
Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/taut20

An adaptive multistage intrusion detection and
prevention system in software defined networking
environment

N Maheswaran, S Bose & Buvaneswari Natarajan

To cite this article: N Maheswaran, S Bose & Buvaneswari Natarajan (2024) An adaptive
multistage intrusion detection and prevention system in software defined networking
environment, Automatika, 65:4, 1364-1378, DOI: 10.1080/00051144.2024.2372749

To link to this article: https://doi.org/10.1080/00051144.2024.2372749

© 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 11 Jul 2024.

Submit your article to this journal

Article views: 807

View related articles

View Crossmark data

Citing articles: 1 View citing articles

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

https://www.tandfonline.com/journals/taut20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2024.2372749
https://doi.org/10.1080/00051144.2024.2372749
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2024.2372749?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2024.2372749?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2372749&domain=pdf&date_stamp=11%20Jul%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2372749&domain=pdf&date_stamp=11%20Jul%202024
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2024.2372749?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2024.2372749?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

AUTOMATIKA
2024, VOL. 65, NO. 4, 1364–1378
https://doi.org/10.1080/00051144.2024.2372749

An adaptive multistage intrusion detection and prevention system in software
defined networking environment

NMaheswarana, S Bosea and Buvaneswari Natarajanb

aDepartment of Computer Science and Engineering, College of Engineering Guindy, Anna University, Chennai, India; bMiddlesex College,
Edison, NJ, USA

ABSTRACT
The advancementsmade in Software-DefinedNetworking (SDN) technology seemquite promis-
ing, with potential wide application in managing and controlling the latest network infrastruc-
tures. SDN technology decouples the control plane from the data plane, enabling effective and
flexible network management. However, this dynamic phenomenon brings new security chal-
lenges. With the increasing dynamism and programmable nature of networks, conventional
security protocols may not sufficient to protect against advanced and sophisticated attacks.
Although Intrusion Detection Systems (IDSs) have been extensively applied for identifying and
preventing security threats in traditional network environments, IDS models designed specifi-
cally for traditional network requirements may not be adequate for SDN environments. These
issues may stem from the static nature of conventional networks, contrasting with the dynamic-
ity of advanced SDN networks, and the traditional IDS’s inability to adapt to the dynamic nature
of SDN. To address these challenges, the current research proposes a novel Deep Hybrid IDS
model to enhance network security in SDN environments and prevent attacks using Scapy. The
proposed model detects signature-based attacks by integrating Gated Recurrent Units (GRU)
and Long Short-Term Memory (LSTM) for real-time simulated datasets, achieving an accuracy
of 97.8%, which is comparatively better than existing models.

ARTICLE HISTORY
Received 19 December 2023
Accepted 21 June 2024

KEYWORDS
Software-defined
networking; deep one-class
Intrusion Detection System;
open network operating
system; Canadian institute
for Cyber security Flow
meter; Scapy

1. Introduction

SDN was proposed in 2006 at Stanford University and
is a centralized model in which the complete set of
requests raised by clients is received. This dynamic
architecture helps achieve flexibility, scalability, and
affordability compared to Physical Machines and Vir-
tual Machines (VMs) [1]. The SDN architecture has
the ability to decouple the data and control plane,
thus enabling the administrator to directly program
the network control and forwarding functions [2].
This feature enables the widespread application of the
SDN architecture. The primary function of SDN is
to transfer data from the control plane to forwarding
devices, into a separate data plane [3]. In this struc-
ture, the control plane determines the path, while the
data planes execute the task of data forwarding. With
the rapidly growing penetration of Internet of Things-
based devices, projections for the year 2050 estimate the
number of devices connected to the internet to reach
100 billion [4].

The SDN architecture comprises application layer,
control layer, and data layers based on their respec-
tive functions. Although OpenFlow is the extensively
used protocol in SDN, there are other protocols as well,
such as NETCONF. SDN controllers are located in the

control plane, providing logic to the data plane. The
controller consists of a northbound interface, controller
core, and southbound interface [5]. Multiple stud-
ies [6–9] have discussed the application of software-
defined IoT through SDN solutions, whichmay provide
users with multiple benefits such as global information
access, efficient resource utilization, security, privacy,
energy management, and network function virtual-
ization. Despite the various benefits associated with
deploying SDN in IoT communication processes, chal-
lenges are encountered, such as the demand for a huge
number of entire networks in IoT, distributed con-
trollers [10], differentiation of forwarding plane con-
figurations, and the evolution of commuter flow charts,
etc. [3].

