
Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/taut20

Two-stage deep learning classification for diabetic
retinopathy using gradient weighted class
activation mapping

Abderaouf M. Moustari, Youcef Brik, Bilal Attallah & Rafik Bouaouina

To cite this article: Abderaouf M. Moustari, Youcef Brik, Bilal Attallah & Rafik Bouaouina (2024)
Two-stage deep learning classification for diabetic retinopathy using gradient weighted class
activation mapping, Automatika, 65:3, 1284-1299, DOI: 10.1080/00051144.2024.2363692

To link to this article:  https://doi.org/10.1080/00051144.2024.2363692

© 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

View supplementary material 

Published online: 27 Jun 2024. Submit your article to this journal 

Article views: 630 View related articles 

View Crossmark data Citing articles: 1 View citing articles 

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

https://www.tandfonline.com/journals/taut20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2024.2363692
https://doi.org/10.1080/00051144.2024.2363692
https://www.tandfonline.com/doi/suppl/10.1080/00051144.2024.2363692
https://www.tandfonline.com/doi/suppl/10.1080/00051144.2024.2363692
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2024.2363692?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2024.2363692?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2363692&domain=pdf&date_stamp=27%20Jun%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2363692&domain=pdf&date_stamp=27%20Jun%202024
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2024.2363692?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2024.2363692?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=taut20


AUTOMATIKA
2024, VOL. 65, NO. 3, 1284–1299
https://doi.org/10.1080/00051144.2024.2363692

Two-stage deep learning classification for diabetic retinopathy using gradient
weighted class activation mapping

Abderaouf M. Moustaria, Youcef Brik a, Bilal Attallaha and Rafik Bouaouinab

aLASS Laboratory, Faculty of Technology, University Mohamed Boudiaf of M’sila, M’sila, Algeria; bPIMIS Laboratory, Electronics and
Telecommunications Department, University 08 Mai 1954 of Guelma, Guelma, Algeria

ABSTRACT
The fundus images of patients with Diabetic Retinopathy (DR) often display numerous lesions
scattered across the retina. Current methods typically utilize the entire image for network learn-
ing, which has limitations since DR abnormalities are usually localized. Training Convolutional
Neural Networks (CNNs) on global images can be challenging due to excessive noise. There-
fore, it’s crucial to enhance the visibility of important regions and focus the recognition system
on them to improve accuracy. This study investigates the task of classifying the severity of dia-
betic retinopathy in eye fundus images by employing appropriate preprocessing techniques to
enhance image quality. We propose a novel two-branch attention-guided convolutional neural
network (AG-CNN) with initial image preprocessing to address these issues. The AG-CNN initially
establishes overall attention to the entire image with the global branch and then incorporates a
local branch to compensate for any lost discriminative cues. We conduct extensive experiments
using the APTOS 2019 DR dataset. Our baseline model, DenseNet-121, achieves average accu-
racy/AUC values of 0.9746/0.995, respectively. Upon integrating the local branch, the AG-CNN
improves the average accuracy/AUC to 0.9848/0.998, representing a significant advancement in
state-of-the-art performance within the field.
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1. Introduction

Diabetes or diabetes mellitus (DM) is a worldwide issue
of pandemic scale. As per the World Health Organi-
zation’s projections, the number of individuals world-
wide with diabetes is estimated to reach 360 million
by 2030 [1]. DM is now more than just a problem
in developed, prosperous countries. Due to nutritional
changes, obesity, and a lack of physical activity, the
disease has spread to developing countries. Every-
one with DM runs the risk of developing diabetic
retinopathy (DR).

A fundus examination is now the most accurate
procedure for DR diagnosis. Microaneurysms, hemor-
rhages, and exudates are manually identified by trained
ophthalmologists, which is labour-intensive and sub-
ject to inter-observer variation. An autonomous sever-
ity classification system could substantially impact the
treatment of vision disorders connected to DR by
improving the speed and reproducibility of DR diag-
noses.

In the last ten years, machine and deep learning, in
particular, have proven their ability to characterize DR
severity properly. With the swift expansion of data and
computing resource capacity, along with the accessibil-
ity of Datasets for classifying Diabetic Retinopathy in
fundus images, like APTOS 2019 [2], solutions based

on convolutional neural networks (CNNs) are growing
in popularity. Using already existing large-scale CNN
architectures, transfer learning is used to build themost
effective CNNmodels for Retina diseases [3,4], but this
requires a lot of training data and computing resources.

Our approach employs several preprocessing meth-
ods to enhance the detection of the presence of issues in
the fundus images, as well as Grad-Cam, an algorithm
that utilizes Class Activation Map (CAM) [5] and
performs multiple evaluations using deep neural net-
workmodels to ensure precise outcomes and effectively
address the concerns above. This technique also makes
it possible to create high-resolution graphics with
enhanced class discrimination capabilities. Enhancing
the comprehension of deep model representations and
improving the clarity of classification systems pave the
way for leveraging these capabilities to reinforce the
model’s predictions.

The remaining sections of this paper are struc-
tured as follows, Prior works in this field are sum-
marized in Section 2. The data used for this research
is presented in Section 3, and the proposed tech-
niques are presented in Section 4. The experimental
part of the proposed system is presented in Section 5.
Finally, Section 5 draws a conclusion to wrap up the
paper.
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2. Related works

The global image is commonly used for training in
prior studies on DR classification. For instance, Khalifa
et al. presented deep transfer learning using the models
AlexNet, SqueezeNet, Res-Net18, GoogleNet, VGG16,
and VGG19 [6]. Using a modified VGG16 model,
Dekhil et al. developed a transfer learning strategy
[7]. A custom Xception architecture was proposed by
Kassani et al. [8]. Several unique pre-trained mod-
els were suggested by Tymchenko et al. [9]. Another
automatic recognition of the DR was proposed by
Qureshi et al. [10] proposed based on a new multi-
layer architecture of active deep learning (ADL-CNN).
The authors selected the most informative regions-
of-interest within the retinograph image to grade five
severity-levels of diabetic retinopathy using. The exper-
iments were conducted on EyePACS dataset and the
results outperformed the state-of-the-art methods.

