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ABSTRACT
Brain Tumor Segmentation (BTS) and classification are important and growing research fields.
Magnetic resonance imaging (MRI) is commonly used in the diagnosis of brain tumours owing to
its low radiation exposure andhigh image quality. One of the current subjects in the field ofmed-
ical imaging is how to quickly and precisely segment MRI scans of brain tumours. Unfortunately,
most existing brain tumour segmentation algorithms use inadequate 2D picture segmentation
methods and fail to capture the spatial correlation between features. In this study, we pro-
pose a segmentation model (SwinVNETR) Swin V-NetTRansformer-based architecture with a
non-local block. This model was trained using the Brain Tumor Segmentation Challenge BraTS
2021 dataset. The Dice similarity coefficients for the enhanced tumour (ET), whole tumour (WT),
and tumour core (TC) are 0.84, 0.91, and 0.87, respectively. By leveraging this methodology, we
can segment brain tumours more accurately than ever before. In conclusion, we present the
findings of our model through the application of the Grad-CAM methodology, an eXplainable
Artificial Intelligence (XAI) technique utilized to elucidate the insights derived from the model,
which helped in better understanding; doctors can better diagnose and treat patients with brain
tumours.
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1. Introduction

According to information from Cancer Research UK,
there are more than 130 diverse types of brain tumours.
These tumours can initiate in any part of the brain or
spinal cord and are commonly named after the type
of cells from which they originate. Glioblastoma multi-
forme (GBM) is the most prevalent and aggressive pri-
mary brain tumour in adults [1]. Brain tumours encom-
pass both benign andmalignant variants. The notewor-
thy types highlighted in the research findings include
the following: 1. GlioblastomaMultiforme (GBM): Rec-
ognized as the most common and aggressive primary
brain tumour in adults [1]. 2. Gliomas: Gliomas emerge
as a prevalent type of adult brain tumour, constitut-
ing 78 percent of malignant brain tumours. Originat-
ing from glial cells, they encompass subtypes such as
astrocytomas, oligodendrogliomas, and ependymomas
[2]. 3. Meningiomas: Typically benign, these tumours
develop from the meninges, which are thin layers of
tissue covering the brain and spinal cord [3]. 4. Pitu-
itary Tumors: Situated in the pituitary gland at the base
of the brain, these tumours are largely non-cancerous
[3]. 5. Chordomas, Chondrosarcoma, andMedulloblas-
toma: Examples of rare and specific brain tumours,
each characterized by distinct features and treatment
implications [3]. It is crucial to emphasize that the seg-
mentation and classification of brain tumours hinges

on diverse factors, including the cell type involved,
tumour location, and behaviour (benign or malignant).
The specific type of brain tumour significantly shapes
the chosen treatment approach and profoundly influ-
ences patient prognosis. Brain tumour segmentation
is an important area of research for medical profes-
sionals. This involves the use of advanced technology
to accurately identify and segment brain tumours and
classify them into different types. Researchers are con-
stantly striving to find the most effective methods for
brain tumour segmentation to provide better treatment
options for patients. Spatial coding and reconstruction
technology is at the heart of nuclear MRI, one of the
most widely used medical imaging methods for identi-
fying and treating brain illnesses [4]. The brain tumour
segmentation process requires considerable time and
effort, and it is possible formistakes to bemade or diag-
noses to go unnoticed when doctors manually segment
brain tumours fromMRI images. Although MRI offers
several benefits in the supplemental diagnosis of ill-
nesses, it has drawbacks [5]. Image segmentation plays
a crucial role in the diagnosis and treatment of glioma.
For instance, surgical planning, postoperative moni-
toring, and survival rate can benefit from an accurate
glioma segmentation mask [6].

Recent studies in the fields of computer vision
and pattern recognition have shed light on the ability
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Figure 1. Overall architecture of Swin VNETR.

of convolutional neural networks (CNNs) to address
challenging problems such as classification, segmenta-
tion, and object recognition while achieving the most
advanced performance levels. The success of CNN can
be attributed in part to its capability to learn a hierar-
chical representation of unlabelled input data without
the need for specially specified features. The level of
abstraction of the generated features is said to increase
as the inputs are processed via various levels of the
network. Deeper layers utilize filters with significantly
wider receptive fields, which allow them to capture
global information, whereas shallower layers only cap-
ture information relevant to their immediate surround-
ings [7]. Nevertheless, most segmentation algorithms
use 2D images, which are incapable of obtaining the
spatial dependence between features. To solve the afore-
mentioned issue, we propose a method based on a
spatial and channel Swin V-Net TRansformer-based
architecture with a non-local block. Figure 1 shows the
SwinVNETR structure used in this study.

ExplainableArtificial Intelligence (XAI) is an emerg-
ing field dedicated to enhancing the interpretability
and transparency of machine-learning models. Among
the prominent methods within XAI is Guided Grad-
CAM, a fusion of Gradient-weighted Class Activation
Mapping (Grad-CAM) and Gradient Boosting (GBP),
which is designed to produce precise attributions [8].
Grad-CAM itself serves as a visualization technique
that offers interpretability by pinpointing the crucial
features in the input image. In this article, we delve into
the concepts of XAI and Grad-CAM, and explore their
applications across various domains.

The significance of XAI is growing as AI systems
play an increasingly prominent role in diverse sectors,
such as healthcare, finance, and transportation. Under-
standing the decision-making processes of AI models
is imperative to ensuring their reliability and trustwor-
thiness. Grad-CAM, a popular XAI method, gener-
ates heat maps by amalgamating gradient information
from the final convolutional layer of a deep neural net-
work [8]. These heatmaps offer insights into the regions
of the input image that contribute significantly to the
model’s decision-making, thereby providing a valuable
understanding of the model’s behaviour. After training
with the SwinVNETRmodel, the results were explained
using the Grad-CAM.

2. Related work

2.1. Traditional machine learningmethods

Utilizing super-pixel-wise feature extraction techniques,
the classical Support Vector Machine model was
applied to the segmentation of brain tumours.However,
this technique can also be applied to 2D images. The
2013 Brats dataset yielded only binary results [9].

2.2. Deep learning-basedmethodology

Deep-learning algorithms have proven to be highly
effective in stabilizing training and uncovering hier-
archical features, resulting in enhanced segmentation
accuracy. Consequently, deep learning algorithms have
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emerged as a rapid and efficient methodology for ana-
lyzing medical images, providing substantial advance-
ments over conventional approaches [10]. Unlike tradi-
tional GAN-based segmentation methods, this study’s
Softmax probability maps were indirectly optimized.
Specifically, this method combines softmax probability
maps into a single segmentation image to arrive at the
result. The authors utilized the Brats 2015 dataset but
used GAN’s lack of interpretability to understand the
segmentation [11].