In SDN, the application layer functions as an inter-
face between the administrator and the network. This
integrated structure enables the IDS to monitor and
perform network traffic analysis in real-time to detect
network anomalies [10,11]. Furthermore, in SDN
architecture, implementing security policies across the
network is simplified. For example, it is possible to
identify malicious attacks by programming the SDN
controller [12] using Convolutional Neural Network
(CNN) [13] and LSTM [14].

CONTACT NMaheswaran nmaheswaran97@gmail.com Department of Computer Science and Engineering, College of Engineering Guindy,
Anna University, Chennai 600025, TN, India

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2372749&domain=pdf&date_stamp=2024-07-10
mailto:nmaheswaran97@gmail.com
http://creativecommons.org/licenses/by-nc/4.0/

AUTOMATIKA 1365

As mentioned in the literature cited above, a wide
range of studies has been conducted combining two or
more approaches to develop robust models. Ensemble
learning is one of the Machine Learning (ML) tech-
niques that combine different models to achieve high
prediction accuracy. An ensemble deep learningmodel,
which combines Deep Neural Networks (DNNs) and
the ensemble learning approach, can be leveraged to
enhance overall prediction accuracy. Traditional IDSs
have been applied in a limited number of studies in
SDN environments. Since signature-based IDSs require
a static configuration, they can be used in traditional
networks. However, in a dynamic and programmable
environment like SDN, such IDSs cannot be applied.
This scenario renders conventional IDSs incapable and
inadequate for application inmodern network architec-
tures. The growing adoption of SDNposes challenges in
network management, including security, privacy, and
distribution of controllers. In this context, the research
work attempts to develop an adaptive Intrusion Detec-
tion and Prevention System (IDPS) capable of meeting
the demands of the dynamic SDN environment without
compromising security and privacy outcomes.

As network size and complexity grow, SDNs may
struggle with processing vast amounts of data in real-
time, leading to latency and reduced performance. The
hybridmodel leverages the strengths ofGRUandLSTM
networks to efficiently handle large datasets and time-
series data, improving real-time processing capabili-
ties. Traditional SDN-based IDSmay face difficulties in
adapting to new and evolving cyber threats due to static
rule sets and limited adaptability. The combined use of
GRU and LSTM allows themodel to learn complex pat-
terns and dynamically adapt to threats by continuously
updating its learning parameters.

Additionally, it prevents attacks by using Scapy as
an Intrusion Prevention System (IPS). The proposed
model has the ability to adapt to the dynamic nature
of SDN environments and detect network attacks. This
research contributes to the domain by developing a
highly advanced and effective network security solu-
tion for application in SDNenvironments. This, in turn,
can improve the overall security posture ofmodern net-
work infrastructures. The outcomes of the proposed
model were compared with those of other models to
establish its superiority.

2. Objectives

Based on the identified research gap, the research aims
to develop an adaptive IDPS for application in SDN
environments. The current research work is conducted
with the following objectives:

(1) To propose and develop an adaptive IDPS for
detecting and alerting the network administrator
regarding malicious or suspicious traffic.

(2) To monitor the network’s performance after
deploying the IDPS under different measures and
compare and contrast it with existing state-of-the-
art models.

3. Literature survey

In the literature [15], a comprehensive survey was con-
ducted earlier focusing on IDS for SDN networks using
ML, Deep Learning (DL), Reinforcement Learning
(RL), and hybrid and ensemble-based techniques. The
review encompassed various types of models within
all the aforementioned techniques. Additionally, the
authors listed some of the prominent datasets that act
as benchmarks in IDS-based research works. However,
the study cited the lack of an SDN-dedicated dataset to
train the models. Bhardwaj et al. [16] mentioned that
despite the favourable environment for different secu-
rity levels in IoT, it is not possible for SDN to resolve all
types of security issues on its own. The issue with IDS
is that most are based on ML techniques, which tend
to generate a high false positive rate and are unable to
provide results in the case of non-linear data.