In research conducted by Zeng et al. [11], DR clas-
sification was performed using a deep convolutional
neural network based on a Siamese-like structure. The
suggested architecture takes as inputs two individual
fundus images that each represent one eye. Zeng’s
approach has an area under the ROC curve (AUC) of
95.10% and a sensitivity of 82.2%. Shanthi and Sabee-
nian [12] used amodified AlexNet architecture to iden-
tify DR fundus pictures on theMESSIDOR dataset [13]
by adding the right pooling, softmax, and ReLU layers.
This suggested model has a 96.25% average accuracy
in the MESSIDOR dataset. Besides, a computer-aided
diagnosis system for diabetic retinopathy (CAD-DR)
was proposed to recognize the five stages ofDR through
retinal fundus images [14]. A preprocessing step was
performed in a perceptual-oriented colour space to
enhance the DR-related lesions and then an enhanced
pre-trained CNN model was involved to get high clas-
sification results.

In a separate research, Jain et al. [15] assessed the
performance of several pre-trained networks (VGG16,
VGG19, and InceptionV3) for binary and 5-class DR
classification. To rectify the significant class skew-
ness, several data augmentation methods were applied.
According to Jain’s study, the number of layers directly
affects how accurate a model is. With a score of 80.40%,
VGG19 had the best accuracy. Hagos and Kant [16]
used an Inception V3 network and a limited dataset
transfer learning method to create another DR classi-
fication model. Hagos’ method used an SGD optimizer
and the cosine loss function to obtain 90.9% accuracy.

Quellec et al. [17] employed a backpropagation gen-
eralization and a weakly-supervised model to evaluate
referable lesion locations in DR images. Utilizing Kag-
gle and E-Ophtha datasets, this approach has an Area
Under Curve metric of 95.5% and 94.9%, respectively.
Glaucoma was evaluated by Gargeya and Leng [18],
who utilized automatic feature learning. Datasets from

MESSIDOR 2 and E-Ophtha were used to test the
model. The 5-fold cross-validation AUC of Gargeya’s
approach was 97.00%. Shakibania et al. [19] employed
two pre-trained deep learning models for the detection
and stage grading of diabetic retinopathy using a single
fundus retinal image. The proposedmodel is trained on
a large multi-centre dataset, including the APTOS 2019
dataset, obtained from publicly available sources.

Wang et al. [20] proposed Zoom-in-Net to classify
DR. The Zoom-in-Net uses an attention mechanism to
generate suspicious spots. A separate bilinear learning
technique [21] with an attention mechanism was also
utilized for DR classification. The writers used a strat-
egy to highlight the most critical elements while down-
playing the less important ones. Madarapu et al. [22]
have proposed a novel deep integrative approach for
DR classification, leveraging the strengths of residual
blocks, channel-spatial attention mechanism (CSAM),
and non-local blocks (NLB).

Narayanan et al. [23] and Majumder et al. [24] have
proposed a two-stage system, calling it a hybrid system;
the first stage is for just detection and the second one
or grading the severeness of DR in APTOS 2019 DR
dataset.While Shaban et al. [25] andGangwar et al. [26]
used amodified vgg-19 and inception ResNet v-2mod-
els, respectively, to classify DR., Ramchandre et al. [27]
used the AUGMIX, a data augmentation method to
expand the APTOS 2019 dataset much.

Both Md. Nahiduzzaman et al. [28] and Md. Islam
et al. [29] utilized CLAHE preprocessing technique
to build their DR severity classification system based
on APTOS 2019 datasets, Md. Nahiduzzaman et al.
used a parallel CNN network for feature extraction
followed by an Extreme Learning Machine (ELM) clas-
sifier, while Md. Robiul Islam et al. applied supervised
contrastive learning to build his system. Jian et al. [30]
used a “Triple-DRNet” which is amodel that subdivides
the classification of five types of DR.

3. Data description

The data used in this work is a collection of eye fundus
images obtained using fundus imaging. This process
uses reflected light to get a two-dimensional (2D) repre-
sentation of semi-transparent retinal tissues in 3D that
is projected onto the image plane. We use in this work
theAPTOS 2019DRKaggle dataset to develop and vali-
date the proposed system. The APTOS 2019 DRKaggle
benchmark dataset is a part of the blindness detection
challenge of the samename, is a sizable dataset of retinal
photos obtained with a fundus camera under various
imaging circumstances. To identify various DR severity
levels, the images undergo manual grading on a scale
from 0 to 4, where 0 represents no DR, 1 for mild, 2
for moderate, 3 for severe, and 4 for proliferative DR,
as shown in Figure 1. The distribution of the classes
in the APTOS 2019 DR dataset is shown in Table 1,
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Table 1. Distribution of samples in the
APTOS 2019 dataset.

Scale Severity level # Samples

0 No DR 1805
1 Mild DR 370
2 Moderate DR 999
3 Severe DR 193
4 Proliferative DR 295

Total 3662

while Figure 1 illustrates some DR images extracted
from different APTOS 2019 classes.