ACascade Convolutional Neural Network (C-CNN)
model augmented with a Distance-Wise Attention
(DWA) mechanism has emerged as a notable advance-
ment in brain tumour segmentation research. By lever-
aging the BRATS 2018 dataset, this model addresses
the complexity of the task by incorporating multi-
modal MRI images containing various histological
subregions. The C-CNN architecture offers a cascade
approach, enabling the gradual refinement of seg-
mentation boundaries, whereas the DWA mechanism
enhances accuracy by focusing on the spatial rela-
tionships between distant voxels [12]. The CNN-based
brain tumour segmentation algorithm stands out for
its high-performance metrics. This approach employs
the N4ITK method for bias field distortion correction
in MRI, ensuring that the preprocessing steps enhance
the image quality and consistency. Additionally, the
implementation of dropout and batch normalization
techniques contributes to more efficient training and
improved model generalization, reducing the risk of
overfitting and enhancing the robustness of the seg-
mentation results [13].

Numerous segmentation techniques are available for
brain tumours, such as threshold-based methods, con-
ventional machine learning, region growing, cluster-
ing algorithms, and deep learning [14]. In this study,
we focus on a deep-learning methodology for brain
tumour segmentation. Deep learning-based segmenta-
tion of brain tumours has demonstrated promising per-
formance in the precise identification of brain tumour
regions. For brain tumour segmentation, deep neural
networks (DNN), three-dimensional unified networks
(3-D U-Net deep), and fully convolutional networks
(FCN) are only a few of the many deep-learning meth-
ods developed by researchers. 3D convolutional neu-
ral networks for tumour segmentation extract long-
range contextual information from adjacent 3D med-
ical image slices using 2D convolutional layers [15].
This context is then provided to a 3D CNN that ana-
lyzes the current slice in conjunction with the context
of adjacent slices. Using a long-range 2D context, this
method reduces the number of parameters required by
the 3D CNN, allowing it to process larger volumes of
medical data with fewer computational resources. The
results of using the CNN method in the BRATS 2017
challenge for multiclass segmentation of malignant
brain tumours. The CNN method yielded accurate

segmentations withmedianDice scores achievedwhole
tumour 0.918, tumour core 0.883, and enhancing
tumour 0.854. However, the problem with this method
is that the long-range 2D context can capture contextual
information from adjacent segments; it may not be suf-
ficient to capture the complete context of the tumour,
particularly when the tumour extends across multi-
ple slices. This may lead to less-precise segmentation
results. The 3D Fusion Transformer model employs a
multihead self-attention mechanism (MHSA), where
each attention head is computed independently, posing
challenges in integrating structures between layers [16].

A significant number of researchers in the BraTS
2016 challenge used a 3D U-net, which led to impres-
sive segmentation accuracy across the board and in
the tumour core. When trained on the BraTS 2015
training dataset (with 60% of the data utilized for train-
ing and 40% for testing), they reported Dice scores
of 0.89, 0.76, and 0.37 for the whole tumour, tumour
core, and active tumour, respectively. The high cost
of computing is a drawback of Unet design [17]. The
3D Attention-based U-Net paper proposes a method-
ology that consolidates three non-native MRI volumes
into a unified stacked multimodal volume, enhancing
the spatial information in the input and enabling one-
time segmentation. The addition of an attention mech-
anism to the decoder side of the U-Net de-emphasizes
healthy tissues and highlights malignant tissues, lead-
ing to improved generalization power and reduced
computational resource requirements. This study used
the BraTS2021 dataset [18]. This study introduced an
innovative architecture built on a 3D U-Net model.
This design incorporates multiple skip connections by
employing cost-efficient pre-trained 3D MobileNetV2
blocks and attention modules. The incorporation of
these elements contributes to maintaining manageable
model size and expediting convergence. To enhance
the feature exchange, the authors introduced extra
skip connections between the encoder and decoder
blocks, maximizing the utilization of extracted fea-
tures throughout the segmentation process. Addition-
ally, attention modules play a crucial role in filtering
out irrelevant features transmitted through skip con-
nections, preserving computational resources, while
simultaneously enhancing accuracy [19].

The fusion of CNN and Transformer compo-
nents for segmentation is highlighted, particularly
focusing on the integration of DConv, Swin Trans-
former Encoder, and Decoder. This approach incor-
porates multiscale attention mechanisms within the
CNN framework to enhance comprehension of spatial
relationships and contextual information. A detailed
description of these components reveals their syner-
gistic role in effectively capturing both the local and
global features. Additionally, the proposal of CSU-
Net, an encoder-decoder architecture, leverages this
hybrid integration to achieve superior segmentation



AUTOMATIKA 1353

performance, demonstrating its potential for accurately
delineating complex structures withinmedical imaging
tasks [20].

Existing brain tumour segmentation methods have
several significant drawbacks. These methods rely on
handcrafted features, which often fail to capture the
complex and varied appearances of brain tumours,
resulting in limited feature representation. Addition-
ally, many classical methods operate independently on
2D slices ofMRI scans, leading to inconsistencies across
slices and failure to exploit the 3D spatial context of
the brain and tumour. This slice-by-slice analysis often
necessitates significant manual tuning and interven-
tion, such as setting thresholds or selecting regions of
interest, making the process time consuming and sus-
ceptible to user bias. Classical methods are also sensi-
tive to noise, intensity inhomogeneities, and artifacts
in MRI images, and require extensive preprocessing to
mitigate these issues. Furthermore, these methods do
not generalize well across different datasets or imag-
ing protocols, often necessitating re-optimization or
re-training for each new dataset. Integrating multi-
ple MRI modalities (such as T1, T2, and FLAIR) into
classical methods poses a challenge, typically requir-
ing complex fusion strategies that may not be optimal.
SwinVNETR is a revolutionary method that we pro-
posed. Brain tumours can be segmented using a Swin
V-net Transformer equippedwith aNon-local Block. In
step 1, the 3D MRI data are sent to the encoder, where
features are extracted using 3D Swin and 3D convolu-
tional neural networks. In step 2, a Non-local Block is
employed to assemble data on long-range dependen-
cies from the encoder part. In Step 3, the encoder’s
output features are forwarded to the decoder, where
they are up-sampled. In Step 4, the concluding layer
of the SwinVNETR model serves as the input for 3D
Gradient-weighted Class Activation Mapping (Grad-
CAM) to provide explainability. This process involves
visualizing the gradient information to understand how
the model makes predictions.

