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ABSTRACT

Inspired by the idea of Ma et al. (Journal of the Franklin Institute, 2018), we adopt relaxation
technique and introduce relaxation factors into the gradient based iterative (Gl) algorithm, and
the relaxed based iterative (RGI) algorithm is established to solve the generalized coupled com-
plex conjugate and transpose Sylvester matrix equations. By applying the real representation
and straighten operation, we contain the sufficient and necessary condition for convergence of
the RGI method. In order to effectively utilize this algorithm, we further derive the optimal con-
vergence parameter and some related conclusions. Moreover, to overcome the high dimension
calculation problem, a sufficient condition for convergence with less computational complex-
ity is determined. Finally, numerical examples are reported to demonstrate the availability and

superiority of the constructed iterative algorithm.

1. Introduction

Solving matrix equations is one of the research focuses
of computational mathematics [1-4]. The Sylvester
matrix equation is an important type of matrix equa-
tions, which has a wide range of applications in control
and system theory, pole assignment, model reduction
and so further [5-7]. Therefore, finding feasible and
effective algorithms for the Sylvester matrix equation
has important theoretical significance and practical
application value.

In this paper, we aim to find the solution of the
generalized coupled complex conjugate and transpose
Sylvester matrix equations

q
Z(AinjBij + Cij?jDij
j=1

+EyY] Fj+ GjY['Hy) = M;, iellLpl, (1)

where Ay, Cjj € C™>7, By, Djj € CI*", Ejy, Gji €
C™%%, Fy, Hyj € Cix", M; e C™x"i, i e [1,p], i €
I[1,q] are the known matrices and Y; € C7*9 are
unknown matrices to be solved. Equation (1) is
involved in both science and engineering. Besides,
its form includes many other special matrix equa-
tions, such as complex conjugate Sylvester matrix
equations, complex transpose Sylvester matrix equa-
tions and complex conjugate and transpose Sylvester
matrix equations [8-10]. Therefore, it is meaning-
ful to research efficient methods for solving
Equation (1).
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At present, the methods for solving the Sylvester
matrix equation mainly include direct methods and
iterative =~ methods. However, when solving
high-dimensional matrix equations, the direct meth-
ods may lead to lengthy computation time. In order
to efficiently solve these matrix equations, we prefer to
apply iterative methods. In the past few decades, many
scholars are devoted to establishing iterative meth-
ods to solve various types of Sylvester matrix equa-
tions [7,11-14].

From the previous works [15,16], we know that it
is difficult to calculate the exact solution of matrix
equations, which consumes large computing costs. In
the field of systems and control, calculating approx-
imate solutions is sufficient. So iterative solutions
have been widely concerned by researchers, and many
researchers paid attention to iterative methods and
got excellent results. Ding and Chen developed var-
ious iterative algorithms to solve Ax = b, AXB=F
and other Sylvester matrix equations [17-19]. Subse-
quently, many effective iterative methods were pro-
posed. In [10], the least squares based iterative method
has been applied to find the solutions of the Sylvester
transpose matrix equation AXB 4+ CX TD = F. Xie and
Ding constructed the gradient based iterative (GI)
methods for the matrix equations AXB+ CXD = F [9].
Wau et al. also investigated the GI method for solving
the Sylvester conjugate matrix equation AXB + CXD =
F [20]. Owing to the availability of the GI algorithm,
the GI algorithm has been extended to solve general
Sylvester matrix equations by researchers. For instance,
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Wau et al. proposed the GI algorithm to find the solution
of coupled Sylvester-conjugate matrix equations [21]

)
> (AjXjBj+ CiX;Dyj) = F;, iel[Ls], (2)
i=1

where Aj;, Cjj € C™*", Bjj, D;j € Ci*", F; e C™ix"i
(i € I[1,s], j € I[1,1]) are the known matrices. Song
et al. applied the GI method to the coupled Sylvester-
transpose matrix equations [22]

1
D (AjXiBj+ CiXDy) = F;, iel[ls], (3)
i=1

where A,’j S Rm"xyj, Cij S Rmixrj, B,‘j € thxni, Dij €
Cl>", (i € I[1,s], j € I[1,1]) are the known matrices.
The above two matrix equations are important types of
matrix equations, which are frequently involved in the
fields of systems and control. Not only that, they are also
the generalized forms of matrix equations in [10,20],
respectively. The convergence properties and the opti-
mal convergence parameters of the GI algorithm for
Equations (2) and (3) have been investigated.

Subsequently, Beik et al. proposed the GI algorithm
for solving the generalized coupled Sylvester-transpose
and conjugate matrix equations [23]

4 S1 2

T, (X) = Z zAvi,uXtiiy + Z Cvi,uXiTDvi,u

i=1 \u=1 n=1

$3 S4
+ Z Mvi,u)TiNvi,u + Z Hvi,quHGvi,u
u=l1 u=l1

=F,, (4)

where Avi,u > Bvi,u > Cvi,u > Dvi/t > Mvi,u > Nvi,u > Hvi,u > Gvi,u >
F, (v=1,2,...,N) are known matrices with proper
dimensions. The form of the above matrix equations is
quite general. When p and sy, 53, 53, 54, are taken to be
some special values, Equation (4) can be transformed
into other matrix equations.

Except for the above classical Sylvester matrix equa-
tions, the GI algorithm has also been applied to solve
periodic matrix equations [24,25]. Li et al. established
the GI method for the forward periodic Sylvester matrix
equations and backward forward periodic Sylvester
matrix equations [25]

AXiB;i+ CiXiy1D;=F;, iel[l,y], (5)

and
AiXi1Bi+ CX;Di=F;, iel[l,y], (6)

where A;, B;, C;, D;, F; € R™ ™ are the known matrices.
In theory, Li et al. proposed the sufficient and neces-
sary conditions for the convergence of the GI algorithm.

Numerical experiments have also showed the effective-
ness of the GI algorithm.

Although the theory of the GI algorithm has been
systematically proposed by researchers, this algorithm
still has some drawbacks. In [26], Fan et al. pointed out
that the GI algorithm costs large computation time and
storage space when encountering ill-posed problems.
In order to further optimize the convergence perfor-
mance of the GI algorithm, the relaxed gradient based
iterative (RGI) algorithm has been proposed by intro-
ducing the relaxed factor to adjust the weight of the iter-
ation sequences. Niu et al. developed the RGI algorithm
to solve the Sylvester matrix equations [27]. Numerical
experiments have shown that relaxation techniques can
effectively reduce computation time and storage space,
and improve the convergence rate of the GI algorithm.

Due to the superiority of the RGI algorithm, many
scholars have extended this algorithm to solve more
general matrix equations. Recently, in [28,29], Huang
et al. applied the RGI algorithm to solve coupled
Sylvester-conjugate matrix equation (2) and coupled
Sylvester-transpose matrix equation (3). And the exper-
iments results illustrate that the convergence rate of the
RGI algorithm is faster than the GI one. Then Wang
etal. consider the solution of the complex conjugate and
transpose matrix equations

A1XB; + Ay XB, + A3X By + Ay XH"By = E,  (7)

where A;, B;, E € C"*" (i € I[1,4]) are the known
matrices. By introducing relaxation factors and apply-
ing the hierarchical identification principle [30], Wang
et al. presented the RGI method to solve Equation (7).
However, Wang et al. didn’t discuss the generalized
form of Equation (7). Based on the ideas of [30],
we extend the RGI algorithm to the generalized cou-
pled complex conjugate and transpose Sylvester matrix
equations.