4. Methods

4.1. Densenet-121model

DenseNet [31] is a convolutional neural network that
uses dense connections between layers. These connec-
tions are made through Dense Blocks, which connect
all layers directly if their feature-map sizes are the same.
To keep the feed-forward nature, each layer gets more
information from all the layers before it and sends its

Table 2. Densenet-121 summary.

Layer DenseNet-121

Convolution 7 × 7 conv, stride 3
Pooling 3 × 3 max pool, stride 2
Dense Block (1)

(1×1 conv
3×3 conv

) × 6
Transition Layer (1) 1 × 1 conv

2 × 2 average pool
Dense Block (2)

(1×1 conv
3×3 conv

) × 12
Transition Layer (2) 1 × 1 conv

2 × 2 average pool
Dense Block (3)

(1×1 conv
3×3 conv

) × 12
Transition Layer (3) 1 × 1 conv

2 × 2 average pool
Dense Block (4)

(1×1 conv
3×3 conv

) × 12
Classification Layer 7 × 7 global average pool

14-D fully-connected, elementwise sigmoid

feature maps to all the layers afterwards; this architec-
ture is displayed in Figure 2, while its structure with all
the layers is presented in Table 2.

4.2. Laplacian of Gaussian (LoG)

The second spatial derivative of an image’s Lapla-
cian is a 2-D isotropic measure. An image’s Laplacian

Figure 1. Samples from the APTOS 2019 DR dataset.

Figure 2. Illustration of the Densenet-121 architecture.



AUTOMATIKA 1287

highlights the areas with sudden changes in intensity,
making it a popular tool for edge detection. To lessen
the sensitivity of an image to noise, the Laplacian is fre-
quently applied after an image has been first smoothed
with a method similar to a Gaussian Smoothing fil-
ter [32]. After using a Laplacian or Gaussian filter to
f (x, y), this detector searches for zero crossings to iden-
tify edges. This technique divides the image where the
intensity varies to detect effectively the borders. It com-
bines Gaussian filtering and Laplacian. It determines
the boundaries and testsmore extensive area before cre-
ating another image with a grey level as the output. The
Laplacian L(x, y) of an image with pixel intensity values
I(x, y) is given by:

L(x, y) = ∂2I
∂x2

+ ∂2I
∂y2

(1)

The typical small kernel is displayed in Figure 3, while
Figure 4 shows the input and output of the LoG tech-
nique. The 2-D LoG function with a Gaussian standard
deviation and a zero centre takes the following form:

L(x, y) = ∂2I
∂x2

+ ∂2I
∂y2

(2)

We note here that we used a sigma equal to 3 in the
Laplacian of Gaussian filtering.

Figure 3. Standard LoG kernel.

Figure 4. Applying LoG filter: (a) original image and (b) filtered image.

4.3. Contrast limited adaptive histogram
equalization (CLAHE)

An image histogram is a representation of the image
intensity value. The primary purpose of the histogram
is to provide an image’s statistical data. This explains
why we can adjust the histogram to perform image
improvement. Histogram equalization is a widely used
technique for image enhancement since it is straight-
forward and computationally light. We improve the
colour fundus picture using Contrast Limited Adaptive
Histogram Equalization (CLAHE). This preprocessing
technique is commonly utilized in ophthalmology to
enhance the visibility of the issues present. One essen-
tial aspect of a fundus image pertains to the contrast of
blood vessels. Image contrast results from combining
a range of intensity levels and distinguishing between
the full spectrum of pixel values from the highest to the
lowest. The application of histogram manipulation for
image enhancement aims to achieve a uniform distri-
bution of intensity. In low-contrast images, the effective
intensity range is limited. However, histogram equal-
ization expands the intensity distribution, effectively
altering the original image’s intensity. An example of
the input and output of the CLAHE method is shown
in Figure 5.

Figure 6 depicts the flowchart for the fundus image
enhancement method suggested in this study. As an
input image, we employ an RGB colour retinal image.
The colour picture channel is split in the first step, leav-
ing us with three images: R, G, and B image channels.
Only the G channel is used in the picture enhance-
ment procedure utilizing CLAHE because it contains
more significant structural information about blood
vessels than the other channels. The improved G chan-
nel image follows. The subsequent step combines the
three image channels (R, enhanced G, and R). After
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Figure 5. The effect of the CLAHE method: (a) input, (b) output.

Figure 6. Flowchart of the CLAHE technique.

this procedure, we have an improved colour retinal
image.

4.4. Grad-CAM

Selvaraju et al. [5] developed a method called Gradi-
ent Weighted Class Activation Mapping (Grad-CAM),
which offers a clear understanding of deep learning
models. Any highly linked neural network may be
graphically described using Grad-CAM, further facil-
itating model understanding during the prediction
phase. Illustrated in Figure 7, Grad-CAM utilizes an

input image to make predictions using the proposed
model. The model generates the output class based on
its forecast, and any one of the Convolution layers is
then subjected to the Grad-CAM algorithm. The last
Conv layer is often utilized for Grad-CAM. Figure 8
show some examples of the results of the Grad-CAM
algorithm, The steps of the Grad-CAM algorithm are:

• Acquire the final result of the network after complet-
ing the convolution phase.

• Calculate the gradient of the score for class c,
denoted as Yc, with respect to Ak, which represents
the activation maps of a conv layer.

∂Yc

∂Ak (3)

• By utilizing the global average pooling technique,
emphasize the importance of each activation map k
for specific classes:

αk
c = 1/Z

∑
i

∑
j

∂Yc

∂(Ai)
k
j

(4)

Where Z is the number of pixels in the activation
map In this context, the “partial differentials” corre-
spond to the gradients computed during the back-
propagation process, while the “summation over I
and j” represents the global average pooling opera-
tion.

