maculopathy.



This framework [16] suggests using federated learn-
ing (FL) to forecast Parkinson’s disease progression
while addressing privacy concerns among health orga-
nizations. It focuses on highly interpretable mod-
els to enable human-understandable decisions, hence
increasing Al trustworthiness. Experimental study
shows that FL-based fuzzy rule-based systems are effec-
tive at achieving both data privacy and interpretabil-
ity. The study [17] suggests developing a deep-learning
model to predict center-involved diabetic macular
edema (ci-DME) using fundus images. This model has
ahigh sensitivity (85%) and a specificity of 80%, exceed-
ing retinal specialists. It can also identify intraretinal
and subretinal fluid, indicating promise for broader
medical imaging applications.

In [18] a novel semantic categorization approach
named Ens4B-UNet, which focuses primarily on med-
ical images. The holistic model effortlessly combines
four U-Net structures with previously trained founda-
tional networks, facilitating the production of accurate
segmentation results. In their study, [19] developed
OCT-DeepLab, a revolutionary DL method specifically
engineered for the precise categorization of patholog-
ical fluid accumulation in OCT images of the eye’s
macula. Expanding on the foundation of the DeepLab
framework, the team integrated atrous spatial pyra-
mid pooling (ASPP) into their model to facilitate the
identification of macular edema across diverse charac-
teristics. Additionally, they incorporated a fully con-
nected CRF to refine the boundaries of the identified
pathological fluid, thereby enhancing the accuracy of
the segmentation results. The technology employs an
approach in image processing, ML, and data analysis
to find exudates and produce visual markers indicat-
ing the extent of Diabetic Macular Edema (DME). In
a study conducted by [20], a comprehensive analysis
of various imaging techniques was conducted to assess
their merits and limitations in automating the detection
and monitoring of DME.

In 2021, [21]. identified the macular region within
the provided fundus images, subsequently extracting
characteristics through the analysis of textural pat-
terns, edges, and structural attributes. This method was
utilized to distinguish between normal and abnormal
macula. Lately, the utilization of DL has significantly
risen in popularity for examining medical images [21].
CNNs have displayed extraordinary efficacy in a vari-
ety of tasks related to the analysis of medical images,
such as segmentation, classification, and detection. The
study outlined in reference [22] conducted a compre-
hensive assessment covering both the traditional non-
DL approach and the DL approach utilized for the
performance of Diabetic eye diseases (Retinopathy and
Macular Edema). The review examined several aspects,
including datasets, preprocessing, identification and
selection of features, and classification techniques used
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in both non-deep learning and deep learning algo-
rithms for grading DR and DME, as well as the eval-
uation metrics used to assess their performance.

A novel deep learning technique, as described in
[23], combines the advantages of semi-supervised
learning and transfer learning methodologies. By amal-
gamating these approaches, researchers developed a
model with an impressive capability to accurately sep-
arate the optic nerve head in images of the back of the
eye. This advancement highlights the potential of the
model for automated segmentation and underscores its
effectiveness in this critical task. Notably, this model
offers the benefit of minimal storage space require-
ments and rapid training, setting it apart from other
models that achieve comparable performance levels.
This study [24] showed that an automated diagnostic
system can identify retinal disorders, like diabetic mac-
ular edema (DME), at an early stage and can lead to
more successful treatment outcomes. They developed
a technique using OCT images to automatically detect
cystoid areas, which are non-reflective gaps between
the vitreoretinal layer and the inner-outer segment (IS-
OS) layer, for the detection of cystoid ME (CME). A
new technique is proposed in [25] for automatically
screening Clinically Significant Macular Edema that
addresses two primary difficulties encountered during
such screenings - unbalanced data sets and exudate
segmentation.

BrainSeg-Net [26] describes an encoder-decoder
model for MR brain tumour segmentation that addresses
issues such aslocation information loss and class imbal-
ance. DLS [27] describes a Deep Learning System for
Diabetic Macular Edema Detection Using OCT Data
that outperforms human experts in specificity and sen-
sitivity. An unsupervised fovea localization method
based on the BVV model [28] improves resilience
across public datasets. TransDeepLab [29] combines
the hierarchical Swin-Transformer and DeepLabv3
to increase medical image segmentation accuracy.
HMLC [30] presents a hybrid multilayered classifica-
tion method for retinal disorders, which achieves good
accuracy using CNN-VGG19 models. An end-to-end
design [31] integrates ResNet50 and SENet for diabetic
macular edema grading, improving accuracy without
lesion segmentation. Finally, a deep learning strategy
for oral cancer detection [32] uses sensory capabilities,
transfer learning, and the Inception-V3 algorithm to
obtain high accuracy.