Inspired by the idea of [28], we construct the RGI
algorithm for solving Equation (1). Its form can be
specific written as

q q
D AyYjBy+ D CyYiDy;
=1 =1

q q
T H
+ E EyjY; Fj+ E GyY; Hy = My,

j=1 j=1
q q

D AyYiBy+ D CyYiDy
= =

q q

8

+ D By + > GyYiHy = M, ®)
=1 =

q q
D ApYiByi+ D CyYiDy
=1 =1

q q
T H
+ E EPij ij + E GPJ‘Y]» Hp = MP'
j=1 j=1




The form of the above matrix equations is quite general,
which contains several classic Sylverster matrix equa-
tions. Especially, Equations (2)—(3) are special cases of
Equation (1). If i = j = p = g = 1, Equation (1) will
reduce to Equation (7). Therefore, finding faster algo-
rithms to solve Equation (1) is of great
significance.

To accelerate convergence rate of the GI algorithm
for Equation (1), we combine relaxation technology
with hierarchical identification principle, and we derive
the relaxed gradient based iterative (RGI) algorithm to
solve Equation (1). This principle regards the unknown
matrix as the system parameter matrix to be solved,
then it builds a recursive formula to approach the
unknown solution [27,28,30,31]. Furthermore, we can
effectively control the weight of the iteration sequence
by introducing relaxation factors. In theory, we exploit
the real representation and the straightening opera-
tor to prove the convergence properties of the con-
structed algorithm. Meanwhile, the sufficient and nec-
essary condition for convergence is presented. Finally,
numerical experiments further demonstrate the effec-
tiveness and superiority of the RGI algorithm. The main
motivation and contribution of this paper are summa-
rized as follows:

e In order to accelerate the convergence rate of the
GI algorithm [23], we combine the GI algorithm
with relaxation technique. By introducing / relax-
ation factors, we construct the RGI algorithm for
Equation (1). Due to that Equation (1) extremely is
general, the algorithm constructed in this paper is
also more general. It is meaningful to promote the
development of the field of solving matrix equations.

e To optimize convergence theory, we utilize real
representation and straighten operation as tool,
and present the sufficient and necessary condition
for convergence of the RGI method. To overcome
high-dimensional computing problems, the suffi-
cient condition for convergence and some related
results are proposed. Besides, we use numerical
experiments to fully demonstrate the effectiveness
and superiority of the RGI algorithm.

The remainder of this paper is structured as fol-
lows. In Section 2, we list several useful notations
and definitions. Moreover, we construct the relaxed
gradient based iterative (RGI) algorithm to find the
iterative solution of Equation (1) in Section 3. In
Section 4, we deduce the convergence properties
of the proposed method, including the sufficient
and necessary condition for convergence, the opti-
mal convergence factor and the related corollary. In
Section 5, two numerical experiments are reported
to validate the superior of convergence for the new
algorithm. In the end, Section 6 proposes the some
conclusions.
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2. Preliminaries

For the sake of convenience, we provide several main
notations and lemmas which are used throughout this
paper. The set of m x n complex matrix is denoted by
C™*" For A € C"™*" there are some related notations
as follows:

e A indicates the conjugate of the matrix A;

o AT represents the transpose of the matrix A;

o A stands for the conjugate transpose of the matrix
A;

e 0max(A) stands for the maximal singular of the
matrix A;

e 0min(A) stands for the minimal singular of the
matrix A;

e cond(A) = omax(A)/omin(A) is defined as the con-
dition number of A;

e Amax(A) represents the maximal eigenvalue of the
matrix A;

e Amin(A) indicates the minimal eigenvalue of the
matrix A;

e || A |, is defined as the the spectral norm of the
matrix A.
|| A || indicates the Frobenius norm of the matrix A.

e p(A) represents the spectral radius of the matrix A;

Then, some significant definitions and lemmas are
listed below.

Definition 2.1 ([28]): Let A € C™*", then A can be
uniquely expressed as A = Aj +iA, with A}, A €
R™*" AV denotes the real representation of a complex
matrix A

A7 — (2; —Afiz) c R2MX2n. ©)

Definition 2.2 ([32]): For two matrices A = (a;j) €
Cmxn B = (bij) e Ck*! the Kronecker product is
defined as

anB apB ainB
anB apB --- ax,B

ARQB= ) . . . (10)
amB amnB aynB

Definition 2.3 ([28]): Let ¢;, denote an n-dimensional
column vector which has 1 in the ith position and

0’s elsewhere. The vec-permutation matrix Py, can be
defined as

Im ® e?n

I, ®el
Popni=| :2” . (11)

Im ®ez;n
IfX,A € C"™*" and B € CP*4, we have

p;nzpr;i:l)mm (12)

PoinPin = Iyn,
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and
B®A =P, (A® B)Py,

(A ® B)Puy = Ppp(B ® A). (13)

Next, we review several lemmas which are used to
prove the convergence property.

Lemma 2.1 ([33]): IfA € C"*", Be C*, X e C"*,
then

vec(ABC) = (CT ® A)vec(B), (14)
(A® B)(C® D) = (AC) ® (BD). (15)
Lemma 2.2 ([29]): For two matrices A and B, it has

A ® Bll2 = [|All2|Bll2. (16)

Lemma 2.3 ([28]): For Ae C™*", Be C*", Fe
C™*" | if the matrix equation AXB = F has unique solu-
tion, then the iterative sequences {X(k)} converges to
the exact solution X* for any initial matrix X(0) by the
following algorithm

X(k+1) = X(k) + uA"(F — AX(k)B)B,  (17)

and the algorithm is convergent if and only if

<u < 2 (18)
U< ———0.
IAIZ11BII3
Meanwhile, the optimal convergence factor is
2
Mo = (19)
Amax (AT A) Amax (B™ B)
+/1min(AHA)/1min(BHB)

Proof: Define error matrix
X(k) = X(k) — X*.
According to the expression (17), it has
X(k+1) = X(k) — uA" AX(k)BB".
Let Z(k) = AX(k)B, utilizing the properties of matrix
Frobenius norm, Lemmas 2.1 and 2.2, it follows that
IX(k+ 1)
= |X(k)|I* — utr(BYX (k) A" Z(k))
— utr(Z" (k)AX (k)B) + u*||A" Z(k)B™ ||*
< IX(R0)1* = utr(Z7 () Z(k)) — utr(Z7 () Z(k))
+ 121 (B ® AMyvec(Z(k)) |1?
= |X()|I* — n@2 — B A" IDIZMK0)|?
= IX(K) > = u @ — ulAIZIBIDIZ K.