• Generate a heatmap by merging activation maps
with weights and applying the ReLU function to the
resulting values.

LcGrad−CAM = RELU
∑
k

αk
c A

k (5)

ReLU is the preferred activation function because it
accentuates characteristics that are beneficial for the
specific class being considered. ROIs are identified as
pixels whose intensity are dependent on the gradient
Yc. Without ReLU, localization maps might contain
non-pos pixels associated with other image classes,
negatively impacting localization accuracy.

• Normalize heatmap (optional but advised step since
it enhances outcomes).
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Figure 7. Explanatory diagram of the Gradient Weighted Class Activation Mapping (Grad-CAM).

Figure 8. Extracted heatmaps superposed on their corresponding input images.

5. Proposed system

In this section, we describe the proposed Attention-
guided system designed for classifying eye fundus
images based on the DenseNet-121 model as a
backbone. The overall attention-guided structure is
explained in Section 5.2 and illustrated in Figure 9. The
mask inference method for discriminative area detec-
tion is covered in Section 5.3. The approach involves
two main stages: global and local. The input images are
run through a preprocessing step and then are fed to
dense convolutional blocks followed by a 1x1 convo-
lution block and a pooling layer; these two are transi-
tion blocks. At the end, the blocks are connected to a
max-pooling layer, an fully connected (FC) layer, and
a sigmoid layer. Contrary to the global stage, the local
stage’s input is local images cropped by themask gener-
ated from the global stage. The input image is overlaid
over the heat map for visualization purposes.

5.1. Multilabel setup

In this classification model, we treat the problem as
a multilabel scenario. Each image is assigned a 5-bit
class vector representing different severity levels L =

[l1, l2, l3, l4, l5]. Here, l ∈ {0, 1}, where 1 indicates that
the severity level has been reached, and 0 suggests it
hasn’t. Therefore, if a sample belongs to a specific class
(e.g. class 3), it is also considered to belong to all the
classes below it (0, 1, and 2). This approach is grounded
in the notion that once an eye attains severity levels 1
and 2, it will inevitably advance to level 3.

5.2. Global and local stages

The global input image gives the global stage access to
pertinent information. TheDenseNet-121 served as the
primary global model in this study. It comprises three
dense blocks and three transition layers, followed by a
global average pooling layer and an FC layer for classi-
fication. Finally, the output vector Zg(Ic) is normalized
by applying a sigmoid layer using:

p̃g(c|I) = 1
(1 + e−p(c|I) (6)

Where I is the global image, p̃g(c|I) indicates the prob-
ability score of I fitting to the cth class, c ∈ {1, 2, . . .C}
and C represents the total number of classes. Con-
versely, the local branch focuses on the relevant area
and is expected to mitigate the disadvantages of only
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Figure 9. Proposed system structure.

using the global image. More specifically, the local
branch shares the same convolutional network struc-
ture as the global branch. But do not share weights,
as they serve different purposes. The probability score
of a local branch is denoted by p̃l(c|Ic) where Ic is the
input image of the local branch. We perform the same
normalization and optimization as the global branch.

5.3. Mask inference and ROIs union

In order to isolate the region of interest (ROI) in
the global DR images, we build a binary mask by
performing thresholding operations on feature maps
(ROI heatmap). These heatmaps are extracted using the
Grad-CAM technique.

After that, the heatmap is binarized according to a
threshold called τ . We created a bounding box around
it, then we cropped it out of the original image (see
Figure 10). For some DR images where more than one
region of interest are created, we apply a union of these
ROIs and the resulted bounding box will be cropped
from the original image. Figure 11 shows the principle
of this process.

5.4. Training strategy of AG-CNN

This paper adopts a two-stage training scheme for AG-
CNN:
Stage I:The global branch network pre-trained by Ima-
geNet is finetuned using the global images. Equation (1)

Figure 10. ROI cropping process using mask inference.

is used to normalize the resulting vector; after this stage,
the weights of the global branch are fixed.
Stage II: Local images are obtained using mask infer-
encewith threshold τ , thenwe feed it to the local branch
for finetuning and normalizing using Equation (1), and
we get our final classification results at the output of this
branch.

In each stage, we use the model with the highest accu-
racy/AUC on the validation set for testing. The overall
AG-CNN training procedure is presented in Algorithm
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Table 3. Evaluation of Multiple Models trained using the APTOS 2019 Dataset.

Model Accuracy % AUC % F1 % Val loss % Precision % Recall %

Densenet-121 96.18 98.99 95.32 0.112 96.90 93.85
Mobilenet v2 89.31 89.86 85.22 1.424 99.64 74.57
Resnet50 96.07 98.67 95.53 0.131 97.69 93.53
Inception V3 95.71 98.39 94.81 0.154 96.53 93.22
VGG16 95.85 99.13 95.02 0.110 94.68 95.42

Figure 11. Bounding boxes union in case of multiple ROIs.

1. Variants of training strategy may influence the per-
formance of AG-CNN. We discussed it in the next
section.

6. Results and discussion

To investigate the applicability of the proposed
approach, we evaluated its performance using the
APTOS 2019 diabetic retinopathy dataset. Series of
experiments were conducted to evaluate our approach
with and without data augmentation. Besides, several
preprocessing techniques were considered in order to
enhance the DR image quality. For performance assess-
ment, we used a set of measures namely the accuracy
rate, the area under ROC curve (AUC), the recall rate,
the precision rate and the f1-score (F1).