3. Proposedmethodology

3.1. Swin V-Net transformermodel

Recent advances in computer vision technology have
led to the increased use of CNN formedical image anal-
ysis, employing deep learningmethods. AlthoughCNN
excels in processing 2D images, some therapeutically
relevant medical data are only available in 3D. There-
fore, in this study, 3D MRI images of brain tumours
were segmented using V-Net. To accomplish compre-
hensive semantic segmentation of 3D medical images,
V-Net is an enhanced version of a Fully Convolu-
tional neural network) FCN’s 3D network architecture
by replacing the whole connection layer with a con-
volution layer. Specifically, we propose combining a

3D Swin Vision transformer (swin ViT) with a CNN
encoder and decoder.

Figure 1 shows the left and right halves of the
network. The encoding path, located on the left side
of the network, employs convolution to automatically
extract relevant picture features from the MRI scans.
It included a swin transformer to improve the picture
recognition capacity and decrease the resolution after
each layer by a predetermined amount. The non-local
block is inserted as a final step in the encoding pro-
cess to learn distant feature locations.More information
about the Swin Transformer and non-local block is pro-
vided below. The decoding path, located on the right
side of the network, was responsible for recreating the
full feature map. In the last stage of the network, the
segmentation results were classified using SoftMax into
three groups: enhanced tumour (ET), whole tumour
(WT), and tumour core (TC).

3.2. Swin 3D

Swin Block3D was inspired by the block module of the
Swin Transformer [21]. The construction of the Swin
Block3D is shown in Figure 2a. It consists of two main
sections, each consisting of two parts. The first part
uses a LayerNorm (LN) layer, the second part uses an
MLP module, and the third part uses a shifted-window
multi-head self-attention3D (SW_MSA_3D) module.
In contrast to theW_MSA_3Dmodule used in the first
part, the SW_MSA_3D module was implemented in
the second part. The following equation can be used to
calculate Swin Block3D:

Xt1 = LN1(XL−1) + W_SA_3D(LN1(XL−1)) (1)

Xt = LN2(Xt1) + MLP(LN2(Xt1)) (2)

Xt2 = LN3(Xt) + SW_MSA_3D(LN3(Xt)) (3)

XL = LN4(Xt2) + MLP(LN4(Xt2)) (4)

The calculation of Swin Block3D can be summa-
rized by equations (1), (2), (3), and (4). The given
formula utilizes only temporary variables Xt1 and Xt2.
Before calculating the self-attention, the Swin Block3D
Self Attentionmodule transforms the feature maps into
voxel patches and then transforms each voxel patch into
a one-dimensional token. After the self-awareness cal-
culation is complete, the tokens are transformed back
into their respective voxel patches and added to the
feature map. The dimensional transformation of the
matrix maps the token regions to the voxel regions. A
voxel patch in space [h, w, d] can be represented by a
token of length h×w× d, and a token in space [h, w,
d] can be transformed into a token in space [h, w, d] by
using amatrix.We utilized the Rearrange class found in
the einops library to facilitate the transformation of the
tokens and feature maps.
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Figure 2. (a). Swin 3D blocks included W-MSA-3D and MLP, (b). 3D convolutional block.

3.3. 3D convolution block

As shown in Figure 2b, the 3D Conv Block module
uses a double-layered configuration of 1× 1× 1 con-
volutional layers, LayerNorm layers, and PRelu layers
to learn local picture dependencies. The logic behind
the calculations in this component is as follows:

Xt = PReLu1(LN1(Conv3D1(X))) (5)

Xt = PReLu(LN(Conv3D(Xt))) (6)

Y = Xt × X (7)

In these equations, X represents the input to Conv
Block3D, Y represents the output, and Xt is a variable
used throughout the conversion process. To reduce the
computational load of this module, we used depth-wise
separable convolution instead of regular convolution.
This sub-module employs the VAN implementation to
perform feature convergence of XL and X throughmul-
tiplication, rather than addition, to better match the
fine-grained information in the image.

3.4. Non-local block

In the domain of 3D MRI brain tumour segmenta-
tion, the implementation of a Non-local block presents
several enhancements in the segmentation process.
This mechanism allows the model to encompass

information from the entire input volume, transcend-
ing a narrow focus on the local regions. Given the intri-
cate and diverse patterns exhibited by tumours in 3D
MRI segmentation, which can extend across substan-
tial spatial distances, this global perspective is crucial.
It contributes to the capacity of the model to grasp
long-range dependencies by considering the interac-
tions between all positions in the input space. This aug-
mentation is particularly beneficial for improving the
model’s discernment of intricate structures associated
with brain tumours. Furthermore, the incorporation
of a Non-local block facilitates a superior generaliza-
tion [27]. This was achieved by empowering the model
to learn the intricate relationships between various spa-
tial positions across a diverse range of examples in
the training dataset. Given the significant variability
in tumour shapes and sizes among different patients,
the non-local block has emerged as a valuable tool for
mitigating the sensitivity of the segmentation process
to spatial variations. By considering relationships and
dependencies across all positions in the 3D volume,
this mechanism ensures a more robust and adaptable
approach to brain tumour segmentation. The non-local
block is based on [22], who coined the term “non-
local neural networks”. The interference with the clas-
sical self-attention mechanism is not local in nature.
The structure of the non-local block is illustrated in
Figure 3. However, non-local blocks are especially
helpful for picture classification and segmentation,
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Figure 3. Structure of non-local block.

which require the capture of long-range relationships.
The Non-local block equation is expressed as follows:

Yi = 1
C(X)

∑
∀j

f (Xi,Xj)g(Xj) (8)

Zi = YiW + b (9)

In this context, “X” represents a feature-mapped
input signal, and “i” represents a position index that can
be in space, time, or both. The value that “j” returns is
calculated by considering every possible outcome. The
binary function “f” determines the similarity relation-
ship between “i” and all “j”, whereas the unary func-
tion “g(x)” is utilized to calculate the representation of
the input signal at location “j.” According to [22], the
response is calculated by adding all the response factors,
or C(x).