This segment elaborates on the suggested method for
identifying macular edema. The initial phase involves
an elucidation of the experimental data set employed
in the classification of macular edema. Subsequently,
we delve into the proposed design based on deep
learning and its process for accurately recognizing
and categorizing fundus images as either macular or
normal.
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Figure 1. Sample fundus images.

3. Materials and methods
3.1. Dataset

The Indian Diabetic Retinopathy image dataset con-
taining 516 images has been utilized for this experiment
and from the total 516 images, the images were split into
two sets as 413 images for training the data set, and 103
images are used to test a model. The collection com-
prises images of diabetic retinopathy (DR) and/or dia-
betic macular edema (DME), as well as normal retinal
structures. Each image includes ground truths about
the presence of DR, DME, and normal retinal struc-
tures, making supervised learning and model validation
easier. To make the dataset bigger, augmentation was
done. Figure 1 shows some of the sample back-of-the-
eye images from the dataset. The dataset contains two
classes namely normal and macular edema.

3.2. Method outline

An outline of the suggested model is provided in this
section. This study aims to reduce the parameters in
the system for classifying fundus images. Figure 2 shows
the outline of the suggested model for macular edema
classification.

This study employs advanced machine learning
methods to streamline the structure by minimizing
the parameters at every stage. Figure 2 depicts the
framework of the new combination model designed for
categorizing macular edema. The suggested model is
divided into four phases. The procedure begins with
gathering retinal images, which are later prepared and
enhanced with additional data. The data collection has
been parted into three subsets: the training, the test-
ing, and the validation. The pre-processed images are
segmented using DeepLab v3 + which uses the Effi-
cientNet model as a backbone architecture. Moreover,
this DeepLab model incorporates an array of method-
ologies like dilated convolutions, atrous spatial pyramid
pooling (ASPP), and bypass connections to enhance
its performance while concurrently minimizing the

Indian Diabetic Retinopathy image dataset

y
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Figure 2. Overview of suggested work.

parameter count. By reducing the parameters in the
DeepLab model, this enhancement boosts its perfor-
mance when tackling image segmentation tasks. Then,
segmented output is used as input to VGG models
(VGG-16 and VGG-19) for feature extraction. To fur-
ther decrease the no. of model parameters of the VGG
model, dense layers in the model are replaced by Vision
Transformer for classification. This model categorizes
the output into two classes including normal and mac-
ular. Finally, the classifier results are evaluated using
various metrics.

3.3. Data preprocessing

The primary objective of the preprocessing stage is to
eliminate any noise and irregularities present in the



retinal fundus image, ultimately enhancing its qual-
ity and improving the contrast. Preprocessing plays a
crucial role in normalizing the image and correcting
non-uniform intensities, in addition to its role in con-
trast improvement and noise reduction. By eliminating
artifacts and enhancing accuracy in subsequent pro-
cessing stages, preprocessing contributes significantly
to reducing errors caused by low-quality images. Con-
sequently, preprocessing is an essential operation for
enhancing overall image quality. The outputs obtained
from preprocessing serve as the initial input for data
training. Incorporating additional preprocessing steps
is essential for augmenting the information accessible
to the disease diagnosis system.

3.3.1. Contrast enhancement

To develop the visual standard and informative value
of the original images before processing, we employed
image enhancement techniques, including contrast
enhancement and illumination correction. We utilized
the Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) technique, developed by [33] to enhance
image visibility. CLAHE is a modified version of AHE
that applies the enhancement function to all neigh-
bouring pixels and derives a transformation function. It
differs from AHE in that it limits contrast. For grayscale
retinal images, we employed CLAHE and adjusted the
“clip limit” parameter to minimize image noise. By gen-
erating a gray-level mapping and histogram clipping,
we evenly distributed pixel numbers across gray levels
within the contextual area, ensuring a balanced average
pixel count.