Accuracy = TP + TN
TP + FP + FN + TN

(7)

Recall = TP
TP + FN

(8)

Precision = TP
TP + FP

(9)

F1 = 2 ∗ precision ∗ recall
precision + recall

(10)

In order to justify the choice of the DenseNet archi-
tecture over others, we conducted an experiment with
well-knowndeep learningmodels trained and validated

on the APTOS 2019 DR dataset without preprocess-
ing. The results of this experiment are displayed in
Table 3. Upon analyzing these results, we notice that the
DenseNet-121model outperforms othermodels on this
dataset. As a result, we select it as the backbone for the
rest of our experiments.

6.1. Protocols and setups

During all experiments, the evaluation protocol of the
APTOS 2019 database takes 85% of the dataset for
training and 15% as the validation set. Experiments
with and without data augmentation and different pre-
processing strategies are established on the dataset clas-
sification. We have merged multiple transformation
steps to change the original images and produce other
variations in this work. The fundamental transforma-
tions applied to each training image in the gallery are:

• Resize the image to fit themodel input (224 × 224 ×
3).

• The random image zooms up to 15%.
• Flip the image vertically and horizontally at random.

6.2. Experiments

To investigate the applicability of the proposed
approach, we evaluated its performance using the
APTOS 2019 diabetic retinopathy dataset. We start by
justifying the choice of the DenseNet architecture over
others, where we conducted an experiment using the
most used CNN models without preprocessing. The
results of this experiment are displayed in Table 3.
Upon analyzing these results, we determine that the
DenseNet-121model outperforms othermodels on this
dataset. As a result, the DenseNet-121 was chosen in
this work as the backbone CNN model to explore if
Attention-guided CNN can improve the system perfor-
mance.

After that, we perform a basic data augmentation for
training by scaling the original images to 224 × 224,
random flipping (horizontal and vertical) and zooming
with a range of 15%. The batch size of 64 has been cho-
sen for network optimization. Each branch receives 25
epochs of training. The learning rate is 0.0001 at first.
We employ a weight decay of 50%. The same process
is used during validation and test. We build AG-CNN
with the TensorFlow Keras framework.
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Table 4. Evaluation metrics for the scenario 1 experiment.

Score

Branch Threshold Accuracy AUC F1 Loss Precision Recall

Global DenseNet-121 96.18% 98.99% 95.32% 0.112 96.90% 93.85%
Local (Cropping) τ = 0.1 96.44% 99.38% 95.66% 0.097 96.35% 95.03%

τ = 0.2 96.25% 98.85% 95.47% 0.127 97.26% 93.78%
τ = 0.3 95.92% 98.92% 95.03% 0.131 96.77% 93.40%
τ = 0.4 96.18% 99.08% 95.37% 0.115 96.00% 94.80%
τ = 0.5 95.96% 98.77% 95.11% 0.133 96.79% 93.55%
τ = 0.6 96.14% 95.28% 97.29% 0.114 97.69% 93.05%
τ = 0.7 96.00% 98.51% 95.09% 0.140 97.40% 92.95%
τ = 0.8 95.67% 98.81% 94.71% 0.130 96.49% 93.08%
τ = 0.9 95.30% 98.71% 94.26% 0.137 96.74% 91.95%

Figure 12. ROC curve of the best performing branch/threshold iteration of scenario 1.

By analyzing the potential of each thresholding
value, we evaluated the performance of the proposed
AG-CNN architecture. We also evaluate the perfor-
mance of both global and local branches with and
without preprocessing.

6.2.1. Scenario 1
The first scenario consists of training the system (global
and local) with the original dataset without CLAHE or
LoG. The only transformations applied are the basic
ones mentioned earlier. Table 4 shows the resulting
metrics of the global and local branches using this first
scenario, while Figure 12 represents the ROC curve of
the best-performing architecture.

6.2.2. Scenario 2
For the second scenario, three new datasets are gen-
erated using CLAHE and LoG (Figure 13). These
new datasets are used for the training of this second
scenario. Tables 5, 6 and 7 show the resulting valida-
tionmetrics of the global/local branches corresponding
to CLAHE, LoG and CLAHE+LoG preprocessed data,
respectively. Figure 14 represents the ROC curves of

Figure 13. Diagram of the new datasets generation.

the best-performing iteration for every preprocessing
method used in this scenario.

6.2.3. Scenario 3
Data class imbalance can lead to a loss in deep learn-
ing performance. For this reason, in this scenario, we
implemented a data balance algorithm on the same
datasets generated in the previous scenario by applying
some transformations (rotation with −/ + 45◦, hori-
zontal flip, and brightness with range from 0.7 to 1.3).
Consequently, the sample number for classes ’Mild
DR’, ’Moderate DR’, ’Severe DR’ and ’Proliferative DR’
become 1730, 1740, 1710 and 1720, respectively. We
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Table 5. Evaluation metrics for the CLAHE preprocessing process.

Score

Branch Threshold Accuracy AUC F1 Loss Precision Recall

Global DenseNet121 96.51% 99.22% 95.77% 0.105 96.73% 94.87%
Local (Cropping) \τ = 0.1 96.18% 98.89% 95.33% 0.112 96.56% 94.22%

τ = 0.2 95.74% 98.55% 94.79% 0.144 96.17% 93.55%
τ = 0.3 95.89% 98.79% 95.03% 0.123 96.07% 94.05%
τ = 0.4 95.70% 98.53% 94.79% 0.146 96.17% 93.50%
τ = 0.5 95.67% 98.87% 94.66% 0.128 96.13% 93.33%
τ = 0.6 95.38% 98.82% 94.33% 0.134 95.79% 93.00%
τ = 0.7 95.27% 98.94% 94.24% 0.121 94.23% 94.35%
τ = 0.8 95.01% 98.74% 93.94% 0.148 93.60% 94.32%
τ = 0.9 94.50% 98.48% 93.32% 0.157 93.59% 93.13%

Table 6. Evaluation metrics for the LoG preprocessing approach.