Repeatedly applying the relationship of the above
expression leads to

IX(k+ DI
< IX(k = D)[I* = w2 — 1l AIBIBIZUIZK) I
+ 12k = D%

k
< IXO)I* — 12 = gl AlI51IBI3) (Z ||Z(i)||2).

i=0
If the convergence parameter y is selected to satisfy

2

< U< —,
IAl31BII3

the following inequality holds

(0.0]
0 < w2 — plAIZIBIZ) D IZG)I* < IXO)]*
i=0

This means that lim;_, o [|Z(i)]|> = 0. Due to that the
matrix equation AXB = F has unique solution, then it
has limy_, o X(k) = 0. The proof of Equation (18) is
completed. |

Taking the vec-operator of both sides of the expres-
sion (17) and applying Lemma 2.2, it can get

vec(X(k + 1)) = (I — uBB" @ AH A)vec(X(k)).

The above equation implies that I — uBBH @ AHA is
the iterative matrix of the algorithm. Thus, the optimal
convergence parameter satisfies the following equation

min max{|1 — u4; (BB @ ATA)|,. ..,
1 — udan (BB @ AHA)|)
= min max{|1 — uAmax (BB ® AT A)|,
11 — tAmin(BBY @ A" A)]},

which means that |1 — gAma (BB @ AHA)| =1 —
1 min(BB ® A A)| has a non-trivial solution. By
simple deductions, Expression (19) can be obtained.

Lemma 2.4 ([28]): The properties of real representation
()Y are as follows:
For two complex matrices A € C"*", B € C"*", then

(AT = E,(AV) Ep,
(A)Y = E,AVE,. (20)

(AB)Y = AVBY,
AhY =@"H7,

Here, unitary matrices Ey, is defined as

0 I
b (0 ). -

Furthermore, based on the definition of matrix Frobenius
norm and real representation, then

1AV 1% = 2||A|1%, (22)



IAY 12 = I Al (23)

Lemma 2.5 ([29]): If m;,i € I[1,n] are any given
positive number, denote the maximum and minimum
values of m; as Mpmax = MaXi<i<np Mi and Mmpin =
min; <j<, m;, respectively. It has

Mmax — Mmin

min  max |1 — umj| = ———, (24)

O<pu<—2—1lsisn max + Mmin
Mmax

then, the optimal convergence parameter u is selected as

2

Hopt = ————.
Mmax + Mmin

Proof: Build function y = maxj<ij<, |1 — um;|, and
then Equation (24) has been obtained by drawing graph
in [29]. Besides, |1 — um;| < lifand onlyif 0 < u <
—2_ The optimal convergence factor u satisfies

Mmax *
min max{|1 - /uml|> I]- - lum2|a- c e |1 - /umi’ll}
= min max{|l — umy|, |1 — umyl}.
The above equation indicates that |1 — um| = |1 —

umy|, thatis, =1 + um; = 1 — um,. By simple calcu-
lations, it has

2 2
Hopt = = .
opt my + my Mmax + Mmin
Thus, the proof is completed. |

3. Therelaxed gradient-based iterative
algorithm

In this section, we mainly propose the relaxed gra-
dient based iterative (RGI) algorithm to solve the
generalized coupled complex conjugate and transpose
matrix equation. The main idea of this algorithm is to
use the hierarchical identification principle to divide
Equation (1) into several subsystems. The unknown
matrixes Y; are regarded as the identified parameters
matrices. Meanwhile, we construct intermediate matri-
ces and adopt an average strategy. Then, the relaxation
factors wy, I € I[1, g] are introduced, which are utilized
to adjust the weights of matrix schemes. The construc-
tion process of the RGI algorithm is as follows.

Firstly, define the following intermediate matrices,
iell1L,pl,lelll,q],

q
My = M = > (AyY;Bj + C;Y;Dy + Ey Y| Fy
=1
+ GinjHHij) + AuY1Bi, (25)

q
M; = D (AY;Bj + CyY;Dj + Ey Y] Fy
j=1
+GinjHsz) + CiYiDy,

i =

(26)
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q
DO = (M; — Z(A,]Y]Blj + CIJYJD,] + E,]YJTF,J
j:l
+ GyY{'Hy) + EaY/ Fa)", (27)
q —
Wi = (M; — ) (A;Y;Bj + CyY;Djj + EyY]' Fy
j=1
+ G;Y{'Hy) + Gy Y[ Hi)". (28)

From the expression of Equation (1), some subsystems
are given below, i € [[1,p], I € I[1, q],

AnY 1B = I, (29)
CyYDjj = Yy, (30)
FIVE] = @y, (31)
HIVGY =¥, (32)

According to the above fictitious subsystems and
Lemma 2.3, we can put forward the iterative schemes
as follows, i € I[1,p], I € I[1, 4],

Y (k4 1) = Y () + pAf [Ty — AgY) " (0)Bal B,
(33)
YP(k+1) = Y7 (k) + nClTn = CaYP (0Dal Dy,
(34)
Y (k1) = Y (k) + wFal®q — Fy Y} (K E; [Ea,
(35)
Yk + 1) = Y (K) + uHa [y — HE Y (0 GHIGy,
(36)

For the sake of convenience, we provide the following
notations, s € I[1,4],

q -
rsi(k) = Z(A,-jyj”(k)B,-j + Gy Y7 (k) Dy
j=1

+ Eg Y () Fy + Gy Y () Hy).  (37)

Combining Equations (25)-(28) with Equations
(33)-(36) and utilizing the hierarchical identifica-
tion principle, the recursive systems are established.
Due to that the unknown matrices Y; are included
in the expressions, we replace Y; in (25)-(28) with
le’i(k), sz’i(k), Yj3’i(k), lfjfl’i(k), respectively. Therefore,
the following expressions are given, i € I[1,p], I €
171, q],

q
XP(k+ 1) = X (k) + pAf | M = D T ) | BY,
j=1

(38)

XPk+1) = XP'(k) + uCf | Mi = > T (k) | DF,
=1
(39)
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T

q
XDk +1) = X'k + uFy | M;— > T3'(k) | Eay
j=1

(40)
H

q
X[k + 1) = XM () + pHy | M = D T3 (R) | Ga.

(41)

Then, by taking the average value of le’i(k), sz’i(k), Yj3’i
(k) and lfj-‘*’i(k), for i € I[1, p] we have

p
Yj(k+1) = Y](k) + %ZAS[

i=1
q
x [Mj = > (A5Y](K)Bj + C;Y] (k) D;
j=1
Ej; ](k)TF,] + G;Y; (k)" Hy) 1B,

Y/ (k+1) = Y/ (k) + % Z ch

i=1

q
I RACE!
j=1
,JY]”(k)D,J + E;Y/ (k)T
+G,JYJ-”(k)HH,])] D},

p
Tik+1D) =Y+ 5> F
P
q . [
x [M; — D" (AY;(k)Bjj + CyY;(k)D;;
=1

+ E;Y;(k) " Fy + GyY;(k)" Hy)" Eq,

p
ik + 1) = Yi(k) + % > Hy
i=1
q . S
x [M; — > (43Y;(k)Bjj + C;Y;(k)Dy
j=1
+ E;Yj(0) " Fj + Gy Y (k)" Hy) 1" Gy

Inspire by the idea of the RGI method in [28], we
introduce the relaxation factors wj (I € I[1, g]) into the
above recursive systems. Based on the previous analy-
sis process, the relaxed gradient-based iterative (RGI)
algorithm for Equation (1) is presented as follows.