Mr—apix *Mr—bypix

P i (1)
n
4

Here, ngydenotes the mean number of pixels, ngrepresents

the count of gray levels within the contextual region,
Mr—apic signifies the number of pixels in the directional
extent of the contextual region, and My —by indicates
the count of pixels in the b direction of the contextual
region. The precise clip limit is subsequently computed
by,

NACL = NC*Nayg (2)

3.3.2. Illlumination correction

The objective of this preprocessing technique is to
alleviate the impact of uneven illumination in retinal
images, which is commonly referred to as the scenario
effect, as explained by [34]. To accomplish this, the
intensity of each pixel is computed using the following
equation:

Pix/ =pix + lda — Hia (3)

Where 14, is the desired average intensity, yuj, is the
local average intensity, and pix, pix” represents the ini-
tial and latest pixel size values, respectively.
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3.3.3. Data augmentation

Opverfitting avoidance is critical for the employed DL
models [34,35]. To enhance the dataset, we incorpo-
rated various data transformations, including crop-
ping, rotation, and flipping. The implementation of this
method led to a quintupling of the image count, as
well as resized and improved versions of the original
images when compared to the initial dataset. Cropping
was employed to eliminate noise and extraneous out-
liers while focusing on the retinal area. The objective
was accomplished by isolating the central patch of the
image, encompassing the most crucial section of the
retina while disregarding the black contour and irrel-
evant regions. Rotation involves rotating the cropped
images from various angles. Specifically, we rotated the
images by 90, 120, 180, and 270 degrees. This rotational
augmentation further enriched the dataset and intro-
duced variations in the orientation of the retinal struc-
tures. Flipping, on the other hand, entailed horizontally
or vertically flipping the images. This transformation
was applied to introduce mirror images of the origi-
nal dataset, providing additional diversity and enabling
the model to capture variations in the orientation of
retinal features. By employing these data transforma-
tions, we were able to expand the dataset and improve
its diversity, thereby enhancing the performance and
robustness of our model for retinal image analysis
tasks.

Pseudocode for Data pre-processing
Input: image- fundus image
Output: Augmented image
function CLAHE(image, clip limit) // Contrast Enhancement
grayscale_image = convert_to_grayscale(image)
clahe = create_CLAHE(clip Limit = cliplimit)
enhanced_image = clahe.apply(grayscale_image)
return enhanced_image
function illumination_correction(image, desired_intensity)
// lllumination Correction
local_average_intensity = calculate_local_average_intensity
(image)
correction_factor = desired_intensity / local_average_intensity
corrected_image = image = correction_factor
return corrected_image
set: augmented_images = ]
For image in images do // Cropping
cropped_image = crop_image(image)
augmented_images.append(cropped_image)
For angle in [90, 120, 180, 270] do // Rotation
rotated_image = rotate_image(image, angle)
augmented_images.append(rotated_image)
End For
horizontally_flipped_image = flip_image_horizontally
(image)
vertically_flipped_image = flip_image_vertically(image)
augmented_images.extend([horizontally_flipped_image,
vertically_flipped_image])
return augmented_images

3.4. Segmentation using DeepLabv3+

Segmentation is critical since it enables the accurate
identification and separation of certain regions within
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Figure 3. Segmentation using Deeplabv3+.

complicated images such as retinal scans, which is
useful in diagnosing macular edema. This distinction
allows for targeted investigation and action, resulting
in more accurate diagnosis and individualized ther-
apy planning. Without segmentation, collecting useful
information from images would be difficult, imped-
ing effective healthcare decision-making and possibly
leading to misdiagnosis or inadequate treatment.

DeepLabV3 + utilizes an advanced deep neural net-
work architecture that includes an encoder-decoder
framework and a spatial pyramid pooling module, as
shown in Figure 3. By incorporating depthwise sepa-
rable convolution into the ASPP and decoder modules
and exploring the backbone feature extraction network,
the network enhances both its speed and effectiveness
for semantic segmentation tasks. An encoder integrates
a feature extraction network with an ASPP module,
and the decoder improves both the network’s efficiency
and semantic segmentation issues, delivering precise
outcomes for semantic segmentation.

The encoder component of the system employs
atrous convolution to capture background data at var-
ious balances, while the decoder component efficiently
enhances object boundaries and segmentation out-
comes. By manipulating filters, atrous convolution per-
mits the network to control feature resolution with
CNN and obtain a range of multi-scale information.
When applied to a two-dimensional input feature map
s, atrous convolution computes an output feature map z

Concat

Encoder

Decoder

3x3 conv }—v Upsar:ple by }—E—POutput
. E

using convolution filter £, as shown below,

z[jl = D sl + rtlf[t] (4)

t

The equation above represents the output feature map
z computed from the input feature map s using atrous
convolution with a rate of r, which determines the
stride for sampling the input image. The readers can
refer to [8] for more details on the equation. Stan-
dard convolution operates with a fixed rate of r equal
to 1. However, to decrease computational complex-
ity, depthwise separable convolution is employed. This
method employs a combination of spatial convolution
and point-wise convolution to efficiently process indi-
vidual input channels. In the DeepLab model, an energy
function, originally introduced by [8] is utilized.