This section is defined in accordance with [22],
C(X) = ∑ ∀jf (Xi, Xj). Consequently, the non-local
evaluation of the equation is yi = softmax [f (Xi,Xj)]
g(Xj). According to the theory of computer vision, this
behaviour is consistent with the self-attention relation.
There is hardly any difference in self-attention perfor-
mance between the abstract forms g(x) and (Xi, Xj).
To keep things straightforward, we performed linear
processing on X using a convolution kernel of size
1× 1× 1. The equation used for computing is as fol-
lows:

g(x) = xW + b (10)

f (Xi,Xj) = θ(Xi)ϕ(Xj)
T (11)

θ(X) = XWT
θ + bθ (12)

ϕ(X) = XWT
ϕ + bϕ (13)

Assuming a feature map as the input signal x to a
non-local block is crucial for our method. The D, W,
H, and C values of the feature map refer to the depth,
width, height, and channels, respectively. Before doing

anything further to X, we split the channel count of the
input feature map in half and use it as the number of
convolutional kernels. Therefore, it is necessary to have
channels for countingC/2, θ(X), ϕ(X), and g(X) at fixed
dimensions is required. in a predetermined number of
dimensions. The goal is to reduce the amount of com-
putation required while maintaining the performance
of the non-local block unaffected. Multiplying the θ(X)
and ϕ(X) matrices by [dwh, C/2] and [C/2, Y] respec-
tively enables the non-local self-attentionmethod.Mul-
tiplying the result by g(X) yields [DWH, C/2], which
undergoes morphological transformation. The input
feature map is convolved with C convolution kernels
of size 1× 1× 1, where C is the total number of con-
volution kernels. Although both complete connection
layers and non-local layersmust calculate the entire fea-
ture map to extract the necessary features, non-local
layers offer more benefits for accurate feature extrac-
tion. When the size of the non-local output is the same
as the size of the original feature map, the entire con-
nection layer must transform the non-local output into
a list of neurons with a fixed number, size, and loss of
some location information.

The proposed method integrates a Swin Vision
Transformer with a CNN encoder and decoder to pro-
cess 3D MRI images of brain tumours. The encoder
extracts relevant features from the multimodal 3D
MRI images, the nonlocal block captures long-range
dependencies, and the decoder reconstructs the fea-
ture map, as shown in Figure 4. The Swin Block3D
and 3D Conv Block modules enhance the ability of
themodel to process fine-grained information and cap-
ture detailed contextual relationships. The non-local
block provides a global perspective, which is crucial
for accurately segmenting complex tumour structures.
This integrated approach results in superior segmen-
tation performance, as demonstrated by the high Dice
similarity coefficients for enhanced tumour (ET), whole
tumour (WT), and tumour core (TC) segmentation.
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Figure 4. Flow diagram for proposed model execution.

Figure 5. BraTs2021 native (T1) and post-contrast (T1Gd) T1-weighted (T1Gd) volumes, T2-weighted (T2) and T2-FLAIR volumes 3D
MRI Images.

4. Dataset

The purpose of this work was to construct a Swin V-
Net transformer using the BraTS 2021 MRI dataset.
Pre-processed 3D images (in NifTi file format) were
included. There were 8,000 MRIs in this data collec-
tion, representing 2,000 unique patients. The multi-
parametric MRI scans of the BraTS 2021 project are
distinguished by native (T1) and post-contrast (T1Gd)
T1-weighted (T1Gd) volumes, T2-weighted (T2) and
T2-FLAIR volumes, and segmentation ground-truth
data [23]. Each volume was scanned using standard
techniques and equipment of the acquiring institution.
The size of the input image was 240× 240× 155 pix-
els, as shown in Figure 5. The data were compiled from
a wide variety of sources using several distinct MRI
scanners. The enhanced tumour, whole tumour, and
tumour core are labelled in the annotations. The com-
plete tumour, its core, and its augmentation were all
covered by combined annotations. We used the BraTS
2021 dataset, which contained 1251 training instances
and 219 validation cases, to fine-tune our models. Eval-
uation Metrics:

5. Implementation

The first step involves masked volume inpainting,
which fills inmissing or corrupted regionswithinmedi-
cal images, thereby ensuring a comprehensive represen-
tation of tumour volumes. Subsequently, 3D contrastive
coding enhances the visualization and differentiation
of tumour tissues from normal brain tissues by encod-
ing the contrast information. Following this, the rota-
tion prediction predicts the optimal orientation of the
brain tumour for further analysis and treatment plan-
ning. Deep learning algorithms further contributed by
extracting features and classifying tissue types, facili-
tated by the AdamW optimizer with a warm-up cosine
schedule of 500 iterations. The initial learning rate
was 4e-4, momentum was 0.9, and decay was 1e-
5 for 450,000 iterations. Leveraging NVIDIA Tesla
P100 GPUs accelerates these computationally intensive
tasks, expedites analysis, and enables quicker clinical
decisions. The model was implemented using Python
packages, such as PyTorch, SimpleITK, and Niba-
bel. Pseudo-code for the proposed model is provided
below.
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Pseudo-code for Proposed Model

1 input_dimensions = (batch_size, channels, height, width, depth) # Input shape for 3D MRI scans
2 num_classes = 3 # Number of classes: ET, WT, TC
3 def encoder(x):
4 x = ConvBlock(x, filters = [64, 128, 256]) # filter sizes
5 # Add Swin Transformer layers here
6 swin_layers = []
7 for _ in range(num_swin_layers):
8 swin_layer = SwinTransformerLayer(embedding_dim, num_heads, window_size)
9 swin_layers.append(swin_layer)
10 for i, swin_layer in enumerate(swin_layers):
11 res_block = ResidualConnection(swin_layer(x))
12 x = DownSampling(res_block, stride = stride)
12 # Non-Local Block
13 x = NonLocalBlock(x)
14 return x
15 def decoder(features, skip_connections):
16 upsampled_features = UpSampling(features)
17 x = concatenate([upsampled_features, skip_connections])
18 x = ConvBlock(x, filters = [256, 128, 64])
19 x = ConcatenateFeatures() # Combine multiple levels of features
20 x = ConvBlock(x, filters = [64, num_classes])
21 x = SoftmaxActivation(axis = −1)
22 return x
23 def BrainTumorSegmentationNetwork():
24 input_layer = Input(shape = input_dimensions)
25 encoded_features = encoder(input_layer)
26 skip_connections = []
27 for _ in range(len(encoder.__dict__[‘__globals__’][‘swin_layers’])):
28 skip_connection = UpSampling(encoded_features)
29 skip_connections.append(skip_connection)
30 encoded_features = encoded_features+ skip_connection
31 segmentation_output = decoder(encoded_features, skip_connections)
32 model = Model(inputs = input_layer, outputs = segmentation_output)
33 compile_model(model, optimizer = ’adamW’, loss = ’binary_crossentropy’)
34 return model

6. Evaluationmetrics

The Dice coefficient is the primary target of the loss
function in our model. The Dice coefficient is a func-
tion used to measure similarity, and its values range
from zero to one [28–42]. The equation that character-
izes this relationship is as follows:

Dice Coefficient =
2||X ∩ Y||

||X|| + ||Y|| = 2TP
2TP + FP + FN

(14)

where X represents the model predictions, Y repre-
sents the actual data, TP represents the tumour voxels
that were correctly recognized, FN represents the non-
tumour voxels that were correctly identified, and FP
represents the non-tumour voxels that weremislabelled
as tumours by the model. The Dice coefficient ranges
from 0 to 1 and indicates the accuracy with which a
model predicts an outcome. The Dice coefficients are
closer to 1 when the forecasts are closer to the GT.