In the RGI algorithm u indicates the convergence
parameter. The relaxation factors w; (I € I[1,q]) are
used to control the weight of iterative sequences, and it
can effectively improve the convergence rate of the GI
method. In particular, if the relaxed factors are selected
as o] = % for all I, Algorithm 1 will reduce to the

Algorithm 1 The relaxed gradient-based iterative
algorithm

Step 1: Given matrices Aj;, Cjj € Cmixtj, Bij, Djj €
(Csj-xn,-, Eiijij c (Cmixs]" Fij>Hij c erxni) M c (Cm,xn,
i € I[1,p],j € I[1, q], and given any positive constants
number ¢ and . Let 0 < w; < 1,1 € I[[1, g]. Select the
initial matrices Yl(l)(O) ~ Yl(4) (0), I € I[1, q]. We take
k=0;

Step 2: If 0y; = ||M; — Zle(Ai,-Yj(k)B,-j + C;;Y;(k)D;;
+E;Yj(k)TF; + G;Y;(k)™Hy)||/IIM;]| < e, stop; oth-
erwise, go to Step 3;

Step 3: Update the sequence

P
1
YOUk+1) = vV (k) + Suor D A

i=1

q
x |:Mi = > (AyY;(k)Byj + C;Y;(k)Dyj + EyY;(k)"F;
j=1

P
1
Y2 (k) + SHe > ch

i=1

YP%k+1) =

q
Mi = > (A5Y(0B; + CYi(D; |
j=1 il

+E;Yj(k) " Fyj + Gy Y (k)" H

b
1 —
VPR + S p( = o) 3 F

i=1

YO k+1) =

q
x |:M,- = > (4;Y;(k)Byj + CyY;(k)Djj + E;Y;(k)"F;
j=1

T
+G,-]~Yj(k)HHﬁ} E,

p
1
YO *k+1) =YY (k) + S = > Hy

i=1

q
x |:M,- = > (4;Y;(k)Byj + CyY;(k)Djj + E;Y;(k)"Fy
j=1

H
+Ginj(k)Hsz:| Gj.
Calculate
_1 )
Yi(k+1)= E(l —wo)Y, (k+1)
1
+5(1 - oY (k+1)
1 1
+ EwlY’(3) k+1)+ EwlYl(“)(k +1).

Step 4: Set k = k + 1; return to Step 2.

GI algorithm [23]. Besides, Algorithm 1 with w; = 5
and p = q =i =j =1 will change into the iterative
method in [30]. Compared with the RGI algorithm



in [28], the new algorithm is more general which
includes many kind of iterative formulas.

In what follows, the convergence properties of the
RGI method are analysed below. At the same time, we
also provide the detailed proof of convergence theory.

4. Convergence analysis of the RGI algorithm

The section presents the sufficient and necessary con-
dition for convergence of the RGI algorithm. Further-
more, to overcome the high-dimensional calculation
problem of the iterative matrix, we further discuss the
sufficient condition for convergence.

Theorem 4.1: Assume that the generalized coupled
complex conjugate and transpose matrix Equation (1)
has a unique solution, then the iterative sequences Y(k)
I € 1[1, q] converge to the exact solution Y| by the RGI
algorithm for any initial matrices Y;(0) for all | € 1[1, q]
ifand only if the convergence factor u is selected to satisfy

O<u<—— i, (42)
lQmz |3
where
Allwl(l - w1)1451r1 0
M= 0 ‘—11602(1 —'(1)2)1452,’2
0 0
0
0
ia)q(l — @g)Lasyr,
(43)
Qu Quiz -+ Qi
Qa Q2 - Qq
Q=1 . RS . (44)
Qpl sz t qu
Qi = (Bj)" ® (4]) + (D))" Eg ® (C))E,;
+ ((Fi]v')TErj ® (EZ)ES]) P4rjs]-
n ((Hi]V)T o (Gg)) Pysni e I[Lp],
leI[Lq]. (45)

Proof: Denote
?l(l) (k) _ Yl(l)(k) _ Yl*> ?1(2)(]() = Yl(z) (k) - Yl*a
1) = v (k) - 7,
7 = v/ (o) - 7,

Yi(k) = Yi(k) — Y/, 1€ 1[1,q].
(46)
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To facilitate our statement, the expressions of Z;(k) (i €
I[1, p]) are defined as follows

q _— ~
Zi(k) = > (A;Y;(k)Bjj + C;Y;(k)Dy + E;Y;(k) " F
j=1
+ G;Y; (k) Hy). (47)

From the definition of error matrices and the expres-
sion of Yl(l) (k + 1) in the RGI algorithm, we derive that
forl € I[1, 4]
YWk+1)=v"(k+1) -}
7 1 $ H
=Y (k) = Spon Y Af
i=1
q

x | > (4;Y;(k)Bj + C5Y;(k)Dy
j=1

+E;;Y;(k) " Fy + G;Yi(k)"Hy; | BY
() 1 <
=" (k) = S pon > Allzi(oBY.  (48)
i=1

It follows from the expression of Yl(z) (k+ 1) in the RGI
method that

YOUh+1)=v2k+1) -}

p
~ 1
= Yl(z) (k) — e Z CZ
i=1

q ==
> (AyYj(k)Bjj + C;Y;(k)Dy oT
j=1 il
+E;;Y;(k)"Fyj + G;Y;(k)" H;
-6 1 P
=72 k) - SHol > CizZi(kD}. (49)

i=1

By the expression of Yl(s) (k+ 1) in Algorithm 1, for [ €
I[1, q] one has

Y+ =7 ®k+1) -1}

P
~ 1 —
=770 — Ju(l—w) DTy

i=1

q ==
x | D (AY;(k)B; + CyY;(k)Dy
j:l
T

+E;Y;(k)'Fy + G;Yi(0"H; | Ey
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P
Sn( =o)X Faz® E. (50)

i=1

=72 (k) -

It follows from the expression of Yl(4) (k+1) in
Algorithm 1 that for [ € I[1, g]

Y% +1) =7 *k+1) -1}

p
~ 1
=7 (k) = S~ o) 3 Hy

i=1

q _ ~
X {Z(A,-jyj(k)Bij + C;Y;(k)Djj + E;Y;(k)'F;
j=1

H
+G,»j17j(k)HH,-j} Gy

p

1

Eﬂ(l ) E HyZi(0P Gy (51)
i—1

=7 k) -

Combing (48)-(51) with Line 5 of the RGI algorithm
leads to

Yitk+1) = Yi(k+1) - Y}

— %(1 — oYMk +1)
+ 50—yt
+ %wlYl(S’)(k +1)
+ %wlYl@)(k +1)-Y;

- %(1 —op¥ Mk +1)
+ %(1 — oY P (k+1)
+ %wz?l(3)(k+ 1)

1 -~
+ EwlYl(4) (k+1)

4
= ik — Juen1 — o) > Az 0B

i=1
CiiZi(k)Djy + FaZi(k)"Ey
+ HuZi(k)" Gy). (52)

According to Lemma 2.4, taking the real representation
on both sides of (52) results in

(Yi(k+1))"