E =2 Onllm) + D Ol 1) (5)

fm(lm) In the equation mentioned above, the label
assignment for each pixel is denoted by the variables I,
m & n where m varies from 1 to N. The unary function
fOm(lm) is used to represent the value associated with
the label assignment for pixel | in label m.

Om(ln) = —log P(ly) (6)

The assignment of label probability at pixel m, denoted
as P(Im), is calculated using a specific formula. To com-
pute the probabilities for all connecting pairs of image



pixels, m, and n, the following expression is utilized:

Omn(m> ln) =Uu (s ln) [gl exp

1P — Pall®  |lIm — LulI?
X — —
202 205

P,, — P,||?
+ gexp (—u) (7)

2
20y

In the equation above, the value of u (I, I) is equal to
1 when [,,, = [,, and 0 otherwise.

3.5. VGG-16 and VGG-19 for feature extraction

In image classification, the extraction of features greatly
impacts the accuracy of classification tasks. Features
are categorized as local or global, depending on their
characteristics such as colour, shape, or texture. Deep
convolutional neural network models, like VGGNet,
have become popular for this purpose. VGGNet, devel-
oped jointly by the visual geometry group at Oxford
University and researchers from Google DeepMind [9],
is known for its straightforward architecture and strong
performance. VGG16 and VGG19 are constructed
using 3 x 3 convolutional kernels and 2 x 2 maximum
pooling layers. The utilization of pre-trained DNNs
involves extracting profound image features. VGG16,
for example, is pre-trained on extensive datasets like
ImageNet, which serves to decrease the time and com-
putational resources required for training. The frame-
work consists of 13 layers for convolution and 3 lay-
ers that are fully connected. It is structured into five
segments, each of which incorporates multiple convo-
lutional layers and one pooling layer. The number of
kernels used for feature extraction in the first block’s
two convolutional layers is 16, and the subsequent pool-
ing layer reduces the image size. The remaining blocks
follow a similar architecture, with the exception that
blocks 1 and 2 have two convolutional layers, while
blocks 3-5 have three convolutional layers with vary-
ing kernel numbers in each layer to increase network
depth and improve accuracy. The structure of VGG16
is illustrated in Figure 4.

The VGGI19 model, a popular method for image
classification, utilizes multiple 3 x 3 filters in each of
its 16 convolutional layers for feature extraction. Its
architecture, as shown in Figure 4, includes 5 groups
of these layers, each by a max-pooling layer. After
these layers, the model employs a classifier for classi-
fication tasks. When given an image, the model out-
puts the corresponding label for the depicted object.
In this research, we utilize a pre-trained VGG19 model
for attribute selection and implement a deep-learning
approach for classification. However, due to the high
number of parameters computed by the CNN model,
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we perform dimensionality reduction by applying a lin-
ear embedding layer and subsequently a classification
method.

3.5.1. Convolutional layer

The convolution operation plays an important part
in extracting image features. The process entails per-
forming convolutions on the attribute maps from the
previous layers using the resulting feature maps and
simultaneously refining the convolutional kernels. This
process, known as training, can be mathematically
expressed as follows:

QM = ZF,S"_I)(r, §)#k™ (7, 5) + b (8)
u

C
QY =2 2 B0k = ps = q) + b
U pg=0
©)

Let (,s) be a pixel coordinate. Ff,n_l)

represents the u-
th feature map of the (n-1)-th layer, while kgf,)denotes
the convolutional kernel that links the u-th input fea-
ture map to the v-th output feature map on the n-th
layer. C represents the size of the convolutional ker-
nel, and bf,n)denotes the v-th bias of the n-th layer.
The symbol # indicates the 2-D convolutional opera-
tion. To enhance the nonlinear characteristics of the
network and strengthen its ability to express classifica-
tions, a nonlinear activation function is linked to each
convolutional layer. This can be expressed as follows:

Ff,”) (r,s) = 0'(21(,”)) (10)

The symbole represents the non-linear activation func-
tion known as ReLU. Within the VGG neural net-
work, pooling is utilized to decrease the count of train-
ing parameters. Normally, a 2 x 2 pooled window size
is used, merging the values of four pixels into one
result. Maximum pooling selects the highest value from
the four pixels, whereas average pooling computes the
mean value. In the VGG neural network, the employed
pooling technique is maximum pooling.

max

() = pg=0...W

_ B +ps+o
(11)

Here W denotes the dimensions of the pooling window.