Score

Branch Threshold Accuracy AUC F1 Loss Precision Recall

Global DenseNet121 92.80% 97.20% 90.97 0.198 95.31% 87.09%
Local (Cropping) τ = 0.1 92.98% 97.29% 91.16% 0.203 96.04% 86.81%

τ = 0.2 93.27% 97.69% 91.60% 0.181 93.91% 89.51%
τ = 0.3 92.47% 97.07% 90.55% 0.208 94.52% 86.96%
τ = 0.4 92.65% 97.21% 90.63% 0.201 95.86% 86.01%
τ = 0.5 92.58% 96.94% 90.66% 0.211 94.52% 87.19%
τ = 0.6 92.54% 9691% 90.65% 0.209 95.21% 86.59%
τ = 0.7 92.18% 9629% 90.23% 0.238 93.90% 86.92%
τ = 0.8 91.89% 9617% 89.67% 0.242 93.93% 85.83%
τ = 0.9 89.56% 9512% 87.15% 0.275 88.43% 85.99%

recall here that we kept the number of samples in class
’No DR’ without change (1805 samples).

Tables 8, 9 and 10 show the results of this sce-
nariowith the three preprocessingmethods used above.
Meanwhile, Figures 15 and 16 illustrate the ROC curves
of each preprocessing technique for the global branch
and also for the local branch with best threshold that
achieved the highest performance.

After examining the results of this scenario, we
noticed that data balancing didn’t improve much in the
performance of the model. In some cases, it was a bit
worse due to the class imbalance that can be considered
as a natural distribution of the diabetic retinopathy. As
a result of the performance of this scenario, we continue
the rest of the experiments without performing the data
balancing.

6.2.4. Scenario 4
In this scenario, another boost for datasets is imple-
mented to generate two new datasets by merging the

original dataset with twomodified ones (using CLAHE
and LoG). Figure 17 shows the process of creating the
two new datasets. Tables 11 and 12 show the result-
ing validationmetrics of the system using this scenario,
while Figure 18 shows the ROC curves of these results.

6.3. Comparison

After evaluating our different tests, the obtained results
can be summarized in Table 13. We note that the
results obtained when we used data augmentation are
not mentioned in this table as it didn’t bring much
improvement (scenario 3). We present an overview
of the global branch’s performance, which serves as
the benchmark for each preprocessing process. The
accuracy and the AUC are low when using LoG pre-
processing, with 92.62% and 97.25%, respectively. At
the same time, the CLAHE+LoG preprocessing gave
slightly better results with 93.20%/98.02% in term of
accuracy and AUC, respectively. However, our system

Table 7. Evaluation metrics for the CLAHE+LoG preprocessing approach.

Score

Branch Threshold Accuracy AUC F1 Loss Precision Recall

Global DenseNet121 93.49% 98.01% 91.91% 0.177 95.81% 88.42%
Local (Cropping) τ = 0.1 92.65% 97.82% 91.32% 0.194 90.11% 92.66%

τ = 0.2 92.95% 97.81% 91.29% 0.182 94.25% 88.57%
τ = 0.3 92.76% 97.61% 91.12% 0.187 93.78% 88.70%
τ = 0.4 92.62% 97.37% 90.92% 0.198 93.18% 88.85%
τ = 0.5 92.25% 97.19% 90.19% 0.219 94.87% 86.01%
τ = 0.6 92.87% 97.24% 91.22% 0.203 92.64% 89.96%
τ = 0.7 92.61% 97.48% 90.79% 0.205 94.24% 87.68%
τ = 0.8 92.15% 97.06% 90.42% 0.220 91.43% 89.50%
τ = 0.9 90.55% 96.02% 88.36% 0.253 90.55% 86.45%
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Figure 14. ROC curves of the best performing branch/threshold in scenario 2 with different preprocessing techniques: (a) CLAHE,
(b) LoG, and (c) CLAHE+LoG.

Table 8. CLAHE preprocessing effect with data balancing.

Score

Branch Threshold Accuracy AUC F1 Loss Precision Recall

Global DenseNet121 96.51% 99.38% 96.47% 0.1 96.42% 96.56%
Local (Cropping) τ = 0.1 96.12% 98.54% 95.01% 0.102 96.33% 95.73%

τ = 0.2 95.64% 98.27% 94.84% 0.124 95.61% 94.12%
τ = 0.3 95.59% 98.42% 95.23% 0.118 95.49% 94.63%
τ = 0.4 94.67% 98.86% 94.44% 0.14 94.89% 94.03%
τ = 0.5 95.94% 98.21% 94.83% 0.108 94.57% 94.14%
τ = 0.6 95.27% 98.85% 94.08% 0.146 94.05% 94.16%
τ = 0.7 95.25% 98.27% 94.17% 0.105 94.06% 94.30%
τ = 0.8 95.84% 98.13% 93.64% 0.119 93.44% 93.87%
τ = 0.9 93.38% 98.68% 93.74% 0.16 93.6% 93.07%

Table 9. LoG preprocessing effect with data balancing.