A LSTM-based approach has been validated for the
detection of network attacks with the help of SDN-
backed IDS in IoT networks [17]. The proposed model
was found to efficiently identify and classify attacks. In
an earlier study [18], the authors proposed and val-
idated a novel hybrid DL approach based on CNN
for the detection and classification of network traf-
fic as either normal or attack. The proposed SD-Reg
method was found to outperform existing methods,
and the study proposed a lightweight Network IDS
(NIDS) by training the CNN-based models to achieve
network security without compromising the model’s
performance.

The authors [19] proposed a novel HFS-LGBM
(Hybrid Feature Selection-Light Gradient Boosting
Machine)-based IDS to be applied in SDN architec-
ture. In this approach, correlation-based feature selec-
tion and random forest recursive feature elimination
algorithms were combined to reap the advantages of
both algorithms. The proposedmethod obtained excel-
lent results in terms of precision, accuracy, recall, and
F-measure. To detect intrusions in every sub-network,
Luo [20] proposed a decision tree optimized by the
Black Hole Optimization (BHO) algorithm. The pro-
posed method was validated using the NSL-KDD
and NSW-NB15 databases, and the accuracy achieved
with both datasets was excellent compared to existing
methods.

A NIDS-DL approach was proposed in the literature
[21] for application in SDN architecture. This hybrid
method combined the concepts involved in NIDS and
DL methods and deployed 12 features (including 5
deep learning classifiers) from the NSL-KDD dataset.
The proposed method achieved high accuracy values

1366 N. MAHESWARAN ET AL.

in binary classification as well as attack detection. In
an earlier study [22], the authors combined the pattern
recognition ability of ML techniques and network pro-
grammability features to safeguard the network from
DoS attacks and port scanning attacks. According to the
study outcomes, the Naive Bayes ML model achieved
the highest accuracy for both types of attacks consid-
ered in the study.

From the literature survey, it is evident that var-
ious approaches have been proposed for IDS in an
SDN environment. Althoughmethods such as ML, DL,
and hybrid techniques appear promising, they still face
significant challenges. ML-based IDS often encounter
issues with false positive rates and have difficulty man-
aging non-linear data.

4. Proposed system

Figure 1 provides an overview of the IDPS, while Figure
2 illustrates the proposed IDPS architecture, which is
supported by deep hybrid learning. The network traf-
fic is captured by the proposed model using a suit-
able capturing module. Subsequently, the information
is preprocessed and converted into training and testing
datasets. The architecture comprises GRU and LSTM
models that include an input layer, a convolution layer,
an LSTM layer, and an output layer. The proposed
model is trained using an appropriate optimizer, loss
function, and evaluation metric. It is then evaluated
using the testing data. Finally, the output values are
fed into the Multi-Layer Perceptron classifier and com-
bined to create the deep hybrid model. Here is the
revised version of the provided text with improved
grammar:

Finally, the SDN is deployed along with the data
plane and control plane. In this procedure, it is impor-
tant to monitor the data plane for network traffic, while

it is crucial to feed the data to the collector located at the
control plane. The network traffic data is analysed using
the deep hybrid model with the purpose of detecting
intrusions and evaluating the proficiency of the model
using appropriate metrics.

4.1. Collector

4.1.1. Network traffic capturing
Traffic is generated from kali Linux machine. It is cap-
tured usingWireshark after which the information is to
be stored as a .pcap file.With the help of CICFlowmeter,
the features relevant to the requirement are extracted
from .pcap file saved as a .csv file. Figure 3 shows
the logical setup of network traffic capturing module
required to collect the network traffic data in SDN
architecture. In the proposed work used the ONOS
controller. Further, the proposed work used a total of
four Virtual Machines (VMs) in this study such as
the ONOS controller VM, OVS switch+mininet VM,
Kali Linux VM (attackermachine), andmetasploitable-
2 server (vulnerable Linux machine). Out of these
VMs, OVS switch is used for the purpose of hardware
virtualization.