3.5.2. Loss function

Upon completion of forward propagation in a neural
network, updating network parameters involves fol-
lowing specific rules determined by loss functions like
cross-entropy loss or MSE. The training aim is to lower
the loss value, leading to network optimization. Cross-
entropy loss is particularly notable for its capacity to
gauge the similarity between training samples and the
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Figure 4. Architecture of VGG-16 and VGG-19 for feature extraction.

model distribution, offering a more accurate measure
of the model’s fit to the data. This notion can be articu-
lated as follows:
E
L(w,b) = = D"y log p(yelq™; w, b)
g=1

(12)

In a neural network, the weight and bias sets for each
layer are typically labelled as “w” and “b” respec-
tively. Additionally, the actual label for the g-th class is
denoted by “y®)”.

3.6. Classification using vision transformer

3.6.1. Linear embedding layer

Initially, the patches undergo linear projection using
the embedding matrix E, resulting in a model dimen-
sion vector d. This vector then undergoes further pro-
cessing in the encoder. The embedded representations,
along with a learnable classification token v class, play
a vital role in the classification task. Despite the Trans-
former model treating the embedded image patches as
an unordered set, positional encodings are introduced
to preserve spatial layout information. These positional
encodings (Ip) are added to the input, maintaining spa-
tial relationships between patches. This process gen-
erates the embedded sequence of patches represented
as Equation (13), with each patch accompanied by the
token 0.

Yo = [Udasss a1 axl; . . .5 anl] + 1,

Ie T(qze)xf)lp e T+Dxf (13)
3.6.2. Vision transformer encoder

Before being inputted into the Transformer encoder,
the sequence of patches is embedded. The Transformer

encoder consists of N layers, each comprising two
key components: (1) a multihead self-attention block
based on Equation (14), and (2) a fully connected feed-
forward dense block as per Equation (15). The MLP
block comprises two dense layers, separated by a GeLU
activation function. Both parts of the encoder utilize
residual skip connections and are preceded by a layer of
normalization. The input for this process is the embed-
ded patches sequence, designated asyy.

¥ = MSA(NL(yp—1)) + yn—1, n=1....N (14)

yu = MLP(NL(y,)) + y,p n=1....N (15)

The initial element 3, from the sequence is captured
within the last encoding layer and utilized as input for
an external head classifier. This classifier is responsible
for predicting the corresponding class label.

z=NL(Y) (16)

In the Transformer framework, the MSA block assumes
a vital role within the Transformer’s encoder by assess-
ing the relative importance of each patch embedding in
the sequence. Comprising four layers - linear, concate-
nation, self-attention, and a final merging layer - the
MSA block captures the relationships between patches,
facilitating effective information processing and repre-
sentation within the model. Its significance within the
Transformer architecture is underscored by its pivotal
role.

The self-attention (SA) mechanism within the
Transformer employs attention weights to assess the
significance of different elements in a sequence. These
weights are determined by calculating the dot-product
of the query (q) and key (k) vectors, adjusted by a scal-
ing factor that is influenced by the dimension of the



key vector (DK). By applying a softmax function to
the scaled dot-product, the attention weights are gen-
erated and subsequently used to calculate a weighted
sum of the value (v) vectors across the sequence. The
SA block generates g, k, and v vectors by multiplying the
input sequence with learned matrices,Ugy. Each ele-
ment in the sequence receives a Q vector, enabling the
evaluation of relevance between elements. Finally, the
softmax output is multiplied by the v vectors to produce
the final attention-weighted representation of the input
sequence. The equations for the SA block are given as
follows:

(g, k,v] = 2Ugky, Ugty € RV (17)

A = softmax (ﬂ A e R™" (18)
VD)’

SA(x) = Aw (19)

The MSA block employs h attention heads to com-
pute scaled dot-product attention in parallel, with each
head using distinct learned Query, Key, and Value
weight matrices. The resulting attention outputs from
all heads are linked and then linearly projected to
the desired dimension through a feed-forward layer
parameterized by a learnable weight matrix W. The out-
put of the MSA block is thus the concatenation of the
h attention outputs transformed by the feed-forward
layer. This operation is given by the equation:

MSA(z) = Concat(SA1(z); SA2(2);...SAR(2)W,
W e RmDrxD (20)

4, Result and discussion
4.1. Experimental design

The suggested models are coded in the Python pro-
gramming language utilizing the Keras module, which
is based on machine learning. Python is compatible
with TensorFlow and is ideal for developing a neu-
ral network. This is beneficial for both CPU and GPU
operations. To adjust the model’s hyperparameters pre-
cisely, a grid search is used to identify the parameters
that produce the best performance on the given test
data. To ensure efficient model training, it is vital to
choose the most appropriate hyperparameters. In this
instance, the number of training epochs has been fixed
at 50, and the learning rate is established at 0.00001.

4.2. Performance evaluation

To assess the efficiency of the suggested neural network
classifier contrasted to the current classifiers, perfor-
mance metrics were utilized. These metrics include the
dice score coefficient (DSC) as described by [27], the
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Table 1. Results of classification evaluation using the confusion
matrix parameters and three distinct learning rates.

Learning rate 0.00001 0.0001 0.001
VGG-19 Accuracy 99.67 99.53 99.00
sensitivity 99.65 99.25 98.38
specificity 99.87 99.67 99.54
positive predictive value 99.35 99.27 98.67
F1 score 99.52 99.32 98.07
VGG-16 Accuracy 98.53 98.47 98.17
sensitivity 98.29 99.15 98.38
specificity 98.47 99.53 99.37
positive predictive value 98.25 99.23 98.18
F1 score 98.47 99.29 98.00

Jaccard index (]) as described by [26], sensitivity, accu-
racy, specificity, and F1-score measurements. Further-
more, to assess the classification outcomes against ran-
domly assigned values, [25] introduced the Kappa coef-
ficient. A greater Kappa coefficient signifies a higher
level of precision in the classification process.

Cohen’s kappa (K) has been calculated using the
Equation (21).

ACcuracy (predicted) — ACCUTACY (expected)

K= (21)
accuracy(expected)

Evaluation of image segmentation performance can
be assessed through various criteria. Nevertheless, the
Mean Intersection-Over-Union (MeanIoU) emerges as
the predominant and precise evaluation metric overall.
This metric indicates the point of convergence between
the forecasted values of the approach and the actual
numbers of the sample labels. The union ratio is com-
puted by summing the average of the intersections for
each class. It can be expressed mathematically as fol-
lows:

k
1 Ppii
MeanloU = E
k k
k+13 2 i—oPij + 2 j—o Pij — Pii
(22)

The value of positive prediction pertains to the likeli-
hood that a particular set of pixels has been accurately
recognized, as denoted by the true positive (TP) value.

T
Positivepredictivevalue = —— (23)
TP + FP

4.3. Classification performance using learning
rate

To explore the suitable training parameters, we pro-
ceeded with the fine-tuning of the initial learning rate
(LR) value and subsequently assessed the resultant per-
formance. Table 1 presents the performance of each LR
value.

The obtained results showed better performance for
the VGG-19 model at different learning rates (0.00001,
0.0001, 0.001) indicating high accuracy rates rang-
ing from 99.00% to 99.67%. The sensitivity values
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Table 2. Performance comparison between non-segmented
and segmented images.

Table 3. Comparison of number of Parameters of VGG-16 and
VGG-19.

Non-
Segmented segmentation

Parameter imaged images
VGG-19 Accuracy (%) 99.53 99.47
Sensitivity (%) 99.37 99.28
Specificity (%) 99.68 99.62
positive predictive value (%) 99.27 99.12
F1 score (%) 99.26 99.18

Training time (second) 2.68 x 105 2.75 x 105
Testing time (second) 28.24 33.14
VGG-16 Accuracy (%) 98.34 98.23
Sensitivity (%) 98.78 98.65
Specificity (%) 98.63 99.58
positive predictive value (%) 98.45 98.32
F1 score (%) 98.40 98.27

Training time (second) 2.72 x 105 2.85 x 105
Testing time (second) 30.47 37.48

also remain consistently high, ranging from 98.38% to
99.65%, which demonstrates the approach’s capabil-
ity to correctly find positive instances. Similarly, the
specificity values show excellent performance, ranging
from 99.54% to 99.87%, reflecting the approach’s pro-
ficiency in accurately finding negative instances. The
positive predictive values range from 98.67% to 99.35%,
indicating the model’s reliability in correctly predict-
ing positive instances. The F1 scores range from 98.07%
to 99.52%, representing the balance between precision
and recall.