Score

Branch Threshold Accuracy AUC F1 Loss Precision Recall

Global DenseNet121 91.89% 97.49% 91.54% 0.2 92.57% 90.65%
Local (Cropping) τ = 0.1 91.21% 97.08% 90.76% 0.219 93.79% 88.02%

τ = 0.2 90.96% 97.03% 90.4% 0.219 93.26% 87.75%
τ = 0.3 90.66% 96.92% 89.97% 0.232 93.51% 86.73%
τ = 0.4 90.96% 96.68% 90.36% 0.233 92.73% 88.18%
τ = 0.5 90.51% 96.83% 89.83% 0.235 94.16% 85.93%
τ = 0.6 89.91% 96.31% 89.36% 0.243 91.02% 87.81%
τ = 0.7 88.69% 94.86% 87.34% 0.307 94.45% 81.29%
τ = 0.8 87.86% 94.42% 86.64% 0.294 92.29% 81.74%
τ = 0.9 85.96% 93.05% 84.32% 0.327 90.01% 79.46%
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Table 10. CLAHE+LoG preprocessing effect with data balancing.

Score

Branch Threshold Accuracy AUC F1 Loss Precision Recall

Global DenseNet121 91.61% 97.27% 91.00% 0.204 92.32% 90.25%
Local (Cropping) τ = 0.1 91.02% 97.40% 90.62% 0.218 93.49% 87.97%

τ = 0.2 91.15% 97.11% 90.90% 0.215 93.32% 87.68%
τ = 0.3 90.71% 97.01% 89.89% 0.224 93.63% 86.70%
τ = 0.4 91.03% 96.78% 90.23% 0.229 92.80% 88.16%
τ = 0.5 90.61% 96.91% 89.76% 0.231 94.13% 85.92%
τ = 0.6 89.88% 96.39% 89.33% 0.241 91.10% 87.77%
τ = 0.7 88.72% 94.90% 87.32% 0.304 94.39% 81.27%
τ = 0.8 87.87% 94.41% 86.61% 0.293 92.30% 81.76%
τ = 0.9 85.98% 93.03% 84.29% 0.325 90.02% 79.45%

Figure 15. ROC curves of the scenario 3 with data balancing and three different preprocessing: (a) CLAHE, (b) LoG, and (c)
CLAHE+LoG.

without preprocessing gave better results than the pre-
vious ones with 96.26%/97.97%. This superiority can be
justified by the failure of the LoG technique to properly
highlight the features of the DR image. After that, we
have CLAHEpreprocessing with 96.20%/99.24%, while
the augmented images with CLAHE and LoG yielded
the best results, with 97.46%/99.5% and 97.26%/99.5%,
respectively. In fact, the original images and the pre-
processed images do not highlight the same features.

To complement the attention processes of the global
branch, the local branch is trained using clipped and
downscaled lesion patches. Almost all of the methods

gave lower results in the local branch than the global
one, although the results are close to the baseline. The
probable reason for this observation is that the lesion
region estimation and cropping process may lead to
information loss, which is critical for recognition. So,
the local branch may need a more accurate estima-
tion of the attention area. On the other hand, In the
CLAHE augmentedmethod, the local branch exhibited
superior performance, achieving the best results when
using a cropping threshold of 0.1. This configuration
achieved an accuracy of 98.4% and an AUC score of
99.8%. The improved performance can be attributed to
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Figure 16. ROC curves of the best-performing threshold in scenario 3 for the local branch: (a) CLAHE with τ = 0.1, (b) LoG with
τ = 0.1, and (c) CLAHE+LoG with τ = 0.2.

Figure 17. Diagram of the two augmented dataset genera-
tions.

the attention mechanism by eliminating irrelevant data
facilitated by this threshold.

To demonstrate our method’s advancements to deep
learning-based Diabetic Retinopathy classification, we
conducted a comparative analysis with state-of-the-
art studies that used the same dataset (APTOS 2019).
Table 14 reports the authors, used preprocessing oper-
ations, results and limitations of each method againt
our one. Except the method presented by Narayanan
et al. [23] where we achieved the same accuracy
rate (98.4%) but our method achieved a superior
AUC metric with 99.8%, our method outperforms
the state-of-the-art studies in term of accuracy and
AUC.

7. Conclusion

In this paper, we introduce a cutting-edge Convolu-
tional Neural Network (CNN) architecture character-
ized by its unique dual-branch design and an integrated
attention-guided mechanism tailored specifically for
the early detection of Diabetic Retinopathy (DR). This
novel architecture represents a significant departure
from traditional approaches in the field. Unlike pre-
vious methods, which predominantly relied on global
image features, our approach takes a more holistic per-
spective by considering both global and local details
throughout the training process. One of the key inno-
vations of our method lies in its ability to extract vital
regions of interest within the global retinal images.
We achieve this through the generation of attention
heatmaps, which are an integral part of the training pro-
cess for the local branch of our CNN. By focusing on
these critical regions, our model gains a deeper under-
standing of the subtle variations and anomalies that
can signify the presence and progression of DR. This
approach effectively enhances the network’s sensitivity
and specificity, contributing to its remarkable perfor-
mance. The extensive experiments conducted as part
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Table 11. Results using augmented method with CLAHE preprocessing.

