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magnet flux linkage and load torque estimation for surface-mounted PMSM
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ABSTRACT
In this paper, novel position sensorless state estimators with improved robustness to permanent
magnet (PM) flux linkage variations in permanent magnet synchronous machines (PMSMs) are
presented. Unlike state estimators using conventional infinite inertia or electromechanical mod-
els, the estimators presented here can also estimate the PM flux linkage, so they are not sensitive
to its uncertainty. For eachmodels used for state estimation, a detailed observability study is pre-
sented. Due to the nonlinearmodels, extended and unscented Kalman filter algorithms are used
for the implementation. To compare the sensitivity of conventional and proposed state estima-
tors to uncertainty in electrical parameters, numerical simulations are carried out. In addition, the
computational burden of the estimators is compared by real-time execution.
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1. Introduction

Estimators and observers are widely used in controlled
permanent magnet synchronous machine (PMSM)
drives to determine the required quantities without
direct measurement. One such application is the online
parameter estimation, since the control performance
depends on the accurate knowledge of the machine
parameters. However, these parameters can change
during the operation. For example, permanent mag-
net (PM) flux linkage decreases and the stator wind-
ing resistance increases at high temperatures, as well
as the inductances vary due to the magnetic satura-
tion in PMSMs. To compensate the effect of param-
eter mismatches, online parameter estimations are
often used. The most important methods are reviewed
in [1]. Besides parameter uncertainties, load distur-
bances have also significant impact on performance.
To improve dynamics and reduce the impact of load
variations, extended state observer-based disturbance
rejection techniques are used in [2, 3]. These works
compensate the output of the speed controller by the
estimated value of load torque. As a result, the effect of
load disturbance is much less on speed control perfor-
mance.

Model-based estimators are also often used to
improve the robustness of the drive system against sen-
sor faults. In [4], a sliding mode observer (SMO) is
used to estimate the position and speed of the rotor
from the measured terminal voltages and currents. By
comparing the estimated values with their measured

counterparts, the fault of the position sensor can be
detected. In case of a faulty sensor, the fault tolerant
PMSM drive uses the estimated position and speed
instead of the sensor output. Although the velocity and
position sensors can be fully replaced by estimators.
These position sensorless methods can be useful, e.g.
if the size of the sensor makes it difficult to install the
drive or if a low-maintenance and high-reliability sys-
tem is recommended due to the harsh operating envi-
ronment. One such tidal power application is shown
in [5]. Further advantages of position sensorless drives
are the increased noise immunity and the reduced cost,
as described in [6]. The model-based position sen-
sorless estimators can be implemented in open-loop
or in closed-loop structures. The open-loop estima-
tors are simpler and require less computational efforts,
but these methods have worse dynamic performance
and are highly sensitive to measurement errors and
parameter uncertainties. In contrary, the Luenberger-
type observers in [7, 8], the SMOs in [9, 10], as well
as the nonlinear Kalman filters in [11, 12] have closed-
loop structure, which reduces the effect of model inac-
curacies. In addition, Kalman filter-type estimators
use noise models to take into account the stochastic
behaviour of the process and the measurement. How-
ever, this feature increases the computational complex-
ity and makes tuning more difficult. It is important to
point out that the accuracy of themodel-based position
sensorless estimators deteriorates at low speeds, where
performance can be improved by signal injection-based
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methods as in [13]. However, signal injection causes
unwanted torque ripples, increased losses and acoustic
noises as mentioned in [14]. Signal injection is there-
fore recommended only at start-up and at low speed,
but at medium and high speeds it is worth switching to
a model-based estimation method.

In terms of modelling mechanical behaviour, there
are two main groups of models used to design position
sensorless state estimators. The first is the so-called infi-
nite inertia model, which uses only the electrical equa-
tions and considers the rotor velocity as a slowly vary-
ing quantity. This approximation can often be applied,
because the electrical time constants in PMSM drives
are usually much smaller than the mechanical ones. An
important advantage of the infinite inertia hypothesis
is that the modelling does not require the identification
of mechanical parameters, as these are not used. Apply-
ing this modelling approach to the surface-mounted
PMSM, stochastic state estimators are developed using
extended Kalman filter (EKF) in [11] and unscented
Kalman filter (UKF) in [12]. A detailed observability
analysis of the infinite inertia model can be found in
[15]. The second type of models used for position sen-
sorless state estimation includes the equation ofmotion.
This model is usually called electromechanical or full
model. Since the load torque is included in the equation
of motion, it can be defined as an additional state vari-
able. As a result, the load torque can be estimated
and used to improve the speed control performance as
shown in [16]. An observability study of the electrome-
chanical model is presented in [17], with particular
attention to observability conditions at zero speed.