4.4. Comparison of time for training and testing
between segmented and non-segmented images

This research examines the effectiveness of classifying
macular edema disease and the time taken for analy-
sis using non-segmented and segmented images. Find-
ings in Table 2 reveal that employing DeepLabv3 + to
study two sets of fundus disease images, one being non-
segmented and the other segmented, results in superior
performance with the segmented approach. Specifi-
cally, the classification accuracy for VGG-19 and VGG-
16 using segmented fundus images stands at 99.53%
and 98.34%, respectively. Notably, the training and test-
ing times for the macular edema disease classifier are
significantly faster when using segmented images. For
example, the VGG-19 network requires 2.68 x 105 s for
training and 28.24 s for testing, compared to the non-
segmented images with training times of 2.75 x 105 s
and testing times of 33.14 s for the same network. More-
over, the adoption of the EfficientNet backbone in place
of the DeepLabv3 + encoder enhances the model’s abil-
ity to efficiently extract high-level features from input
images, leading to quicker training and inference times
without compromising accuracy. The deeper architec-
ture of VGG-19 with 19 layers allows it to effectively
capture intricate patterns, thereby contributing to its
superior performance in feature extraction compared
to the 16-layer VGG-16.

Model Parameters (M)
VGG-16 14.71
VGG-19 20.02

4.5. Comparison of the number of parameters of
VGG-16 and VGG-19

The parameter count in VGG denotes the total learn-
able parameters within the neural network architecture.
A high parameter count can lead to overfitting and hin-
der the model’s generalization capability. Additionally,
it can be resource-intensive in terms of computational
power and memory during both training and usage.
VGG-16 and VGG-19 are known for their substantial
parameter counts, with VGG-16 having 138 million
and VGG-19 having 143 million parameters. The fully
connected layers contribute significantly to this count.
Notably, the fully connected layers in VGG-16 con-
sist of three layers with 4096 neurons each, totalling
37,752,832 parameters, whereas in VGG-19, these lay-
ers have 62,378,344 parameters. The removal of these
layers from each model effectively reduces the overall
parameter count, as illustrated in Table 3.

4.6. Errorrate

The primary utilization of the MSE and MAE lies
in evaluating prediction error rates and model per-
formance. MAE gauges the discrepancy between the
actual and predicted values through the computation
of the medium absolute difference across the dataset.
The Mean Squared Error, which measures the disparity
between the actual and forecasted values, is calculated
by taking the average disparity from the dataset and
then squaring it.

n o~
MAE=" byi =il (30)
n

i=1

= (yi —yi)*
MSE=§ YiZ I (31)
n
i=1

Where y; and y; represents observed value and pre-
dicted value respectively.

The MSE and MAE curves of VGG-16 and VGG-19
are depicted in Figures 5 and 6.

In general, a lower Mean Absolute Error (MAE)
or MSE score signifies improved model performance.
VGG-19, known for its ability to extract high-level
image features, contributes to enhanced accuracy and
reduced error rates. More data is required for training
and validation compared to other models, which aids
in boosting performance. Through this extensive data,
the model can grasp intricate data patterns, resulting in
precise predictions and reduced errors. The model has
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Figure 6. MAE curve of (a) VGG-19 and (b) VGG-16.

been trained using regularization techniques such as
dropout and weight decay to counter overfitting, lead-
ing to better generalization. Fine-tuning the model’s
hyperparameters can further diminish MAE and MSE
errors. Model performance is influenced by factors
like the training data’s quality and size, specific hyper-
parameter selection during training, and the model’s
architecture.

4.7. Training loss and validation loss

A crucial element within neural networks involves the
loss function, which is accountable for evaluating the
accuracy of the method’s predictions. During training,
the model is taught using training data. Additionally,
the assessment of the performance of a DL approach on
the evaluation set for classifying brain images involves
utilizing the validation loss.

When the dense layers are excluded from both VGG
models, the model is effectively shortened at the final
convolutional layer, reducing the count of trainable
parameters. This reduction can lead to a decrease in the
model’s overall intricacy, potentially making it easier to
train and resulting in a lower loss. Figure 7 displays the
approach loss on the training and validation datasets for
the suggested VGG-16 and VGG-19, respectively. Addi-
tionally, the convolutional layers in the VGG model
are designed to learn hierarchical representations of
features in the input images, and these features may
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Table 4. Performance of the segmentation algorithm.