= (Vi(k)" - —ﬂwz(l — o) Z<A Zi(k)Bj{

i=1
Z (k)Dll + FtlZ (k)TEtl + HllZ (k)HGzl)v

P
= (Vi(k))¥ - iﬂwz(l —w) Y

i=1
x [T k) BHT + (€7 @) (O]
+(F)" @) En)” + H)E R (G])]

p
= (Fi)" — jueni =) Y.

i=1
SEHRACNCHE
+ By (Ci) " Eyp; Emy (Zi(k)) ¥ En By (D)) ' Eg
+ En(F{)EnEn,(Zi(k)") " Emp;Em, (B Ey,

+HD 0™ (G))]

p
= Fi)" — sueni =Y.

i=1
SCHRAONCHE
+ En(CIDT (Zi(k))” (D) "E,,
+ By (F)(Zi() ™) (B)E,
+HD 0TG- (53)

Using straightening operator in (53) and applying
Definition 2.3, for I € [[1, q] we have

vec[(Yi(k + 1))"]

p
= vec[(Y;(k))"] — }lﬂwl(l — ) z

i=1

[(B ) ® (AN + Ey (DY) ® E, (CT)T
+P4rlsl (Erl(F )®ESZ(E ) )

+Puny” ((H]) @ GDT) | veel i) 7). (54)
Furthermore, by applying the real representation on
two sides of (47), we get

q _
= > (A;Y;(k)B; + C;Y;(k)Dy
j=1
+ E;Yi(k)TFy + G;Y; (0 Hy)Y

(Zi(k))Y

=

= Z((Ag)(?j(k))vwg )

+(c i )Er, (Y;(k) " Eg (D)
+ (E)E (Y;(k) ™) Ey (F)
+ (G (H)). (55)
Then, utilizing the vec-operator in (55) can deduce

vec[(Zi(k))"]
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= vec | > (45 T(0)” (B

j=1
+ (C)Ex(Y;(k) " Eg(Dj]
+ (B Eg (Yj(k) ) Er, (F)

+GH Y0 (Hy )]

q
=[BT @ @4]) + (D) TEy @ (C)E,
j=1

+ ((F) B, © (B))Ey) Pagg
+ (H)T & (G])) Pagg | vecl Fit™1. (56)
Finally, substituting (56) into (54) results in

vec[(Y;(k + 1))7]

p
= vec[(Yi(k))"] — iﬂwl(l ) Z

i=1

x [(B) ® (4" + Ey(D)) ® B, ()’

+PL (Erl(F ) ® Eq (EJ) )

MQ

R (CHEYCEH]

1

j
x [B)T @ (4]
+(D;)"E; ® (C))E;,
((Fv "E, ® (E] )ES)P%.SJ.
+ (H)T & (G])) Pagg | vee Fit)™1. (57)
Denote
vecl (Y(10)") = [vee(V1 () ") vee(Fa(k) ™),
T ] 6

Thus, Equation (57) can be written as the following
expression

vec[(Y(k + 1))7] = vec[(Y(k))"]
— uMQ" Quec[(Y (k))"]
= [ — uMQT Qlvec[(Y (k)" ].
(59)

The matrices M and Q are given in (43) and (44). It fol-
lows from Equation (59) that the matrix [I — uMQTQ]
is the iterative matrix of Algorithm 1. So the sufficient
and necessary condition for convergence of the RGI
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algorithm is

p(I— uMQTQ) < 1. (60)

Due to the fact that the iterative matrix MQT Q s similar
to M 7 QTQM 2 ,and M > QTQM > is symmetric matrix,
so one obtains
T 1 T 1
il = pMQ Q) =1 — uAi(M2Q" QM?)

=1- uo2(QM2), iel[l,p).

(61)
Since p (I — uMQTQ) < 1, it follows that
2
o2 (QM?)
iel[L,p]. (62)

—1<1—,uo'i2(QM%)<lor0<,u<

Finally, the range of convergence parameter u making
the RGI algorithm convergent is

2
0<py<—7—. (63)
QM2 |13
Here, we complete the proof of Theorem 4.1. |

In order to further effectively utilize the RGI
algorithm, we should get the optimal convergence
parameter u of this method. When p(I — M > QoM %)
reaches minimum value, the convergence behaviour of
the RGI method achieves the optimum. According to
Lemma 2.5, the necessary and sufficient condition for

p(I— M2QTQM?) s
1 1
11— 1oin(QM2)] = |1 = pog, (QM)].  (64)
By simple calculations, the optimal convergence param-

eter is obtained as

2
o (@) £ o (@)

Then, we will further discuss the convergence proper-
ties of the RGI method with the relaxation parameters
w; = o for I € I[1,g]. Some relevant conclusions are
proposed below.

Hopt = (65)

Theorem 4.2: Assume that Y(0) = (Y1(0), Y»(0),...,
Y4(0)) and Y*(k) = (Y{(k), Y5 (k),..., Y(’; (k)) repre-
sent the initial value and unique solution of the RGI
algorithm, respectively. Based on the conditions of
Theorem 4.1, if the relaxation factor are selected as w; =
w forl € 1[1, ql, it holds that

1Y (k) — Y™

< pt (1 - iﬂw(l - w)QTQ) 1Y (0) — Y.
(66)
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And the optimal convergence parameter is
8

o = e @+ ot @)

Under this situation, the following inequality holds

1 k
d2(Qmz2) —1
IIY(k)—Y*IIS(Con @ ;) )IlY(O)—Y*||.
cond?(QM?2) + 1

(68)

Proof: Accordingto the factthat] — 3 ,ua) (1-)Q'Q
is the symmetric matrix, it has

1
HI— Jrel - ©)Q"Q

2
=p (I — iﬂw(l - w)QTQ) . (69)

Combining Expression (59) with the properties of
matrix norms, we derive

(Y (k+ 1)7]]
= Jlvec[(Y(k + 1)" ]Il

= '[1 — i/m(l — w)QTQ- vec[(Y(k))"]

2

<l = (1 = @) Qlalveel T )7
- '[I — sho = 0)Q"Q|| Iveel (TN
412
) (1 ~ ol - w)QTQ) IFR)71 (0)
with
F®)T = [T, Tk)..... (T, 071 (71)

Based on Lemma 2.4 and ||A" ||> = 2||A]|?, it holds

~ s o
IY(k+ DIl = ﬁII(Y(k+1)) I

I
ﬁII(Y(k)) [

=p (I - iﬂw(l — w)QTQ) IYRI.  (72)

1
<p (I - Juo - w)QTQ)

By the definition of the error matrix and Inequality (70),
we derive that

1Y (k) = Yl = 1Y (o)

< pt (I - ;1#60(1 - w)MQTQ> 1Y (0) — Y.
(73)

Moreover, when p(I — ; ,ua)(l — 0)QTQ) is mini-
mized, the convergence performance of the RGI
algorithm can achieve optimal. So we should choose the

optimal parameter pqpt to minimize p(I — i no(l —
©)QTQ). The minimum value of p(I — i,uw(l —
®)Q'Q) is

min p (I — }L,ua)(l — a))QTQ>

= min max Hl — le/tw(l — w)Uiz(Q)H

) max

= min maXHI—A—ll,ua)(l—a) o2
1
‘1 - Z,uw(l a))amm(Q)H , (74)

which indicates that |1 — —,ua)(l — )2, (Ql=1—
i Luw - w)o2. (Q)| has a non-trivial solution. By
simple derivations, the best convergence parameter is