The main drawback of position sensorless model-
based estimators is their sensitivity to parameter uncer-
tainties. In other words, the performance of the esti-
mator is reduced if the machine parameters imple-
mented in the estimator differ from the actual values.
To reduce sensitivity, position and speed estimation can
be combined with parameter estimation. In [18], an
extended electromotive force model-based estimator is
used, which is quite sensitive to the stator resistance
variation, particularly at low speeds. To improve per-
formance, the estimator is combined with an online
resistance identifier using the recursive least squares
method. In [19], an adaptive SMO is proposed in
which the resistance value can be adjusted adaptively to
achieve lower sensitivity. The combination of position
and parameter estimators results in a complex struc-
ture. In contrast, Kalman filters can be easily extended
for parameter estimation by defining the parameter to
be estimated as an additional state variable. In [20], an
augmented electromechanical model-based nonlinear
Kalman filter is proposed, which is extended for stator
resistance estimation. Using resistance estimation for
adaptive control and estimated load torque for distur-
bance rejection, improved speed control performance

can be achieved. But the negative effects are not only
due to the inaccuracy of the resistance. As shown in
[21], the effect of a decrease in magnetism is more
dominant than the effect of resistance variation in
model predictive control. In [22], the PM flux link-
age is identified online by an EKF using the velocity
from the model reference adaptive estimator. In con-
trast, a joint EKF is used to estimate the PMflux linkage,
load torque, velocity and position in [23]. The EKF-
based model predictive speed control of PMSM is thus
robust to PM flux linkage and load torque variations.
In summary, the performance of position and velocity
estimators can be improved by parameter estimation.
In such cases, it is important that observable mod-
els are used for estimation, as only then can the state
vector be fully reconstructed from the measurements.
However, a shortcoming of [18–20, 22, 23] is that the
observability of the models used for estimation is not
analyzed.

In this paper, position sensorless state estimators for
surface-mounted PMSM are presented and compared.
Different estimators use different state-spacemodels. In
this way, it is possible to estimate not only the position
and velocity but also the load torque and the PM flux
linkage. The four different models used are the well-
known infinite inertia and electromechanical models,
as well as augmented versions of these models. In aug-
mented models, the PM flux linkage is an additional
state variable. Using these augmented models reduces
the sensitivity of the estimators to PM flux linkage
variations. The main contributions of this study are as
follows:

• Novel position sensorless state estimators are pre-
sented, which are robust to PM flux linkage and load
variations.

• A detailed observability study is presented for dif-
ferent state-space representations used in different
estimators.

• Numerical simulations are performed to compare
the parameter sensitivities.

• Extended and unscented Kalman filters are com-
pared and it is shown that their performance is
nearly identical for surface-mounted PMSM. The
estimation performance depends mainly on the
model used.

The author discloses that this study extends the
results of former conference paper [24]. For complete-
ness, a fourth model is presented for estimation. The
observability study is thus extended. Furthermore, the
estimation performances using EKF and UKF are also
compared, and the sensitivities to all electrical param-
eters are investigated. In addition, the computational
burden of the estimators is compared by real-time exe-
cution.
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2. Observability analysis of PMSMmodels
used to design estimators

In this section, four different state-space models of
surface-mounted PMSMs are presented. These models
are used for position sensorless state estimation, so it
is important to ensure that the models are observable,
because only then can the state vector be fully recon-
structed from the measurement. Therefore, detailed
observability studies are also presented for these mod-
els.

To describe the electromagnetic behaviour of a
PMSM, different coordinate systems can be used. Obvi-
ous choices could be the reference frame of the stator
or the rotor. The later is often used for vector control,
because the stator current vector can be divided into
flux and torque producing components. However, sta-
tionary reference frame is more popular for estimator
design, because the derivative of the stator currents are
linearly related to both currents and excitation volt-
ages, as mentioned in [11]. It is also important that
the inductance is independent of the rotor direction
in case of the surface-mounted PMSM, unlike salient-
pole machines. Therefore, the use of the rotor reference
frame is not justified. In addition, observability can be
easily ensured if all the electrical variables are specified
in stationary reference frame.

The voltage equations of surface-mounted PMSM in
stationary two-axis reference frame are

uα = Riα + L
diα
dt

− λωe sin(ϕe) (1)

and

uβ = Riβ + L
diβ
dt

+ λωe cos(ϕe), (2)

whereuα ,uβ and iα , iβ are the stator voltage and current
components, as well as, ϕe and ωe denote the elec-
trical position and velocity of the rotor, respectively.
In (1) and (2), R is the stator resistance, L is stator
inductance and λ is the PM flux linkage. By using the
stator current components given in the stationary refer-
ence frame, the electromagnetic torque of a three-phase
surface-mounted PMSM can be determined as

Tem = 3
2
pλ

(
iβ cos(ϕe) − iα sin(ϕe)

)
, (3)

where p is the number of pole pairs.
To describe the dynamics of the rotor, the equation

of motion is used as

dωe

dt
= pTem − Dωe − pTL

J
, (4)

where D, TL and J are the viscous friction coefficient,
the load torque, as well as the total inertia of the rotor
and the load, respectively.

In (1)–(3), trigonometric functions and multiplica-
tions of variables result in nonlinear terms, which are

also included in the state-space models used to design
estimators. Therefore, the locally weak observability is
used to analyze the nonlinear state-space representa-
tions, as in [15, 24]. A brief description of this approach
is given below.

The state-space model of a nonlinear system in con-
tinuous time can be written as

dx
dt

= f (x, u) , (5)

y = h (x, u) , (6)

where f (x, u) and h(x, u) are given nonlinear functions
of x state and u input vectors, as well as y denotes the
output vector. For themodel (5) and (6), the observabil-
ity matrix is

O =
[
∂L0

f h

∂x
∂Lf h
∂x

· · ·
∂Ln−1

f h

∂x

]T
, (7)

where Lk
f h denotes kth order Lie derivative of function

h with respect to the vector field f , and n is the dimen-
sion of the state-space. The model (5) and (6) is locally
weakly observable at x0, if the rank condition

rank {O}|x0 = n (8)

is fulfilled.