Segmentation algorithms DSC J Kappa MeanloU
DeepLabv3+ 98.54 97.46 96.36 95.93
ResNet-50 94.97 95.37 94.93 94.28
MobileNetV2 96.66 93.78 95.48 95.37
Inception v3 93.57 92.39 93.34 94.48
ResNext50 95.54 94.57 94.76 94.75

already be sufficiently informative for the classification
task without the need for the fully connected layers.

In Table 4, the segmentation results of five algo-
rithms (DeepLabv3+, ResNet-50, MobileNetV2, Incep-
tion v3, and ResNext50) are compared. DeepLabv3 +
stands out with the highest DSC, ], and Kappa
scores, indicating superior segmentation accuracy.
When combined with EfficientNet as its backbone,
DeepLabv3 + benefits from advanced feature extrac-
tion capabilities, leading to improved performance.
EfficientNet’s high resolution and depth enable it to
capture intricate image details, essential for precise
object localization. Despite DeepLabv3+’s dominance,
ResNet-50 and MobileNetV2 also exhibit strong per-
formance. In contrast, Inception v3 shows relatively
lower performance, but optimization could enhance its
effectiveness. DeepLabv3 + and MobileNetV2 emerge
as the most effective algorithms for segmentation
tasks, with other options like ResNet-50, Inception
v3, and ResNext50 also showing promise, albeit with
slightly lower performance. The notable performance
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of DeepLabv3 + suggests its potential applicability in
domains like medical imaging or autonomous driving
where high accuracy is critical.

4.8. Confusion matrix

The test information is used for constructing a con-
fusion matrix, which assesses the effectiveness of the
suggested technique. The rows of this matrix contain
the actual class information, while the columns contain
the predicted class information. This matrix produces
four possible scenarios: True Positive (TP), True Nega-
tive (TN), False Positive (FP), and False Negative (FN).
Figure 8 demonstrates the confusion matrix for the sug-
gested model, illustrating the findings of an analysis on
a dataset involving the classes “normal” and “macular
edema.” The model demonstrates a high specificity of
98% by correctly predicting the data.

4.9. Receiver operator characteristic(ROC)

The ROC curve represents a significant measurement
in tasks related to classification and identification. It
is created by plotting the rate of true positive (TP)
results in comparison to the rate of false positive (FP)
results. In the ninth figure, it was observed that the

Macular edema

True class

Normal

Normal

Macular edema

Predicted class

b) VGG-16

ROC curve was near the upper left corner, implying
the precise classification of macular edema and normal
categories from fundus images through the suggested
VGG-19 approach. Notably, in Figure 9(a), the VGG-
19 model surpassed the VGG-16 model in Figure 9(b)
as it was positioned nearer to the left corner, signify-
ing a higher true positive rate and enhanced accuracy
of the approach. With its increased layers, VGG-19
demonstrates adeptness in capturing intricate features
within the input images, thereby leading to improved
classification performance.

5. Conclusion

The suggested method involving the utilization of
Deeplabv3+-based segmentation and VGG combined
with a vision transformer for identifying macular
edema has demonstrated encouraging outcomes. This
amalgamation of deep learning models effectively tack-
les the challenges of precisely and swiftly detecting mac-
ular edema in retinal images. The Deeplabv3 + model’s
segmentation of the macula region is crucial for pin-
pointing the area of interest in macular edema detec-
tion. Simultaneously, the VGG integrated with the
vision transformer model is adept at identifying subtle
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Figure 9. (a) ROC Curve of VGG-19 and (b) ROC curve of VGG-16.

changes within the macula region that could potentially
signify the presence of macular edema. The integration
of these models results in a heightened accuracy and
sensitivity in identifying macular edema. Implementing
this proposed method in clinical practice has the poten-
tial to enable early identification and treatment of mac-
ular edema, consequently preventing irreversible harm
to the retina and preserving vision. Furthermore, it can
ease the burden on clinicians, streamlining the process
of macular edema detection and enhancing the accu-
racy of diagnosis. Future advancements may include
the development of a user-friendly interface tailored
for clinical usage and the validation of this approach
on a more expansive and diverse dataset, ensuring its
resilience and applicability across various scenarios.
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