The Hausdorff distance (HD) [24] serves as a mea-
sure of the spatial discrepancy between the surface ver-
tices of two binary masks. Its formal definition is as
follows:

HD(G,R) = max

{
sup
sG

d(sG, S(R)), sup
sR

d(sR, S(G))

}

(15)

Here, SR and SG denote the surface vertices of the auto-
mated segmentation result R and the corresponding
ground truth segmentation G, respectively. The sym-
bol sup represents the supremum. To ensure resilience
against potential noise-induced issues arising from
small segmentations, a robust modification of the HD
metric is introduced, termed H95, which utilizes the
95th percentile instead of the maximum distance.

In the evaluation of brain tumour segmentation
tasks, performance was assessed using both the Dice
Similarity Coefficient (DSC) and theH95metric. These
metrics were computed for distinct tumour subregions,
such as theWhole Tumor (WT), Tumor Core (TC), and
Enhancing Tumor (ET). This evaluation methodology
remained consistent with the practices established in
prior studies.

7. Results and discussion

Our models generated mean Dice coefficients of 0.838
for enhanced tumours, 0.871 for tumour cores, and
0.905 for whole tumours on the Brats2021 valida-
tion dataset and Hausdorff distance for the different
tumours (Table 1). Figure 6 displays the segmented
findings obtained with the help of the ITK-SNAP tool
In the comparison presented in Table 1, various models
underwent evaluation on the BRATS 2021 validation
dataset for brain tumour segmentation, revealing
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Figure 6. A) Brain image with tumour, B) Whole Tumor highlighted in green, C) Enhanced Tumor in yellow, D) Tumor Core in red,
visualized using ITK-SNAP [25] software tool used to view the brain tumour segmentation.

distinctive performance characteristics and trade-offs.
The assessed models, which encompassed 3D U-Net,
V-Net, UnetR, TransBTS, SwinBTS, AttentionUnet,
Swin Pure Unet3D, and SwinVNETR, demonstrated
variations in both parameter size and segmentation
accuracy across the ET, TC, and WT subregions.
Notably, SwinVNETR exhibited commendable seg-
mentation accuracy across all subregions, achieving a
high Mean Dice score. This comparative analysis sheds
light on the diverse performance aspects of these mod-
els, emphasizing the need for careful consideration of
both the parameter efficiency and segmentation preci-
sion. The notable performance of SwinVNETR under-
scores its effectiveness in accurately delineating brain
tumour subregions. These insights serve as valuable
resources for researchers and practitioners seeking to
make informed decisions regarding model selection
based on their specific requirements.Ongoing advance-
ments in medical image segmentation can benefit from
these findings, with the aim of improving the accu-
racy, efficiency, and applicability in clinical contexts. In
Figure 7. Panel A shows input FLAIR images. Panel B
presents the ground-truth segmentation for compari-
son. Panel C illustrates the feature extraction process
within a Non-Local block. Finally, Panel D displays
the segmented results, highlighting the Whole Tumor
(WT), Tumor Core (TC), and Enhancing Tumor (ET).
In Figure 8, the presented graph illustrates the vari-
ability in Dice coefficients, serving as a valuable tool
for assessing the efficacy of the model in adapting to
the validation dataset from Brats2021. The curves in
the graph represent the Dice coefficients for three dis-
tinct channels: ET (Enhancing Tumor), TC (Tumor
Core), and WT (Whole Tumor). The Dice coefficient,
a commonly used metric in image segmentation tasks,
measures the extent of overlap between the predicted
and ground-truth segmentation masks. Consequently,
this graph offers insights into the performance of the
model across different tumour regions during the val-
idation phase, providing a comprehensive perspective
on its segmentation accuracy for the specified channels.

We conducted significance-testing experiments, and
the results are listed in Table 1. For each model, we

saved the Dice coefficients obtained from the valida-
tion dataset to a CSV file. Using the SciPy library, we
performed a significance analysis on the Dice coeffi-
cients obtained for each model and compared them to
the Dice coefficients obtained for Swin Unet3D. The
results were recorded at four decimal places. In addition
to the results presented in Table 1, it is clear that there is
a substantial and significant difference in the segmenta-
tion performance between Swin PureUnet3D and Swin
Unet3D. This suggests that the convolutional module
may compensate for the inability of Vision Transform-
ers to accurately capture image details to some extent.

The p-value represents the probability of obtaining
test results at least as extreme as the observed results,
assuming that the null hypothesis is true. In simpler
terms, it quantifies the evidence against the null hypoth-
esis. The null hypothesis typically posits that there is
no effect or no difference between groups being com-
pared. The smaller the p-value, the stronger the evi-
dence against the null hypothesis. To interpret the p-
value, researchers compare it to a predefined signifi-
cance level, denoted as α, commonly set at 0.05, which
signifies the probability of rejecting the null hypothesis
when it is actually true (Type I error). A low p-value (≤
0.05) indicates strong evidence against the null hypoth-
esis, suggesting that the observed effect is unlikely to
have occurred by chance, leading researchers to reject
the null hypothesis. Conversely, a high p-value (>
0.05) indicates weak evidence against the null hypoth-
esis, implying that the observed effect could easily
occur by chance, and researchers fail to reject the null
hypothesis. From the Table 2 if the p-value for ET
(0.2154) is greater than 0.05, indicating weak evidence
against the null hypothesis. For TC (0.0122) and WT
(0.0002), the p-values are less than 0.05, indicating
strong evidence against the null hypothesis. If the p-
values for all categories (ET, TC, WT) are 0, indicating
extremely strong evidence against the null hypothesis.
Thus, having p-values of 0 across all categories (ET,
TC, WT) is generally seen as a positive outcome, as it
strongly supports the effectiveness of the models in dis-
tinguishing and segmenting different tumour regions
accurately.