2.1. Infinite inertiamodel

The simplest state-space model used to design posi-
tion sensorless state estimator is based only on voltage
equations (1) and (2) and assumes the infinite inertia
hypothesis. Accordingly, the electrical variables change
much faster than the angular velocity. Therefore, dωe

dt =
0 can bewritten in the state equation. Sinceωe is the first
order derivative of ϕe, and by choosing stator currents,
angular velocity and position as state variables, the state
equation of infinite inertia model is

d
dt

⎡
⎢⎢⎣
iα
iβ
ωe
ϕe

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
L
uα − R

L
iα + λ

L
ωe sin(ϕe)

1
L
uβ − R

L
iβ − λ

L
ωe cos(ϕe)

0
ωe

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

The inputs of this model are uα , uβ voltages, and the
outputs are iα , iβ stator currents for position sensorless
application.
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The observabilitymatrix of the infinite inertiamodel
can be written as

O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂L0
f h

∂iα

∂L0
f h

∂iβ

∂L0
f h

∂ωe

∂L0
f h

∂ϕe
∂Lf h
∂iα

∂Lf h
∂iβ

∂Lf h
∂ωe

∂Lf h
∂ϕe

∂L2
f h

∂iα

∂L2
f h

∂iβ

∂L2
f h

∂ωe

∂L2
f h

∂ϕe

∂L3
f h

∂iα

∂L3
f h

∂iβ

∂L3
f h

∂ωe

∂L3
f h

∂ϕe

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

Since the function h expresses two output variables,
each element of the matrixO is actually a two element
vector. Therefore, the total number of rows in matrix
O is 8. If this matrix O has full rank, then the infinite
inertiamodel is locally weakly observable. To satisfy the
rank condition rank{O} = 4, there must be at least one
regular matrix that can be constructed from 4 different
rows of O. In this way, 70 different 4 × 4 matrices can
be created from the 8 rows. Among these matrices, an
important result is obtained from the analysis of matrix
O1−4, which consists of the first 4 rows of matrix O.
The determinant ofO1−4 is

det{O1−4} = λ2

L2
ωe. (11)

If det{O1−4} �= 0, then O1−4 is regular and matrix O
has full rank, so the model (9) is locally weakly observ-
able. Since λ and L are positive constants in the infi-
nite inertia model, conditionωe �= 0 ensures the locally
weak observability. This well-known condition is the
same as in [15]. It is also important to note that the rank
ofO decreases in stationary position:

rank{O}|ωe=0 = 3. (12)

Therefore, ωe �= 0 is a necessary and sufficient condi-
tion for locally weak observability.

2.2. Infinite inertiamodel augmented by PMflux
linkage

In state estimators, such as Kalman filters, the state vari-
ables of the appliedmodel are estimated. So, these types
of estimators can be easily extended to joint parameter
estimation by choosing the parameter to be estimated
as a state variable. In this way, the conventional infinite
inertia model can be augmented for PM flux linkage
estimation as

d
dt

⎡
⎢⎢⎢⎢⎣
iα
iβ
ωe
ϕe
λ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
L
uα − R

L
iα + λ

L
ωe sin(ϕe)

1
L
uβ − R

L
iβ − λ

L
ωe cos(ϕe)

0
ωe
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (13)

in which a slowly varying PM flux linkage is assumed.
Since the state vector is augmented by λ, the observ-

ability matrix is

O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂L0
f h

∂iα

∂L0
f h

∂iβ

∂L0
f h

∂ωe

∂L0
f h

∂ϕe

∂L0
f h

∂λ

∂Lf h
∂iα

∂Lf h
∂iβ

∂Lf h
∂ωe

∂Lf h
∂ϕe

∂Lf h
∂λ

∂L2
f h

∂iα

∂L2
f h

∂iβ

∂L2
f h

∂ωe

∂L2
f h

∂ϕe

∂L2
f h

∂λ

∂L3
f h

∂iα

∂L3
f h

∂iβ

∂L3
f h

∂ωe

∂L3
f h

∂ϕe

∂L3
f h

∂λ

∂L4
f h

∂iα

∂L4
f h

∂iβ

∂L4
f h

∂ωe

∂L4
f h

∂ϕe

∂L4
f h

∂λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)

As in (10), each element is actually a two element vector
in (14), so the total number of rows in the observability
matrix is 10. Based on (14), 252 different 5 × 5matrices
can be created to determine observability conditions.
Among these, the matrices O1−5 and O1−4,6 lead to
an important observability condition. In terms O1−5
and O1−4,6, the subscripts indicate which rows of O
are included in the matrix. The determinants of these
matrices are

det{O1−5} = − 1
L3

λ2ω3
e cos(ϕe) (15)

and

det{O1−4,6} = − 1
L3

λ2ω3
e sin(ϕe). (16)

The infinite inertia model augmented by PM flux link-
age is locally weakly observable if det{O1−5} �= 0 or
det{O1−4,6} �= 0. Since sin(ϕe) and cos(ϕe) cannot be
zero at the same time, and L is a constant parameter,
the observability condition is

λ �= 0 and ωe �= 0. (17)

It is important to highlight that the rank condition is
not satisfied if the PM flux linkage or the rotor velocity
is zero:

rank{O}|λ=0 = 3, rank{O}|ωe=0 = 3. (18)

Therefore, (17) is a necessary and sufficient observabil-
ity condition. It should be noted that a fully demagne-
tized surface-mounted PMSM is not able to operate as
it cannot produce torque. Thus the locally weak observ-
ability is ensured for a healthy machine if the rotor
velocity is not zero.