8
oot = 75
ot = oo+ ot@)

If the convergence parameter u is selected as the one
in (75), it will lead to

p(l = ol - @)Q"Q)

= max{1— ;l/w)(l - w)/li(QTQ)}
_1 i }
41— 0)(02,4(Q) + 02, (Q)
X a)(l - 6‘))/1min(QTQ)

—1- 2 imin(QTQ)
(020(Q) + 021, (Q))
Zo-riin Q)
T 02(Q +02,(Q
_ Tmax(Q = 051, (Q
02.,(Q +2. (Q

Q) —1
_cond Q-1 (76)
cond?(Q) + 1
Then Equation (68) can be derived by substituting
Equation (76) into (73). [ |

Remark 4.1: In Theorem 4.1, the sufficient and nec-
essary condition for convergence of the RGI method is

obtained. However, ||QM 3 ||§ involves the calculation of
real representation and Kronecker product, which leads
to high-dimensional problems. In order to overcome
this drawback and develop computational efficiency, we
further derive sufficient condition for the convergence
with less computational complexity.

Corollary4.1: Assume that the conditions of Theorem 4.1
are satisfied, then Algorithm 1 is convergent for any initial



matrix if the parameters w and u are selected to satisfy
the following inequality

2
L2 o1 — o) [IBy131144113
DG IZ1Cil12 + IF5 121 Eil2
HIH;1211G113]

0<uc<

(77)

Proof: By the properties of Frobenius norm of matrix,

one has
(,/—w](l a)])) (B ) ®(A

P q
||QM%||§§ZZ
+(D 7) 5 ® (C;E,

FTEy ® (E))E,) Pagg

2
) ®(G )P4rj5j
2
szz Zo =) [ 1B @ Al
i=1 j=1

+ (D)) Eg; ® (C))EyII2

+ ” ((F;Jv TEr] ® (E )Es ) P4erj||2

+ ((H,-Y- )" ® (G)) Pags ]

ZZ-wJO o) [(1B)T @ AL

i=1 j=1

IN

2
+1(D))"Ey © (C))Eyl2)
+ (I (E By ® (EEy) a2

HI ()7 8 G)) Pugl) |

>
+ ||(D,¥ "E; ® (C))E, I3
+ 1 (BB, @ (B)E) Pagg 13

+1 (H)T & (G5)) Pag 3]

P 9
ZZZ (1—60])[”(3) ® (A3

+ ||<Dv TE; & (C))E, 13
+ 1 (BT Ey ® (BE, ) 1

+1 (#ED" @ 6)) 1] 79)

IN

|| MQ

w1 = [1B) @ (413
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Notice the fact that ||[A ® B> = ||All2]|Bll2, |AY |l =
lA||2, and we have the following inequality

QM2 % < ZZwJ(l—wp[n(B I3 IADIS

i=1 j=1
+ 1D "Eg131(C)Ex 13
+ I ED ELIBIE Eg 113

I HD 131G

I
M*@
Mm

(1 = o) | 1B (B]) 7 Eg 1314513

i=1 1

+ IEw (D) I311C4l13
+ IE (FD) I51E] Eg 113

~.
Il

B (HD B, 3165 1]

Il
M*@
M»&

wi(1 — o)) [I1B;l3 14413

1

i=1j

+ IDGII3NCyl13 + I E3lI511E5l15
+IH;151G13] - (79)

By combining (79) with (42), the conclusion of
Corollary 4.1 is correct. |

5. Numerical experimental results

In this section, we present two numerical examples
to testify the effectiveness and feasibility of the RGI
algorithm proposed in this paper. All experiments are
performed on a personal computer with AMD Ryzen
5 5600U with Radeon Graphics 2.30 GHz, 16.0 GB.
The programming language is computed in MATLAB
R2021b. In our experiment, we compare the conver-
gence behaviour of the RGI algorithm with the GI one
in terms of the iterative number (IT), calculation time
(CPU) in seconds and the relative error (ERR).

Example 5.1 ([34]): We consider the generalized cou-
pled complex conjugate and transpose Sylvester matrix
Equation (1) in the case of p = g = 4, and its form is as
follows
AnYiBi1 + Ci3Y3Dis

+En Y Fiy + Gl YPHyy = My,
A2 Y2Byy + CoaYaDoy

+E3YIF; + Gy YPH, = My,
A33Y3B33 + C31Y D3

+E34 Y F34 + G Y) Hyp = Ms,
A44Y4Bys + C2Y2Dap

+Eq Y] Fa1 + G Y Hys = My,

(80)
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with

An

B

By

B33

By

Co

Dj4

D3

Cp =

Dy =

—12-7i
2—32i
104114

17 —=7i
7+ 4i
7—11i
11 —9i
33 —25i
7—7i

[—4 4 13i

12 + 5i
1—5i

7+ 6i
—24 —1i
0—7i

4—09i
—25+4i
—14 — 4i

=12+ 12i
2—2i
—19 +13i

—1—5i
16 — 7i
—8 — 6i

5+ 6i
—1542i
11+ 4i

6+ 3i
16 +17i
14 + 3i

—16 +1i
-3
-9 —2i

—6 — 14i
0—19i
—12 — 6i

—13 —2i
—10 — 4i
—3—-9i

—6 + 6i
9+ 14i
—12 —12i

—1+5i
19 —11i
—10 + 2i

-5
2—1i

| —1-12i

10 — 114
27 — 3i
3—7i

—8 — 25i
—2-—9i
—4 —2i

—8—7i
—3+6i
=3+ 11i

7 — 14i
—4 + 3i
19 +7i

=5+ 11i
11 —3i
—2—9i

—20+ 151
—4—2i
—4 + 8i

—2+5i
10 — 6i
=3+ 15i

2+9i
1+ 4i
—6+4i

11+7i
—5+7i
-9 —17i

—22+49i
6+ 2i
—12 —2i

0—3i
—4 + 6i
19 —9i

=7+ 20i
—6 — 8i
0

15 + 161
—10—3i
5+ 20i

—9 + 6i
1421
—17 —4i

=5+ 25i
—2 —6i
—5—9i
0+1i

—24 +2i
—6+ 14i

-9+ 10:
1-3i |,
—14 — 4i

13+ 1i
0+6i |,
7+ 6i

—18 —2i
5-—-23i |,
—12 — 151

—10 4 2i
8§ —16i |,
7—=7i

4+ 8i
0422i |,
0—6i

—23 4 201
11+1 |,
10 — 1i
1—9i

—26+3i|,

-7 —=17i

—3+4i
-9 —5i|,

1

—12 4 44
0—14i |,
2+21i

10 — 4i
042 |,
-7 —2i

-7 —10i
6 —3i

4
-7 —=17i

12 — 23i
—15412i |,
—5+ 5i

—20 — 19i
-8 —12i |,
3+8i

—2 — 4]
—249i |,
13 4 10i |

10 + 161 |
—6+1i|,
4—13i |

Ep

Ex;3

Fy3

E3q4

Ey

Fy

Gia

Hy;