AUTOMATIKA 1359

Figure 7. A. anFlair imageas an inputB. theground truthof thevalidationdataC. the featureextractionprocessduring theNon-Local
block D. the final segmented WT, TC, and ET.

Figure 8. Curves illustrating the variation in Dice coefficients were used to assess the model’s fitting capability on the validation
dataset of Brats2021. These curves depict the Dice coefficients for the ET, TC, and WT channels.

8. Explainable deep learning

The term “explainable Artificial Intelligence” (XAI) is
used to describe a set of methods and tools that help

humans understand and trust the results and predic-
tions of machine-learning systems. XML stands for
Explainable Machine Learning, which is another name
for XAI. The primary focus of XAI is to create more
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Table 1. Comparison table of brats 2021 validation dataset.

Mean Dice Hausdorff distance

Name of the model Params Size ET TC WT ET TC WT

3D U-Net 15.834 0.825 0.844 0.900 3.71 7.36 4.82
V-Net 182.432 0.815 0.840 0.751 2.88 6.17 6.43
UnetR 204.899 0.842 0.853 0.905 3.12 8.46 4.59
TransBTS 65.975 0.824 0.843 0.889 3.89 5.54 4.22
SwinBTS 71.394 0.828 0.843 0.896 4.02 5.16 4.68
AttentionUnet 47.257 0.841 0.851 0.870 3.57 6.83 4.06
Swin Pure Unet3D 67.163 0.817 0.822 0.885 4.32 7.56 3.81
Proposed model 67.487 0.838 0.871 0.905 3.51 5.21 2.89

Table 2. p-value comparison table of all other model dice
scores from Swin VNETR.

P – Value

Model Name ET TC WT

3D U-Net 0.2154 0.0122 0.0002
V-Net 0 0 0
UnetR 0 0 0
TransBTS 0.0028 0.0001 0.0428
SwinBTS 0.2941 0.3174 0.5322
AttentionUnet 0 0 0
Swin Pure Unet3D 0 0 0

explainable models without sacrificing the precision.
The importance of Explainable Artificial Intelligence
(XAI) resides in its capacity to offer people a com-
prehension of the rationale underlying the judgments
or forecasts generated by artificial intelligence systems
[26]. This is in juxtaposition with the notion of a “black
box” in the field of machine learning, when the cre-
ators of artificial intelligence lack the ability to elucidate
the reasoning behind its decision-making process. The
achievement of explainability in AI systems is hindered
by their inherent complexities. Currently, the predomi-
nant approaches employed to elucidate artificial intel-
ligence (AI) possess a technical orientation, designed
primarily to facilitate the identification and resolu-
tion of errors by machine learning experts. However,
these methods do not adequately address the needs
of end users, who eventually bear the consequences
of the AI system. This phenomenon results in a dis-
parity between the concept of explainability and the
overarching objective of transparency.

The Grad-CAM approach, which is short for
Gradient-weighted Class Activation Mapping, is empl-
oyed to visually represent the significant regions within
an image that contribute to the prediction made by
a neural network. The algorithm produces a saliency
map that effectively identifies and emphasizes the sig-
nificant parts within a given input image. The appli-
cation of Grad-CAM extends to three-dimensional
datasets, including CT scans. The acronym “Grad” in
Grad-CAM is derived from the term “gradient.” The
result obtained using Grad-CAM is a “discriminative
localizationmap,” which can be described as a heatmap
that highlights regions of interest according to a specific
class [26]. For several output classes, distinct visualiza-
tions can be generated for each class corresponding to

a given input image. The steps for applying Grad-CAM
to a trained model are as follows:

Step 1: Load the trainedmodel and specify the tar-
get layer for which the Grad-CAM heatmap must
be generated.
Step 2: The input image is fed to the model, and
the output class score is obtained.
Step 3: The gradient of the output class score is
computed for the feature maps of the target layer.
Step 4: Theweights of the featuremaps were com-
puted by averaging the gradients across spatial
dimensions.
Step 5: Theweights aremultipliedwith the feature
maps and summed along the channel dimension
to obtain the Grad-CAM heatmap.
Step 6: We resize the heatmap to the size of the
input image and overlay it on the input image to
visualize the regions that are important for the
prediction of the model.

3D Grad-CAM:
In this study, the 3DGrad-CAM technique was used

for model interpretation. Utilizing 3D Grad-CAM is a
method for interpreting the models, which increases
their clarity. Numerous Grad-CAMs for 3D volume
implementations allow their use with 3D datasets.
Grad-CAM is a powerful tool for displaying 3D data
that can be used to spot flaws in themodel and guide its
refinement. The fundamental concept is used to iden-
tify significant activations within the feature maps in
the convolutional layers. Initially, the gradient of the
score (BTS) concerning the activation of unit u at loca-
tion (x, y, z) and fu(x, y, z) in the previous convolutional
layer is computed. The significance weights for unit
u in the brain tumour segmentation are determined
by utilizing the global average pooling of the gradient,
represented as aBTSu . The heatmap for the 3D gradient-
weighted class activation mapping was generated by
merging the unit weights with the activations, repre-
sented as fu(x, y, z) using the equation(16), where Z is
the total count of voxels within the respective layer

aBTSu = 1
Z

∑
x,y,z

∂Score(BTS)
∂fu(x, y, z)

(16)
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Figure 9. Visualization of Input Image, Ground Truth, Whole tumour, Tumor core, Enhanced Tumor, and Grad-CAM highlighted.

3D − Grad − CAMx,y,z(BTS) =
∣∣∣∣∣
∑
u

aBTSu fu(x, y, z)

∣∣∣∣∣
(17)

The 3D-Grad-CAM technique is applied to a wider
range of 3D-CNN then 3D-CAM, as long as the 3d-
CNNhas a fully convolutional layer. Empirical evidence
has shown that, in 2D applications, CAM can be seen
as a specific instance of Grad-CAM that incorporates
the global average pooling layer. The 3D-Grad-CAM
technique can generate heat maps with a single forward
pass, eliminating the need for retraining. However, the
technique faces the challenge of low resolution due to its
inherent limitation of producing a coarse heatmap that
matches the dimensions of the final convolutional layer.
It is possible to calculate the heatmap using the gradient
and activations from the lower convolution layers, but
there is no guarantee that the spatial activations in the
upper layers would remain unchanged.