2.3. Electromechanical model
Unlike the infinite inertiamodel, the electromechanical
model includes the equation of motion. Using (1)–(4),
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the electromechanical model can be written as

d
dt

⎡
⎢⎢⎢⎣
iα
iβ
ωe
ϕe
TL

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
L
uα − R

L
iα + λ

L
ωe sin(ϕe)

1
L
uβ − R

L
iβ − λ

L
ωe cos(ϕe)

3
2
p2

λ

J
(
iβ cos(ϕe) − iα sin(ϕe)

) − D
J

ωe − p
J
TL

ωe
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(19)

whereTL is defined as an additional state variable. Since
load is usually unknown disturbance, the dynamics of
TL are neglected in this model.

The observability matrix of the electromechanical
model is

O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂L0
f h

∂iα

∂L0
f h

∂iβ

∂L0
f h

∂ωe

∂L0
f h

∂ϕe

∂L0
f h

∂TL
∂Lf h
∂iα

∂Lf h
∂iβ

∂Lf h
∂ωe

∂Lf h
∂ϕe

∂Lf h
∂TL

∂L2
f h

∂iα

∂L2
f h

∂iβ

∂L2
f h

∂ωe

∂L2
f h

∂ϕe

∂L2
f h

∂TL

∂L3
f h

∂iα

∂L3
f h

∂iβ

∂L3
f h

∂ωe

∂L3
f h

∂ϕe

∂L3
f h

∂TL

∂L4
f h

∂iα

∂L4
f h

∂iβ

∂L4
f h

∂ωe

∂L4
f h

∂ϕe

∂L4
f h

∂TL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(20)

Among the 252 possible 5 × 5 matrices, which can be
written based on (20), O1−5 and O1−4,6 are analyzed
first. The determinants of these matrices are

det{O1−5} = −pλ3

JL3
ωe sin(ϕe) (21)

and

det{O1−4,6} = pλ3

JL3
ωe cos(ϕe). (22)

Since sin(ϕe) and cos(ϕe) cannot be zero at the same
time and pλ3

JL3 is a constant coefficient, the locally weak
observability of the electromechanicalmodel is ensured
if ωe �= 0. However, it is important to point out that the
rank condition for the observability matrix can also be
satisfied at zero angular velocity. Therefore, condition
ωe �= 0 is sufficient but not necessary in the case of the
electromechanical model. To complete the observabil-
ity condition, the matricesO1,3−6 andO2−6 should be
analyzed. The determinants of these matrices are

det{O1,3−6} = Rpλ3

JL4
dωe

dt
sin(ϕe) − 2Rpλ3

JL4
ω2
e cos(ϕe)

(23)

and

det{O2−6} = −Rpλ3

JL4
dωe

dt
cos(ϕe) − 2Rpλ3

JL4
ω2
e sin(ϕe).

(24)

As shown in (23) and (24), the rank condition is sat-
isfied at zero speed if dωe

dt �= 0. In summary, the elec-
tromechanical model is locally weakly observable if ωe
is not zero, or if ωe varies in the stationary position.
The latter part of the condition is particularly important
during speed reversal.

2.4. Electromechanical model augmented by PM
flux linkage

For PM flux linkage estimation, the electromechanical
model may be augmented as

d
dt

⎡
⎢⎢⎢⎢⎢⎣

iα
iβ
ωe
ϕe
TL
λ

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
L
uα − R

L
iα + λ

L
ωe sin(ϕe)

1
L
uβ − R

L
iη − λ

L
ωe cos(ϕe)

3
2
p2

λ

J
(
iβ cos(ϕe) − iα sin(ϕe)

) − D
J

ωe − p
J
TL

ωe
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(25)
where λ is a state variable and not a constant param-
eter. Although it is assumed that λ is a slowly varying
quantity.

The observability matrix of the above model is

O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂L0
f h

∂iα

∂L0
f h

∂iβ

∂L0
f h

∂ωe

∂L0
f h

∂ϕe

∂L0
f h

∂TL

∂L0
f h

∂λ

∂Lf h
∂iα

∂Lf h
∂iβ

∂Lf h
∂ωe

∂Lf h
∂ϕe

∂Lf h
∂TL

∂Lf h
∂λ

∂L2
f h

∂iα

∂L2
f h

∂iβ

∂L2
f h

∂ωe

∂L2
f h

∂ϕe

∂L2
f h

∂TL

∂L2
f h

∂λ

∂L3
f h

∂iα

∂L3
f h

∂iβ

∂L3
f h

∂ωe

∂L3
f h

∂ϕe

∂L3
f h

∂TL

∂L3
f h

∂λ

∂L4
f h

∂iα

∂L4
f h

∂iβ

∂L4
f h

∂ωe

∂L4
f h

∂ϕe

∂L4
f h

∂TL

∂L4
f h

∂λ

∂L5
f h

∂iα

∂L5
f h

∂iβ

∂L5
f h

∂ωe

∂L5
f h

∂ϕe

∂L5
f h

∂TL

∂L5
f h

∂λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(26)