4.1.2. VMnet setup
The ONOS controller is installed and configured while
in parallel, the OVS switch is installed along with
Mininet software in the same virtual machine. Then,
four adapters such as ens38, ens39, ens40, and ens41 are
created in the OVS VM. The same OpenFlow switch
has two more OVS bridges named br1 and br2. Every
data plane interface is assigned with a corresponding
appropriate bridge. The IP addresses are removed from
each data plane interface and are assigned to the bridge
created earlier. “Kali Linux VM” is connected with the
same adapter alike br1 whereas Metasploitable2 server

Figure 1. Overview of the proposed IDPS system.

AUTOMATIKA 1367

Figure 2. Proposed system architecture.

is integrated with the same adapter alike br2. Here, the
IP forwarding option is enabled for the OVS Linux
machine. With a total of four virtual hosts from h1
to h4 a Mininet topology is manufactured. All the
four hosts are integrated with S1 bridge. Here, the
IP address of the S1 bridge is supplemented in the
form of a typical gateway for every virtual host that
is present in the Mininet topology. The ONOS con-
troller is connected with the bridges produced ear-
lier such as br1, br2 and S1 after which the setup is
completed.

4.1.3. Generate traffic
In this stage, the network device is informed with a
network status request message. Then, the collector
raises a request message to the network device with
regards to the information about the current status of
the network. Afterwards, the request for network sta-
tus is processed. When the network device receives
a request message, it processes the request and starts
tshark.

4.1.4. Capture network traffic data using tshark
The collector uses tshark to capture the network traffic
data after which the collected data is saved as a .pcap
file.

4.1.5. Extract the required features using
CICFlowmeter
The CICFlowmeter extracts the features from the cap-
tured network traffic data (.pcap file). The features are
inclusive of information like the type of protocol, IP
addresses of both source and the destination, and the
packet length. Then, the conversion of .pcap file to .csv
file occurs with the help of CICFlowmeter after which
the result is transmitted to the detector.

Figure 4 shows the real-time data in which 1 repre-
sents normal, 2 corresponds to U2R, 3 represents the
BFA and 4 represents the DDOS attack.

4.2. Detector

In detector phase, label encoding is conducted to pro-
vide the real-time dataset as an input to generate the

1368 N. MAHESWARAN ET AL.

Figure 3. Logical setup of network traffic capturing module.

output as data frame with encoded labels. Further, the
data is split into number arrays with standard data
points in order to split the test data and train the model
accordingly. Figure 5 shows the logical design used
behind the development of deep hybrid learning model
using GRU and LSTMmodels.

4.2.1. Label encoding
The real-time dataset serves as the input and it initi-
ates the creation of a dictionary that uniquely assigns
an integer to each distinct label. This is accomplished
through enumeration of a set of unique labels that are
present in the dataset. Subsequently, every label in the
dataset is encoded with the help of its respective inte-
ger value. Then, these encoded labels are integrated
into a data frame, thus facilitating their utilization in
subsequent analyses or ML tasks. In this manner, the
compatibility of the dataset is enhanced using various
computational algorithms and methodologies.

4.2.2. Standardization
Standardization is a crucial pre-processing step in ML
technique as it scales up the numerical features to a
common scale, typically with 0mean and unit variance.
The process of standardization is applied methodically,
when the dataset includes both numerical features as
well as encoded categorical labels. At first, the categor-
ical labels are encoded into numerical values with the
help of techniques like label encoding. Thus, the model

is ensured not to have any bias towards a particular
feature due to varying nature of the scales. Finally, the
standardized numerical features and the encoded cat-
egorical labels are combined into NumPy array, thus
creating a unified dataset, which is ready for use in ML
algorithms. This standardized array provides a consis-
tent and normalized representation of the original data,
thus improving the performance of the model and its
interpretability. In SDN environments, IDS addresses
data imbalance using the Synthetic Minority Over-
sampling Technique (SMOTE). SMOTE is employed to
alleviate skewed class distribution by generating syn-
thetic instances of the minority class. Specifically, we
applied SMOTE to augment the minority class sam-
ples, thereby achieving a more balanced dataset. This
approach enhances the classifier’s ability to learn from
theminority class instances, leading to improved detec-
tion performance for rare network intrusions. By lever-
aging SMOTE, our IDS model in SDN environments
demonstrates increased effectiveness in identifying and
mitigating security threats.