G32

H3s;,

Gu3

Hys

[(—14+2i 245i 4 — 3i
945 —3410i 8+6i |,
| —8—1i 549 —21—1i
[—13+1i —21+6i —11—3i
24+7i —10+4i —10+ 10i
| —3+4+5  9—-11i —13+13i
(8 —2i —8+2i 0— 5i
346i 8—2i —3—1i |,
(10 —-3i —13+43i —14+7i
[—16 —27i —26+2i —12—10i
6 — 8i 2+ 33i 1—9i
| —5—12i 12—18i 29+7i
(14 +21i —948i 4—14i
74+7i 19-—2i 0+4+5i |,
| 7+10i —5+8i 7—18i
" 0+8 16 —12i —8+17i
—5+18 4412 1049 |,
| 10—1i 12—14i 17 —5i
[ 348  —18+410i —94 14i
—17 + 6i 3+ 6i 14+ 7i
|5 —5—17i —6+5i
[ —5—1i 164+3i —5-—13i
—19+ 6i —12 —9—3i |,
| —124+4i —6—12i 6+3i
(2 —-29i —6—3i 8+ 8i
—343i —6-3i 1-—14i |,
1 —3—11i —1+419i
[ 8—-8 —10—2i —5+6i
1 —346i 16+6i |,
| —9+8i 9 —3 -2
154+ 15i —54+19i —16—4i
—7—14i 5+412i —11—16i
| —1+45i 5—3j —1—3i
(—44+15i —18+43i 6—10i
6—1i 4—3j 9—16i |,
| 104+2i —17+12i —2—38i
(14 —4i 25—3i 5—2i
4-—5 2—16i 3-—2i |,
| 7—22i 2450 7—18i
10 4+5i 8+ 1i 12 —9i
12—3i 6-—7i —=34+13i],
| 4—-3i —7—4i —6—10i
[ 5+21i 14200 —4412i
—-7—-8 6-—6i —24+15i],
| —134+5i —22+44i —2+5i
—13 —18i 3—26i —3—8i
—2416i 9—4i 11-—5i],
9+ 7i 544i 2—14i

>

>

>

>



—2418 +3322i 10353 — 966i
My = | —11927 — 7210i —7206 — 12568i
1619 — 9753i 16692 + 11938i
5238 + 1933
4614 + 76381 | ,
—3798 — 2865i
—4750 + 14828i 10137 — 3634i
M, = | —11651 + 152691 —11063 — 9783i
—2388 +17370i 2934 — 1222i
—18315 + 2472i
—16515 + 18210i | ,
—3823 + 2947i
22162 — 7358i 22122 — 18790
M = | 7263+ 4634i 4142 + 7164i
12844 — 6822 —11828 — 13695i
—3570 — 2827i
6578 +26838i | ,
9789 — 20700i
—5068 — 9357i 6306 — 13376i
My=| 9215+5146i 8946 — 8825i
—2927 — 1660i —5342 + 4327i
—3738 — 6683i
14012 — 7731
6279 — 2721i

This matrix equation has the following exact solution

[[—9+8i —12—5i 947i
Yi=| 64+7i —10—4i 14+42i|,
| 6—10i 10+ 11i -1
[ 134+6i —19+6i —11—11i
Y, =|16—-15 16—16i 9+11i |,
| —7—10i 5+6i —5—2i
[—134+7i 14+ 3i 2+
Y3;=| —3+9 843 —-1+6i],
| —15—i —6—4i 5+4i
[ —2—14i 9+ 11i —-9—17i

Ya=|—-9—13i 2+4+13i 9+38i
| 10-13i —2—6i 7—14i

In this example, the initial iterative matrices are
taken as Y;(0) = 10 x I3,i € [[[1,4], and the relative
iterative error is defined as

1Y1 = Yi(0)[1? + Y2 = Y2 (R)II?
+1Y3 = Ys(B)[1> + 1 Ya = Ya(R)II?

VIYLIZ 4 Y2012 + Y3012 + [ Yall2
(81)
where Y;(k)(i € I[1,4]) stand for the kth iteration solu-
tion. The iteration is terminated if the relative iterative
error is less than J or the number of the prescribed itera-
tion step kmax = 30000 is exceeded. Here, d is a positive
number.

ERR =
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Table 1. Iterative number of the RGI algorithm with different u
for Example 5.1.

i p1=5.1499 — 06 4y =5255% — 06 u3=>50499 —06 opt =>5.2499% — 06
T 2184 3000 2227 2142

By some calculations, we find that Example 5.1 sat-
isfies the condition of Theorem 4.1. Then the optimal
parameter of the RGI algorithm is obtained as u =
5.2559¢ — 06 when relaxation factors are chosen as
w1 = 0.25, wy; = 0.52, w3 = 0.32, w4 = 0.48. However,
there are errors in the experiment, and the convergence
rate of the RGI method is not the fastest if x is cho-
sen to be 5.2559¢—06. Thus, we try to find the optimal
experimental parameter near the value 4 = 5.2559%¢ —
06. In Figure 1, we compare the convergence perfor-
mance of the RGI algorithm under p; = 5.1499¢ —
06, 115 = 5.255% — 06, 113 = 5.0499¢ — 06 and sopt =
5.2499¢ — 06, respectively. As shown in Figure 1, if the
convergence parameter 4 is selected as different values,
the convergence curve also has corresponding change.
In order to more intuitively observe the performance of
the RGI algorithm under different convergence param-
eters, we list the IT of the RGI algorithm in Table 1. It
is evident that the convergence performance is the best
when parameter y is chosen to be upgr = 5.2499¢ —
06.

Moreover, the RGI algorithm with w; = wy = w3 =
w4 = 0.5 reduces to the GI algorithm. Similarly, we
adopt the method of experiment debugging to find the
optimal experimental parameter of the GI algorithm.
Finally, the IT of the GI algorithm with ug =
4.5503¢ — 06 is the least.

In Figures 2-3, we present that the convergence
curves of the RGI and GI algorithms with different J. In
this experiment, we compare the convergence curves of
two algorithms under the optimal experimental param-
eters. It follows from Figures 2-3 that the ERR decreases
as the IT increases and gradually approaches 0, which
indicates that the tested algorithms are effective and
convergent. In addition, Figures 2-3 clearly show that
the IT of the RGI and GI algorithms are decreasing as
the increasing of 0. Besides, we can find that the conver-
gence speed of the RGI algorithm is always faster than
the GI one in the above four situations.

In order to more specifically verify the advantages of
the RGI algorithm, we list detailed numerical results of
the RGI and GI algorithms in Table 2, which includes
IT, CPU and ERR. According to Table 2, the IT and
CPU of the tested algorithms are gradually increase
with the decreasing of the parameter J. Moreover, it
can be seen that the IT and CPU of the RGI method
are always less than the GI one. Therefore, we can con-
clude that the convergence performance of the RGI
algorithm proposed in this paper is better than the GI
algorithm [23].
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Figure 1. Comparison of convergence performance of RGI with different parameters u for Example 5.1.
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Figure 2. The convergence curves of the tested methods with § = 0.1 (left) and § = 0.01 (right) for Example 5.1.
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Figure 3. The convergence curves of the tested methods with § = 0.001 (left) and 6 = 0.0001 (right) for Example 5.1.



Table 2. Numerical results of the tested methods with different
o for Example 5.1.