Based on (26), 924 different 6 × 6 matrices can be cre-
ated. One of these matrices is O1−6, which leads to an
important observability condition. The determinant of
O1−6 is

det{O1−6} = p
JL4

λ3ω3
e . (27)

Since p
JL4 is a constant coefficient, the electromechanical

model augmented by PM flux linkage is locally weakly
observable, if λ �= 0 andωe �= 0. It is important to point
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out that λ �= 0 is a necessary observability condition for
this model, because the rank ofO decreases if λ = 0:

rank{O}|λ=0 = 3. (28)

However, the locally weak observability can be ensured
at zero velocity. The determinant of matrix O1,2,5−8 at
zero speed is

det {O1,2,5−8}
∣∣
ωe=0 = − 6p2

J2L4
λ3

(
dωe

dt

)2 dTem

dt
. (29)

In (29), 6p2
J4L4 is a constant coefficient, thus the observ-

ability condition at zero speed is

λ �= 0 and
dωe

dt
�= 0 and

dTem

dt
�= 0. (30)

In summary, the electromechanical model augmented
by PMflux linkage is locally weakly observable, if λ �= 0
andωe �= 0, or if condition (30) is fulfilled at zero speed.

3. The applied nonlinear Kalman filter
algorithms

For the design of estimators, different state-space mod-
els are presented in the previous section. In these mod-
els, the trigonometric functions and themultiplications
of state variables result in nonlinear expressions. For
nonlinear systems, the most commonly used stochas-
tic estimators are the linearization-based EKF and the
derivative-free UKF, which are discussed in detail in
[25]. Although the principles of these two methods
are different, their performance in practice is often the
same as shown in [26]. However, the EKF is preferred
for speed sensorless induction machine drives in [26]
due to its lower computation time. Nevertheless, both
EKF and UKF algorithms can be attractive solutions
for surface-mounted PMSMs, so both approaches are
applied and compared in this study.

State-transition equations (9), (13), (19) and (25) are
given in continuous-time. But digital processors can
execute discrete-time algorithms, so the PMSM mod-
els must be discretized. In this work, the simple Euler
method is used for the discrete-time approximation of
the state-transition equations as

f d (xk, uk) = f (xk, uk)Ts + xk, (31)

where Ts is the sampling time, as well as xk and uk are
the state and input vectors at time k.

Although the applied state-transition equations are
nonlinear, the measurement models are linear in this
work, because the measured stator currents and the
electrical state variables are also given in stationary ref-
erence frame. Thus, the discrete time state-space mod-
els used for position sensorless state estimation can be
written as

xk+1 = f d(xk, uk) + wk, (32)

yk = Hxk + vk, (33)

where yk is the output vector andH is the outputmatrix.
Due to the linear measurement equation, simplified
EKF and UKF algorithm can be used similarly to [27].
As a result, the estimators have lower computational
time. In (32) and (33), wk and vk are additive indepen-
dent Gaussian noises for which stochastic hypotheses
E{wk} = 0,E{vk} = 0,E{wkwT

k } = Q andE{vkvTk } = R
hold.

3.1. EKF algorithm

In Kalman filtering, prediction and correction steps fol-
low each other iteratively. These steps are so-called time
update andmeasurement update, respectively. The EKF
algorithm predicts the mean and the estimation error
covariance matrix for the next time step as

x̂−
k+1 = f d (̂x

+
k , uk), (34)

P−
k+1 = FkP+

k F
T
k + Q, (35)

where x̂+
k and P+

k are the corrected values of the state
vector and the error covariance matrix, as well as, Fk
is the Jacobian of the discrete-time nonlinear function
in (32). Jacobian matrix Fk is calculated as

Fk = ∂f d(x, u)

∂x

∣∣∣∣
x=̂x+

k , u=uk.
(36)

After time update, the predicted values are corrected
based on the latest measurement results. Since themea-
surement model is linear, the equations of the linear
Kalman filter can be used in the correction step as
follows:

x̂+
k+1 = x̂−

k+1 + Kk+1(yk+1 − Hx̂−
k+1), (37)

P+
k+1 = (I − Kk+1H)P−

k+1, (38)

where I is the identity matrix and the Kalman gain is

Kk+1 = P−
k+1H

T(HP−
k+1H

T + R)−1. (39)

It is important to emphasize that the application of
the linear measurement model simplifies the EKF
algorithm and reduces the execution time.