Class activation maps in convolutional layers can be
seen and assigned weights using the methods known
as 3D class activation mapping (3D-CAM) and 3D
gradient-weighted class activation mapping (3D-Grad-
CAM). Thesemethods were developed to address com-
plications posed by the presence of correlations and
interactions in the data.However, the limited resolution
of the convolutional layers slows progress. The amount
of detail needed for the exact identification of relevant
areas may be lost when using upsampled heatmaps.

Because the baseline method must perform a forward
pass for each voxel, it can be more computationally
efficient. In 3D-CAM, a single forward pass can gen-
erate a heatmap but at a high cost in terms of both
time and the need for retraining. In Figure 9, the pre-
sented image shows the results of Grad-CAMaccompa-
nied by a heatmap representation in conjunction with
the corresponding ground truth. The heatmap empha-
sizes specific regions within the input image where the
model is pivotal for its prediction. On the contrary, the
term “ground truth” pertains to the authentic anno-
tated information or labels linked with the image. This
information is integral to comprehending the influ-
ential areas within the input image that contribute
significantly to the model’s decision-making process.
Such insights facilitate a more thorough analysis of the
behaviour and performance of the model.

9. Conclusion

In this study, we present a new model for 3D MRI
image segmentation. Our model combines two mod-
ules: the Swin Block3D module, which is based on
a Swin Transformer, and the Conv Block3D mod-
ule, which is based on a CNN. The Swin Block3D
sub-module, built on ViT, captures the global depen-
dence information of the image, whereas the Conv
Blocks3D sub-module, which uses convolution, cap-
tures the local dependence information. By combining
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these findings, we ensured that all Swin VNETR lay-
ers accurately modelled the dependencies of the image.
Moreover, Swin VNETR with Non-local block jump
connections helps prevent excessive data loss during
downsampling in the encoder. In addition, the incor-
poration of Non-local block significantly contributed
to enhancing the overall performance of our model.
Through extensive training and evaluation of the BraTS
2021 dataset, we achieved notable improvements in
both theDice coefficient andHausdorff distance values.
Specifically, the Non-local block demonstrated its effi-
cacy by consistently delivering excellent results across
various metrics, further underscoring its importance
in our model architecture Compared to competing
approaches, Grad-CAM’s visuals exhibit superior inter-
pretability and model faithfulness. Results from mul-
tiple tests demonstrate that our visualizations outper-
form the state-of-the-art in terms of class discrimi-
nation, classifier trustworthiness disclosure, and bias
identification in the datasets.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

References

[1] https://www.cancerresearchuk.org/about-cancer/brain-
tumours/types.

[2] https://www.aans.org/en/Patients/Neurosurgical-Cond
itions-and-Treatments/Brain-Tumors.

[3] https://www.mayoclinic.org/diseases-conditions/brain-
tumor/symptoms-causes/syc-20350084.

[4] Zhao X, Wu Y, Song G, et al. 3D brain tumor seg-
mentation through integrating multiple 2D FCNNs.
In Brainlesion: Glioma, Multiple Sclerosis, Stroke, and
Traumatic Brain Injuries: Third International Work-
shop, BrainLes 2017, Held in Conjunction with MIC-
CAI 2017, Quebec City, QC, Canada, September 14,
2017, Revised Selected Papers 3, pp. 191–203. Springer
International Publishing, 2018.

[5] Torheim T, Malinen E, Kvaal K, et al. Classification
of dynamic contrast enhanced MR images of cervi-
cal cancers using texture analysis and support vec-
tor machines. IEEE Trans Med Imaging. 2014;33(8).
doi:10.1109/TMI.2014.2321024

[6] Baid U, Ghodasara S, Mohan S, et al. The rsna-asnr-
miccai brats 2021 benchmark on brain tumor segmen-
tation and radiogenomic classification.” arXiv preprint
arXiv:2107.02314; 2021.

[7] Zeiler MD, Fergus R. Visualizing and understanding
convolutional networks. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part I 13, pp. 818-
833. Springer International Publishing. 2014.

[8] Qian J, Li H, Wang J, et al. Recent advances in explain-
able artificial intelligence for magnetic resonance imag-
ing. Diagnostics. 2023;13(9):1571. doi:10.3390/diagnos
tics13091571

[9] Chen W, Qiao X, Liu B, et al. Automatic brain tumor
segmentation based on features of separated local
square. In 2017, the Chinese Automation Congress
(CAC), pp. 6489–6493. IEEE, 2017.

[10] Liu Z, Tong L, Chen L, et al. Deep learning based brain
tumor segmentation: a survey. Complex Intell Syst.
2023;9(1):1001–1026. doi:10.1007/s40747-022-00815-5

[11] MzoughiH,Njeh I, SlimaMB, et al. Glioblastomas brain
Tumor Segmentation using Optimized U-Net based
on Deep Fully Convolutional Networks (D-FCNs). In
2020, the 5th International Conference on Advanced
Technologies for Signal and Image Processing (ATSIP),
pp. 1–6. IEEE, 2020.

[12] Ranjbarzadeh R, Bagherian Kasgari A, Ghoushchi
SJ, et al. Brain tumor segmentation based on deep
learning and an attention mechanism using MRI
multi-modalities brain images. Sci Rep. 2021;11(1).
doi:10.1038/s41598-021-90428-8

[13] Mlynarski P, Delingette H, Criminisi A, et al. 3D convo-
lutional neural networks for tumor segmentation using
long-range 2D context. Comput Med Imaging Graph.
2019;73. doi:10.1016/j.compmedimag.2019.02.001

[14] Biratu ES, Schwenker F,MegersaAyanoY, et al. A survey
of brain tumor segmentation and classification algo-
rithms. J Imaging. 2021;7(9). doi:10.3390/jimaging709
0179

[15] Mzoughi H, Njeh I, Wali A, et al. Deep multi-scale 3D
convolutional neural network (CNN) for MRI gliomas
brain tumor classification. J Digit Imaging. 2020;33.
doi:10.1007/s10278-020-00347-9

[16] Nian R, Zhang G, Sui Y, et al. 3D Brainformer: 3D
Fusion Transformer for Brain Tumor Segmentation.”
arXiv preprint arXiv:2304.14508; 2023).

[17] Ronneberger O, Fischer P, Brox T. U-net: Convolu-
tional networks for biomedical image segmentation.
Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015:18th International Confer-
ence, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18. Springer International Publishing.
2015.

[18] Gitonga MM. Multiclass MRI Brain Tumor Segmenta-
tion using 3D Attention-based U-Net. arXiv preprint
arXiv:2305.06203; 2023.