4.2.3. feature extraction
When creatingML-basedmodels, it is important to seg-
regate the data into training and testing datasets. This is
crucial for evaluating the generalization performance of
the model on unseen data. During the incorporation of
an autoencoder for feature extraction, the data is seg-
regated according to standard procedures before being

AUTOMATIKA 1369

Figure 4. Extracted real time data visualization.

fed into the GRU and LSTM networks. After train-
ing the autoencoder on the entire dataset, the data is
transformed by the encoder into a lower-dimensional
representation. This part serves as the input for the
subsequent GRU or LSTM models. Prior to feature
extraction, the data is split from the original dataset,
commonly into training and testing datasets. This phe-
nomenon ensures that the model is trained on one
subset of the data whereas it is evaluated on an inde-
pendent subset, thus enabling the analytical outcomes
remain unbiased. The resulting split dataset after fea-
ture extraction using auto encoder supports both the
training and testing of GRU and LSTM models. This
outcome contributes to the development of accurate
and robust sequence-based predictive models. Table 1
shows the Hyper Parameter tuning in GRU, LSTM and
Hybrid GRU-LSTM model for deep hybrid learning
model.

4.2.4. Deep hybrid learningmodel
4.2.4.1. EnsembleGRUandLSTM. Themodel demon
strates a comprehensive approach in capturing both
short-term and long-term dependencies within the
sequential information. The encoded data from the

autoencoder’s training split is simultaneously fed into
both the GRU and LSTM layers. Generally, the GRU
layer excels in capturing short-term dependencies
through its update and reset gates. On the other hand,
the LSTM layer specializes in maintaining long-term
memory with the help of its intricate gating mecha-
nism. The ensemble model combines the strengths of
both architectures, allowing the layers to complement
each other’s capabilities. This collaborative processing
ensures that the model effectively captures and repre-
sents intricate patterns within the sequential data by
leveraging the strengths of both the GRU and LSTM
components. Furthermore, this collaborative approach
enhances the overall performance of the autoencoder-
based system during the training phase.

Figures 6–8 show the accuracy, loss, and confusion
matrices of the GRU, LSTM, and Ensemble models
across different counts of epochs. The accuracy of the
GRU, LSTM, and Ensemble models is depicted over
time or epochs. In general, accuracy represents the
number of correctly classified instances and provides
an overview of the model’s performance. Analysing
these figures allows us to observe trends and fluctu-
ations in the accuracy of each model throughout the

1370 N. MAHESWARAN ET AL.

Figure 5. Logical setup of the deep hybrid learning model.

Table 1. Hyper Parameter tuning in GRU, LSTM and Hybrid GRU-LSTM model for
deep hybrid learning model.

Model Hyper parameter Values Tested Accuracy (%)

GRU Hidden Units [64, 128, 256] [96.5, 97.1, 96.8]
Dropout [0.0, 0.1, 0.2] [97.0, 96.7, 96.9]
Learning Rate [0.001, 0.01, 0.1] [96.8, 97.2, 96.5]
Activation [“relu”, “tanh”] [96.9, 97.1]

LSTM Hidden Units [64, 128, 256] [97.2, 96.5, 97.0]
Dropout [0.0, 0.1, 0.2] [97.1, 96.8, 96.9]
Learning Rate [0.001, 0.01, 0.1] [96.5, 97.0, 96.8]
Activation [“relu”, “tanh”] [96.8, 97.2]

Hybrid(GRU+ LSTM)) GRU Hidden Units [64, 128, 256] [97.0, 96.9, 97.1]
LSTM Hidden Units [64, 128, 256] [97.2, 96.8, 97.0]
Dropout [0.0, 0.1, 0.2] [96.9, 97.1, 96.5]
Learning Rate [0.001, 0.01, 0.1] [97.1, 96.5, 97.8]
Activation [“relu”, “tanh”] [96.8, 97.8]

training process. It is essential to identify the model
that exhibits high accuracy, indicating better predictive
capabilities.