Algorithm 0 0.1 0.01 0.001 0.0001
GI[23] IT 2403 8937 16093 23252
ugl = 4.5503e—06 CPU 22139 84308  14.2259 20.4224
ERR 0.0997 0.01 9.9968e-04 9.9996e-05
RGI IT 2142 8238 15189 22151
URGl = 5.2499e — 06 CPU 19771 7.5984  11.5423 18.4224

ERR 0.0995 0.01 9.9979e-04 9.9999e-05

Example 5.2: We consider the generalized coupled
complex conjugate and transpose Sylvester matrix
equation (1) in the special case of p = g = 2, and it has

AnY1Bi + CiiY1Diy

+EnYIFp + G YEH), = My,
A2 Y1By1 + Cy1Y1Dy

+EnYIFy + G Y Hyy = My,

(82)

with the following parametric matrices

3 -5 -6
An=|-147i =543 1 [,

| —24+7i —9+6i 0

[—3+8i 2-09i -3
By=|-144i -3+11i 10 |,

| 148 2460 —3+1i

[5 — 3i 1 14 — 3i
Ap=|1—-6i —14+11i 1+14i],

|7 9—5i  1+43i

-1 3 5
By=|1 -3 1],

1 2 -3

[14+2i 345 4-1i
Chi=|—-6—-6i —8—1i 5+1i],

| 243 —8+2i 1-9i

[—13+1i —114+6i —11—2i
Diy=| 247 —104+4i —10+1i,

| —2+5i 12—-18 1-9i

[ 8—2i —8-—2i —5i
Ch=|2+7i —10+4i —10+1i|,

| —2+5i 12—18i 1-9i

[—12+1i —104+6i  —20
Dy=| 247 —10+4i —-10+1i],

| —2+5i 12—-18 1-9i

[ 148 6-—2i —8+17i
Ep=| 4+2 1049 249 |,

| —5—3i 4+10i 10+9i

[11+2i 2—8i 2—3i
Fpo=|174+7i 9—-1 145i|,

| 7+10i 548i 7—8i
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1 —i 1 1 2 2
Epn=|i 1 1|, Fp=|1 0 0],
-1 1 1 01 -3
f1 1 —-17 1 2 2
Gn=|1 4 1|, Hp=|1 0 o],
-2 0 -2 [0 1 1
f1 1 -1 1 0 -1
Gpop=|1 4 1|, Hp=|-1 —-i 1],
-2 0 -2 -1 2 1
[—4792 + 2166i 2299 + 5490i
M, = | 4679 4+ 3574i  —3507 — 629i
| —2720 —2137i —4833 + 2642i
3353 — 3607i
1933 — 1090i |,
2164 + 163i
562 + 1926i 356 + 452i
M, = | —1858 4+ 1250i 1113 + 610i
—511+863i 677 — 3228i
1636 + 492i
2678 + 3267i
346 — 3251i
It has the exact solution
[24+2i 2—-2i 1
Y, = 1 -1 2i |,
[2—-2i 242 -1
[16 +16i 20 —28i 12+4i
Yo=|29—4i —745 —4+417i
[10—-19i 9+4+11i —1—2i

The initial iterative matrices are taken to be Y;(0) =
107% x I3,i € I[1, 2]. Then, we denote the relative iter-
ative error by

VI =Yi®)2 + Y2 — 20|12
Y1112 + [ V2|2

ERR (83)

In this example, all runs are stopped once ERR is less
than & or k reaches the maximal iterative steps kpyax =
50,000. Here, £ is a positive number.

For Example 5.2, we also compare the convergence
performance of the RGI and GI algorithms. The opti-
mal convergence parameters involved in two algo-
rithms are determined by the following method. If
relaxation factors are selected as w; = 0.07, w; = 0.18,
the optimal convergence factor of the RGI algorithm
is adopted as ppgr = 1.0821e — 04 by Theorem 4.1.
Moreover, the RGI algorithm with w; = w; =0.5
reduce to the GI algorithm. By some calculations, the
best convergence parameter of the GI algorithm is
fiGr = 4.5361e — 05.

In Figures 4-5, we plot the graphs of ERR(log10)
versus the IT of the RGI and GI algorithms with differ-
ent &. According to the convergence curves, we observe
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Figure 4. The convergence curves of the tested methods with & = 0.1 (left) and & = 0.01 (right) for Example 5.2.
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Figure 5. The convergence curves of the tested methods with ¢ = 0.001 (left) and & = 0.0001 (right) for of Example 5.2.

that the two algorithms are both convergent and effi-
cient. It is obvious that the convergence rate of the RGI
method (w; = 0.07, w, = 0.18) is always faster than GI
one (w; = w; = 0.5) for the four cases of &. In addi-
tion, it follows from Figures 3-4 that the IT and CPU
of the tested algorithms are increasing with the decreas-
ing of £. In particular, the convergence advantage of the
RGI algorithm is more obvious when ¢ is smaller. The
results illustrate that the RGI algorithm is superior to
the Gl algorithm if the relaxation parameters are chosen
appropriately.

In order to further verify the advantages of the pro-
posed algorithm, we clearly report the numerical results
of the RGI and GI methods for Example 5.2 in Table 3.
From Table 3, it is easy to discover that the IT of the
algorithms is increasing with the decreasing of rela-
tive error. Furthermore, the IT and CPU of the RGI
method are less than those of the GI one. Asa whole, the
proposed algorithm has better convergence behaviours
than the GI method. This means that the relaxation

Table 3. Numerical results of the tested methods with different
¢ for Example 5.2.

Algorithm ¢ 0.1 0.01 0.001 0.0001
Gl [23] IT 3360 16003 30706 48950
ng =4.5361e—05 CPU 29696 13.7964  19.5881 41.3501
ERR 0.1 0.01 9.9998e-04 9.9995e-05
RGI IT 2594 11590 20780 30138
urel = 1.0821e — 04 CPU 22231 10.0329 154115 26.0794

ERR 0.0995 0.01 9.9999e-04 9.9982e-05

technique can effectively improve the convergence rate
of the GI algorithm.

6. Concluding remarks

In this paper, by adopting the relaxation technique into
the GI algorithm, we establish the relaxed gradient-
based iterative (RGI) algorithm to solve the generalized
coupled complex conjugate and transpose Sylvester
matrix equations. The main idea of the algorithm is
introducing relaxation parameter to control the weights



of iterative sequences. Applying straighten operation
and real representation of complex matrices, we derive
the necessary and sufficient condition for convergence
of the RGI algorithm. Besides, the optimal convergence
parameter and some related conclusions are given. To
overcome high-dimensional computational problems,
we propose sufficient condition for convergence with
smaller computational complexity. Finally, numerical
experiments verify that the RGI algorithm has more
excellent convergence performance than the GI one.

Note that in our experiment, the relaxation factors wy
(I € I[1, q]) are obtained through experimental debug-
ging. The selection criteria for the optimal relaxation
factors are not provided. The future research direction
is to further develop the theory of selecting the optimal
relaxation factor. Besides, the value of the convergence
parameter u in the RGI algorithm is fixed. To optimize
the convergence performance of the RGI algorithm, we
will consider to introduce different step size factors into
the RGI algorithm.
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