3.2. UKF algorithm

In contrast to the EKF, the linear approximation of the
nonlinear model is avoided in UKF. Instead, it uses the
unscented transformation (UT) to predict the mean
and the error covariance of the states. The general UT
selects deterministically 2n+ 1 sampling or so-called
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sigma points as follows:

σ
(i)
k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̂+
k , i = 0,

x̂+
k +

(√
(n + κ)P+

k

)(i)
, i = 1, . . . , n,

x̂+
k −

(√
(n + κ)P+

k

)(i−n)
, i= n+ 1, . . . , 2n,

(40)
wheren is the number of state variables and κ is a design

parameter. In (40),
(√

(n + κ)P+
k

)(i)
is the ith row of

matrix
√

(n + κ)P+
k , where the radical symbol denotes

Cholesky factorization. For the prediction of the state
vector and the error covariancematrix, the sigmapoints
are calculated for the next time step as

σ̃
(i)
k+1 = f d

(
σ

(i)
k , uk

)
, (41)

and x̂−
k+1, P

−
k+1 can be determined by weighting as

x̂−
k+1 =

2n∑
i=0

W(i)σ̃
(i)
k+1, (42)

P−
k+1 =

2n∑
i=0

[
W(i)

(
σ̃

(i)
k+1 − x̂−

k+1

) (
σ̃

(i)
k+1 − x̂−

k+1

)T]

+ Q, (43)

where the weights are

W(i) =

⎧⎪⎪⎨
⎪⎪⎩

κ

n + κ
, i = 0,

1
2(n + κ)

, i = 1, . . . , 2n.
(44)

Due to the linear measurement model, (37)–(39) are
used in the correction step as in the case of the EKF.

4. Comparison of estimators by numerical
simulations

The focus of this research is to reduce the PM flux
linkage sensitivity of position sensorless state estima-
tion. To investigate the parameter sensitivity of the pre-
sented EKF andUKF estimators using differentmodels,
numerical simulations are carried out. The aim is to
determine the impact of electrical parameter uncer-
tainty on the accuracy of estimators. In addition, com-
putational times are compared by real-time execution.

The modelled surface-mounted PMSM has 2.8Nm
nominal torque and 1676 rad/s nominal electrical
speed. Further parameters of the PMSM model are
p = 4, R = 1.9 
, L = 3mH, λ = 0.1Vs, D = 0.005
Nm s/rad and J = 0.00018 kgm2. To implement the
Kalman filters, the noise parameters and some initial
values must be defined. These are selected by trial-
and-error method in this work. The Q process noise
covariance matrices are

• diag{0.1, 0.1, 100, 10−7} for the estimators using infi-
nite inertia model,

• diag{0.1, 0.1, 100, 10−7, 10−7} for the estimators using
infinite inertiamodel augmented by PMflux linkage,

• diag{0.1, 0.1, 100, 10−7, 0.1} for the estimators using
electromechanical model,

• diag{0.1, 0.1, 100, 10−7, 0.1, 10−7} for the estimators
using electromechanical model augmented by PM
flux linkage.

The measurement noise covariance matrix is R =
diag{10−3, 10−3} and the initial value of the error
covariancematrix isP+

0 = 10−4I for all estimators. The
initial states for state variables iα , iβ , ωe, ϕe, TL are zero
and the nominal 0.1 Vs is used for λ. In the case of UKF
estimators, the design parameter κ is set to 1.

In the first simulation, the nominal parameters of
the PMSM are used and the rotor is accelerated to
500 rad/s. During acceleration, load disturbance is zero,
but the external load torque steps to 1Nm at 0.05 s. The
results of the first simulation are shown in Figure 1.
If there is no parameter uncertainty, then all EKF
and UKF estimators work accurately. There are only
minor differences in performance. The estimation of
the speed during the start-up transient is less accu-
rate if the infinite inertia hypothesis is assumed in
the model used. It can also be seen that there is a
small transient error at the beginning of the simula-
tion for the estimated PMflux linkage and the estimated
load torque. But these are not significant. When the
load steps, the estimated load torques follow the actual
value relatively slowly. Although the estimation error
is less than 1% within 0.01 s. The slowness is due to
the assumption of a slowly varying load torque in the
electromechanical models, since the load disturbance
is usually unknown. However, each estimator remains
operational even if the load changes rapidly. It is also
important to point out that the accuracy of the estima-
tion depends mainly on the model used, but the effect
of the estimation algorithm is not significant. In other
words, the performance of EKF and UKF estimators
using the same model is almost identical. For better
comparison, the root-mean-square error (RMSE) val-
ues of the estimated variables are also calculated for all
estimators. These are given inTable 1. It can be seen that
the speed estimation error is smaller when using elec-
tromechanical models because these models describe
the speed variationmore accurately.However, the speed
estimation is accurate for all estimators at constant
speed.

In the second simulation, the PM flux linkage sen-
sitivity of the estimators is investigated. Therefore, the
parameter λ is reduced by 20% in the PMSMsimulation
model. Thus, λ parameter is inaccurate in estimators
using conventional infinite inertia or electromechanical
models, and the initial value of λ is incorrect in esti-
mators using augmentedmodels. The results are shown
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Figure 1. Performance of the position sensorless state estimators using nominal parameters. (a) EKF estimators and (b) UKF
estimators.

Table 1. Comparison of RMSE values for simulation using nominal parameters.