[19] Nodirov J, Abdusalomov AB, Whangbo TK. Attention
3D U-Net with multiple skip connections for segmen-
tation of brain tumor images. Sensors. 2022;22(17):
6501–6501. doi:10.3390/s22176501

[20] Chen Y, Yin M, Li Y, et al. CSU-Net: A CNN-
Transformer parallel network for multimodal brain
tumour segmentation. Electronics. 2022;11(14):2226.
doi:10.3390/electronics11142226

[21] Zerilli J. Explaining machine learning decisions. Philos
Sci. 2022;89:1–19. doi:10.1017/psa.2021.13

[22] Wang X, Girshick R, Gupta A, et al. Non-local neu-
ral networks. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 7794-
7803. 2018.

[23] Baid U, Ghodasara S, Mohan S, et al. The rsna-asnr-
miccai brats 2021 benchmark on brain tumor segmen-
tation and radiogenomic classification. arXiv preprint
arXiv:2107.02314; 2021.

[24] Bakas S, Akbari H, Sotiras A, et al. Advancing the can-
cer genome atlas glioma MRI collections with expert
segmentation labels and radiomic features. Sci Data.
2017;4(1). doi:10.1038/sdata.2017.117

[25] Yushkevich PA, Piven J, Cody Hazlett H, et al. User-
guided 3D active contour segmentation of anatomical
structures: significantly improved efficiency and relia-
bility. Neuroimage. 2006;31(3):1116–1128.

[26] Selvaraju RR, Das A, Vedantam R, et al. Grad-
CAM: Visual Explanations from Deep Networks via

https://www.cancerresearchuk.org/about-cancer/brain-tumours/types
https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Brain-Tumors
https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-20350084
https://doi.org/10.1109/TMI.2014.2321024
https://doi.org/10.3390/diagnostics13091571
https://doi.org/10.1007/s40747-022-00815-5
https://doi.org/10.1038/s41598-021-90428-8
https://doi.org/10.1016/j.compmedimag.2019.02.001
https://doi.org/10.3390/jimaging7090179
https://doi.org/10.1007/s10278-020-00347-9
https://doi.org/10.3390/s22176501
https://doi.org/10.3390/electronics11142226
https://doi.org/10.1017/psa.2021.13
https://doi.org/10.1038/sdata.2017.117


AUTOMATIKA 1363

Gradient-Based Localization. Int J Comput Vision.
2016;128:336–359. doi:10.1007/s11263-019-01228-7

[27] Zhao J, Meng Z, Wei L, et al. Supervised brain tumor
segmentation based on gradient and context-sensitive
features. Front Neurosci. 2019;13:1–11.

[28] Mengqiao W, Jie Y, Yilei C, et al. The multimodal brain
tumor image segmentation based on convolutional neu-
ral networks.” In 2017 2nd IEEE International Confer-
ence on Computational Intelligence and Applications
(ICCIA), pp. 336–339. IEEE, 2017.

[29] Lorenzo PR, Nalepa J, Bobek-Billewicz B, et al. Seg-
menting brain tumors from FLAIR MRI using fully
convolutional neural networks. Comput Methods Pro-
grams Biomed. 2019;176:135–148.

[30] Jia J, Fang F, Luo H. Selective spatial attention involves
two alpha-band components associated with distinct
spatiotemporal and functional characteristics. Neu-
roImage. 2019;199:228–236.

[31] Li X, Zhong Z, Wu J, et al. Expectation- maximization
attention networks for semantic segmenta- tion. CoRR,
vol. abs/1907.13426, 2019.

[32] Ge C, Gu IY-H, Jakola AS, et al. Enlarged training
dataset by pairwise GANs for molecular-based brain
tumor classification. IEEE Access. 2020;8:22560–22570.

[33] He K, Zhang X, Ren S, et al. Deep residual learning
for image recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pp. 770–778. 2016.

[34] Xu F, Jiang L, He W, et al. The clinical value of explain-
able deep learning for diagnosing fungal keratitis using
in vivo confocal microscopy images. Front Med (Lau-
sanne). 2021;8:1–10.

[35] Främling K. Decision Theory Meets Explainable AI.
Explainable, Transparent Auton Agents Multi-Agent
Syst. 2020;12175:57–74. doi:10.1007/978-3-030-51924
-7_4

[36] Mortamet B, Bernstein M, Jack C, et al. Auto-
matic quality assessment in structural brain mag-
netic resonance imaging. Magn Reson Med. 2009;62.
doi:10.1002/mrm.21992

[37] Joo H-T, Kim K-J. Visualization of Deep Reinforce-
ment Learning using Grad-CAM: How AI Plays Atari
Games?. In Proceedings of the IEEE Conference on
Games (CoG), pp. 1–2. 2019. doi:10.1109/CIG.2019.
8847950

[38] Selvaraju RR, Das A, Vedantam R, et al. Grad-
CAM: Visual Explanations from Deep Networks via
Gradient-Based Localization. Int J Comput Vision.
2016;128:336–359. doi:10.1007/s11263-019-01228-7

[39] Zhao G, Zhou B, Wang K, et al. Respond-CAM: Ana-
lyzing Deep Models for 3D Imaging Data by Visualiza-
tions.” (2018): 485–492.

[40] Baid U, et al. The RSNA-ASNR-MICCAI BraTS 2021
Benchmark on Brain Tumor Segmentation and Radio-
genomic Classification. arXiv:2107.02314;
2021.

[41] Menze BH, Jakab A, Bauer S, et al. The Multi-
modal Brain Tumor Image Segmentation Benchmark
(BRATS). IEEE Trans Med Imaging. 2015;34(10):
1993–2024. doi:10.1109/TMI.2014.2377694

[42] Bakas S, AkbariH, Sotiras A, et al. Advancing the cancer
genome atlas glioma MRI collections with expert seg-
mentation labels and radiomic features.Nature SciData.
2017;4:170117. doi:10.1038/sdata.2017.117

https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/978-3-030-51924-7_4
https://doi.org/10.1002/mrm.21992
https://doi.org/10.1109/CIG.2019.8847950
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1038/sdata.2017.117

	1. Introduction
	2. Related work
	2.1. Traditional machine learning methods
	2.2. Deep learning-based methodology

	3. Proposed methodology
	3.1. Swin V-Net transformer model
	3.2. Swin 3D
	3.3. 3D convolution block
	3.4. Non-local block

	4. Dataset
	5. Implementation
	6. Evaluation metrics
	7. Results and discussion
	8. Explainable deep learning
	9. Conclusion
	Disclosure statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