Score

Branch Threshold Accuracy AUC F1 Loss Precision Recall

Global DenseNet121 97.29% 99.60% 96.41% 0.082 97.10% 95.77%
Local(Cropping) τ = 0.1 98.42% 99.81% 97.77% 0.052 99.06% 96.78%

τ = 0.2 98.28% 99.76% 97.96% 0.054 98.41% 97.26%
τ = 0.3 97.92% 99.83% 97.57% 0.059 97.41% 97.61%
τ = 0.4 97.79% 99.82% 97.30% 0.059 98.13% 96.53%
τ = 0.5 97.68% 99.69% 97.25% 0.059 96.98% 97.64%
τ = 0.6 97.82% 99.65% 97.42% 0.068 97.59% 97.01%
τ = 0.7 97.71% 99.59% 97.19% 0.065 98.08% 96.44%
τ = 0.8 97.53% 99.63% 96.97% 0.072 97.84% 96.20%
τ = 0.9 96.33% 99.34% 95.53% 0.096 94.86% 96.15%

Table 12. Results using augmented method with LoG preprocessing.

Score

Branch Threshold Accuracy AUC F1 Loss Precision Recall

Global DenseNet121 95.12% 98.70% 94.05% 0.138 96.90% 91.41%
Local (Cropping) τ = 0.1 95.53% 99.10% 94.57% 0.116 95.64% 93.58%

τ = 0.2 94.86% 98.90% 93.78% 0.127 94.56% 93.10%
τ = 0.3 94.76% 98.69% 93.57% 0.138 95.97% 91.35%
τ = 0.4 94.34% 98.48% 93.11% 0.147 94.82% 91.53%
τ = 0.5 94.28% 98.42% 93.01% 0.149 94.52% 91.23%
τ = 0.6 94.50% 98.36% 92.88% 0.153 95.33% 91.17%
τ = 0.7 94.10% 98.38% 92.85% 0.155 94.15% 91.05%
τ = 0.8 94.09% 98.22% 92.73% 0.161 94.02% 91.01%
τ = 0.9 94.22% 98.11% 92.70% 0.168 94.22% 90.94%

Figure 18. ROC curves obtained with augmented preprocessing scenario: (a) CLAHE and (b) LoG.

Table 13. Summary of the proposed method performances.

Scenario Preprocessing technique Validation accuracy (%) Branch Improvement (%) Binarization ratio (τ ) (%)

1 Basic 96.43 Local 0.3 0.1
2 • CLAHE 96.5 Global / /

• LoG 93.27 Local 0.47 0.2
• CLAHE+ LoG 93.49 Global / /

3 • Data balancing+ CLAHE 96.51 Global /
• Data balancing+ LoG 91.89 Global /
• Data balancing+ CLAHE&LoG 91.61 Global /

4 • Original + CLAHE 98.42 Local 1.03 0.1
• Original + LoG 95.53 Global / /

of this study serve as compelling evidence of the effi-
cacy of our proposed system. Leveraging the APTOS
2019Diabetic Retinopathy dataset, we demonstrate that
our dual-branch CNN, which harnesses the synergistic

power of global and local cues, achieves peak perfor-
mance in the critical task of DR identification. Our
research drive with this suggested model involves mul-
tifaceted training across diverse scenarios. Through
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Table 14. Comparison with the state-of-the-art methods.

Author, Year Preprocessing Method Accuracy AUC Limitations

Majumder et al. [24] Yes CNN 88.5% / • Lack of Generalization with
other models

Shaban et al. [25] Yes DCNN 88% 0.95 • 3 DR classes instead of 5
• Feature study and selection
are not available

Gangwar and Ravi [26] Yes Hybrid model (Inception,
ResNet v2)

82.18% / • Computationally expensive

Ramchandre et al. [27] Yes (Image
augmentation with
AUGMIX)

EfficientNetb3
SEResNeXt32x4d

91.4% 85.2% / • Lack of image enhancement

Nahiduzzaman et al. [28] Yes Parallel CNN/ELM 97.27% 0.988 • Lack of data augmentation
Islam et al. [29] Yes SCL/Xception 84.36% / • Low batch size
Jian et al. [30] Yes Triple-DRNets 92.08% / • Limitation of feature fusion in

the subnets
Narayanan et al. [23] Yes Hybrid model (AlexNet,

ResNet, VGG16, Inception v3)
98.4% 0.985 • Lack of data augmentation

techniques
Madarapu et al. [22] Yes Custom deep CNN (Residual

blocs+ CSAM+ NLB blocs)
89.38% 0.97 • Complex architecture

Shakibania et al. [19] Yes Dual Branch network
(ResNet50 and
EfficientNetB0)

89.60% / •Misclassifications for severe
and proliferative DR

Selvakumar and Akila [33] Yes U-Net-KNNmodel 80.78% / • Computational complexity
Proposed method Yes DenseNet-121 98.4% 0.998 • Computationally expensive

in the training part

rigorous experimental evaluations, we have substan-
tiated the inherent strength of our approach, which
combines global image features with localized regions
of interest within DR images. What’s particularly note-
worthy is that our model consistently delivers promis-
ing results, even when confronted with the challenge
of limited training data. This resilience underscores
its potential for real-world clinical applications, where
obtaining extensive labelled datasets can often be a
formidable obstacle. As we cast our gaze into the future
of research in the realm of diabetic retinopathy detec-
tion, our commitment remains unwavering. We are
poised to delve deeper into the exploration of diverse
preprocessing techniques. These techniques hold the
promise of further refining the accuracy and robustness
of our model, potentially unlocking new dimensions in
DR diagnosis. Additionally, we are eager to investigate
opportunities for synergizing our dual-branch architec-
ture with other state-of-the-art attention-guided meth-
ods. This avenue of research holds the potential to push
the boundaries of DR detection, ultimately leading to
more timely and effective interventions for individuals
at risk of this debilitating condition. Our work stands
as a testament to the ever-evolving landscape of medi-
cal AI, with the potential tomake a profound impact on
patient care and public health.
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