Estimator RMSE of

iα [A] iβ [A] ωe [rad/s] ϕe [rad] TL [Nm] λ [Vs]

EKF using infinite inertia model 2.2927 · 10−4 1.9085 · 10−3 11.0953 0.0503 – –
EKF using infinite inertia model augmented by λ 2.3625 · 10−4 1.9078 · 10−3 12.2471 0.0530 – 1.1378 · 10−3

EKF using electromechanical model 5.0767 · 10−5 1.8859 · 10−3 1.7352 0.0499 0.0878 –
EKF using electromechanical model augmented by λ 4.8545 · 10−5 1.8856 · 10−3 2.3189 0.0517 0.0861 4.3916 · 10−4

UKF using infinite inertia model 2.2663 · 10−4 1.9085 · 10−3 11.0597 0.0499 – –
UKF using infinite inertia model augmented by λ 2.3473 · 10−4 1.9078 · 10−3 12.1948 0.0518 – 1.1407 · 10−3

UKF using electromechanical model 4.5641 · 10−5 1.8857 · 10−3 1.6951 0.0492 0.0880 –
UKF using electromechanical model augmented by λ 4.5579 · 10−5 1.8855 · 10−3 2.3187 0.0505 0.0861 3.1030 · 10−4

in Figure 2 and Table 2. Conventional estimators with-
out λ estimation show increased position estimation
error and very significant velocity estimation error. In
addition, load estimation is very poor for estimators
using the conventional electromechanical model. On
the other hand, EKF andUKFwith PMflux linkage esti-
mation are almost insensitive to theλ uncertainty. Since
the estimated value of λ converges relatively quickly to
the actual value, all variables are accurately estimated
when using the augmented models.

The estimators with λ estimation show much better
performance than the conventional estimators in case
of PM flux linkage mismatch. However, the estimation
error can also be caused by variations in other param-
eters. To analyze the impact of stator inductance and
resistance uncertainty, two additional simulations are
performed. First, parameter L is reduced by 20% and
the results are shown in Figure 3 and Table 3. It can
be seen that 20% difference in L has very little effect
on the performance of the estimators. In contrast, the
accuracy of speed and load estimation decreases if R

differs by 20%, as shown in Figure 4 and Table 4. How-
ever, the error of estimators using augmented models
is smaller than that of conventional estimators. In addi-
tion to electrical parameters, electromechanical models
also include mechanical parameters D and J. However,
these parameters are not used in infinite inertia mod-
els. Therefore, the effect of variations in mechanical
parameters is not investigated in this study.

In summary, conventional EKF and UKF estima-
tors work properly if the parameters of the PMSM are
known accurately. Although the error in speed estima-
tion is smaller during acceleration if the model used
includes the equation of motion. However, all con-
ventional estimators are highly sensitive to the uncer-
tainty in the PM flux linkage. In contrast, estima-
tors using augmented models are almost insensitive
to PM flux linkage variation. The estimation accuracy
depends mainly on the model used, but the Kalman
filter algorithm used has practically no effect. The per-
formance using the different models is summarized in
Table 5.
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Figure 2. Performance of the position sensorless state estimators in the case of 20% detuned λ. (a) EKF estimators and (b) UKF
estimators.

Table 2. Comparison of RMSE values for simulation using 20% detuned λ.

Estimator RMSE of

iα [A] iβ [A] ωe [rad/s] ϕe [rad] TL [Nm] λ [Vs]

EKF based on infinite inertia model 2.5260 · 10−3 3.1596 · 10−3 83.9020 0.2366 – –
EKF based on infinite inertia model augmented by λ 2.6196 · 10−4 1.9094 · 10−3 17.1699 0.0619 – 4.1420 · 10−3

EKF based on electromechanical model 2.5468 · 10−3 3.1719 · 10−3 103.9686 0.2488 1.3855 –
EKF based on electromechanical model augmented by λ 8.5668 · 10−5 1.8896 · 10−3 5.1097 0.0544 0.1465 2.9644 · 10−3

UKF based on infinite inertia model 2.5147 · 10−3 3.1507 · 10−3 83.5885 0.2372 – –
UKF based on infinite inertia model augmented by λ 2.6008 · 10−4 1.9090 · 10−3 17.1012 0.0603 – 4.1598 · 10−3

UKF based on electromechanical model 2.5352 · 10−3 3.1625 · 10−3 103.6145 0.2498 1.3791 –
UKF based on electromechanical model augmented by λ 8.2951 · 10−5 1.8892 · 10−3 4.9176 0.0519 0.1450 2.9878 · 10−3

Table 3. Comparison of RMSE values for simulation using 20% detuned L.

Estimator RMSE of

iα [A] iβ [A] ωe [rad/s] ϕe [rad] TL [Nm] λ [Vs]

EKF based on infinite inertia model 2.0465 · 10−4 1.9728 · 10−3 10.5148 0.0370 – –
EKF based on infinite inertia model augmented by λ 2.1154 · 10−4 1.9720 · 10−3 12.0462 0.0399 – 1.3016 · 10−3

EKF based on electromechanical model 3.4070 · 10−5 1.9483 · 10−3 2.2051 0.0364 0.0869 –
EKF based on electromechanical model augmented by λ 2.9263 · 10−5 1.9482 · 10−3 1.8168 0.0380 0.0855 3.7081 · 10−4

UKF based on infinite inertia model 2.0225 · 10−4 1.9728 · 10−3 10.4784 0.0366 – –
UKF based on infinite inertia model augmented by λ 2.1013 · 10−4 1.9721 · 10−3 11.9950 0.0387 – 1.3302 · 10−3

UKF based on electromechanical model 2.9813 · 10−5 1.9482 · 10−3 2.1867 0.0358 0.0872 –
UKF based on electromechanical model augmented by λ 2.8667 · 10−5 1.9481 · 10−3 1.8589 0.0364 0.0857 3.5988 · 10−4

Table 4. Comparison of RMSE values for simulation using 20% detuned R.

Estimator RMSE of

iα [A] iβ [A] ωe [rad/s] ϕe [rad] TL [Nm] λ [Vs]

EKF based on infinite inertia model 3.5678 · 10−4 1.9270 · 10−3 15.6556 0.0368 – –
EKF based on infinite inertia model augmented by λ 2.8013 · 10−4 1.9124 · 10−3 14.4513 0.0559 – 2.4121 · 10−3

EKF based on electromechanical model 2.4889 · 10−4 1.9071 · 10−3 9.1324 0.0324 0.1268 –
EKF based on electromechanical model augmented by λ 9.6137 · 10−5 1.8916 · 10−3 4.9279 0.0534 0.1027 2.4139 · 10−3

UKF based on infinite inertia model 3.4883 · 10−4 1.9259 · 10−3 15.5055 0.0364 – –
UKF based on infinite inertia model augmented by λ 2.7851 · 10−4 1.9122 · 10−3 14.3878 0.0547 – 2.2370 · 10−3

UKF based on electromechanical model 2.3859 · 10−4 1.9057 · 10−3 8.7648 0.0317 0.1227 –
UKF based on electromechanical model augmented by λ 9.2214 · 10−5 1.8914 · 10−3 4.8101 0.0517 0.1015 2.1890 · 10−3
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Figure 3. Performanceof theposition sensorless state estimators in the case of 20%detuned L. (a) EKF estimators, (b)UKF estimators.

Figure 4. Performanceof theposition sensorless state estimators in the caseof 20%detunedR. (a) EKF estimators, (b)UKFestimators.

It is important to highlight that the observability
conditions of the models used in the estimators were
fulfilled in the simulations, when the rotor speed was
not zero. Since the observability conditions are ful-
filled, the models are locally weakly observable and
the state vectors can be fully reconstructed from the
measurements. If a model is unobservable, then the
state-space model has several different solutions, so not
all estimated state variables follow the actual values

when they change. For this reason, it is important to
analyze and ensure observability.

According to the simulation results, there is no dif-
ference between the performance of the EKF and UKF
estimators when using the same model. However, it is
well known that the UKF has higher computational
burden than the EKF, since the application of the UT
requires multiple evaluations of the nonlinear func-
tion. To compare the computational burdens, a target
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Table 5. Comparison of estimation performances using different state-space models.

Applied model Estimation of

Rotor velocity Rotor position Load torque PM flux linkage

Infinite inertia model Moderate during acceleration, sensitive to
λ and slightly sensitive to R variations

Slightly sensitive to λ variation – –

Infinite inertia model
augmented by λ

Moderate during acceleration, but
accurate at steady state

Accurate – Accurate

Electromechanical
model

Sensitive to λ and slightly sensitive to R
variations

Slightly sensitive to λ variation Sensitive to λ and
slightly sensitive to R
variations

–

Electromechanical
model augmented
by λ

Accurate Accurate Accurate Accurate

Table 6. Comparison of the average execution time of the esti-
mators.

Estimator

Average
execution
time [s]

EKF using infinite inertia model 3.0425 · 10−6

EKF using infinite inertia model augmented by λ 3.2481 · 10−6

EKF using electromechanical model 3.2655 · 10−6

EKF using electromechanical model augmented by λ 3.5391 · 10−6

UKF using infinite inertia model 3.4783 · 10−6

UKF using infinite inertia model augmented by λ 3.8283 · 10−6

UKF using electromechanical model 3.8373 · 10−6

UKF using electromechanical model augmented by λ 4.2098 · 10−6

computer with Intel Core i5-2500 @ 3.3GHz processor
is used with the software tools provided by MATLAB
R2018b Simulink Real-Time toolbox. Using Embedded
Coder, target codes are generated for each estimator
implemented in MATLAB/Simulink. Then the target
codes are executed one by one in real-time on the target
computer, while measuring the average task execution
time using software tool Task Execution Time Moni-
tor. For real-time execution of estimators, the sampling
time is set to 100μs. The average task execution times
for each estimator are shown in Table 6. In case of the
infinite inertia model with 4 state variables, the compu-
tational time of the UKF is approximately 14% higher
than that of the EKF. If the model used for estima-
tion has 5 state variables, the difference is 18%, and for
6 state variables it is about 19%. Since EKF and UKF
provide the same accuracy, but UKF requires slightly
more computational effort, the use of EKF estimators
are recommended for PMSM drives.

5. Conclusions

In this study, novel position sensorless EKF and
UKF state estimators have been presented for surface-
mounted PMSM. The proposed estimators use aug-
mented models in which the PM flux linkage is a state
variable, so they can also estimate the PM flux link-
age. For the models used for state estimation, a detailed
observability study has been presented. To compare the
estimation performances, numerical simulations have
been carried out. The results showed that the proposed
estimators are almost insensitive to the uncertainty in

the PM flux linkage, unlike the conventional estima-
tors using infinite inertia or electromechanical models.
Since there is no difference between the performance
of the EKF and UKF when using the same model, and
the EKF has less computation time, EKF estimators are
recommended for position sensorless PMSM drives.
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