Loss quantifies the dissimilarity between the pre-
dicted values and the actual values. In general, lower
loss values signify better performance of the model.

AUTOMATIKA 1371

Figure 6. (a) Confusion Matrix, (b) Accuracy, (c) Loss for LSTM.

Figures 6–8 help in identifying the convergence pat-
terns and relative stability of each model. Both lower
and highly consistent loss values generally indicate that
the model performs better.

Confusion matrices provide a bird’s-eye view of the
classification outcomes of themodel, showing the num-
ber of true positives and negatives followed by false pos-
itives and negatives. A careful analysis of these matrices

1372 N. MAHESWARAN ET AL.

Figure 7. (a) Confusion Matrix, (b) Accuracy, (c) Loss GRU.

AUTOMATIKA 1373

Figure 8. (a) Confusion Matrix, (b) Accuracy, (c) Loss Ensemble model.

1374 N. MAHESWARAN ET AL.

Algorithm 1: Deep Hybrid Learning Model (GRU+LSTM)
1 Get X=(x1, x2, x3) from SDN Dynamic Dataset.
2 x1’, x2’, x3’ = label encoding (x1, x2, x3)
3 x1’, x2’, x3’ = Standardization (x1’, x2’, x3’)
4 Conduct convolution processing.
5 for z = 1; z ≤ Z; do do
6 for y = 1; y ≤ Y; do do
7 Create backwardGRUcell and backwardLSTMcell by Sstate;
8 Create forwardGRUcell and forwardLSTMcell by Sstate;
9 Connect BLSTMnet by backwardLSTMcell and forwardLSTMcell

10 Connect BGRUnet by forwardGRUcell and backwardGRUcell
11 Initialize BLSTMnet and BGRUnet by seed.
12 Get hidden states h(z,y) of BLSTMnet and BGRUnet.
13 end
14 end
15 Add a full connection layer, whose value is 320;
16 Add a dropout, whose value is 0.1;
17 for each hidden state in 1: h(z,y); do do
18 Obtain h(z,y) implicit representation u1 through a non-linear transformation.
19 Generate a random initialization matrix vw
20 Obtain the normalized importance weight coefficient β1
21 Get fine-grained feature s via β1 and h(z,y).
22 end
23 Add a full connection layer whose value is 1024.
24 Add a full connection layer, whose value is 10;
25 Return accuracy, F1Score.

helps in assessing the strengths and weaknesses of the
model in terms of correctly and incorrectly classified
instances.

Various metrics, such as precision, recall, F1 score,
and Area Under the Receiver Operating Characteris-
tic Curve (AUC-ROC), are used to conduct a com-
prehensive evaluation of the performance. These met-
rics can be calculated from the confusion matrices
and provide insights into the model’s ability to create
a fine balance between precision and recall for vari-
ous classes. Precision reflects the accuracy of positive
predictions, while recall denotes the capability of a
model to capture the entire set of relevant instances.
In general, the F1 score is calculated by combining the
recall and precision values into a single measure. The
AUC-ROC calculates the trade-off that exists between
the True Positive Rate (TPR) and the False Positive
Rate (FPR).

4.3. Defender – IPS

Scapy Defender is a security tool designed to enhance
the network defense by intercepting and dropping
specific packets based on the predefined criteria. By
leveraging the capabilities of Scapy library, the Scapy
Defender enables the users to create custom rules as
well as filters to inspect these packets. When find-
ing a packet that matches the defined criteria, the

Scapy Defender takes action to drop the packet. Thus,
it prevents the packet from reaching the intended
destination. This proactive approach towards filtering
the packet is particularly valuable in network secu-
rity as the phenomenon allows the administrators to
thwart any sort of potential threats, malicious activi-
ties, or unwanted traffic. By offering a flexible and pro-
grammable framework, the Scapy Defender empowers
the network defenders to tailor their defense mech-
anisms, according to specific requirements, thereby
bolstering the resilience of networks against dif-
ferent types of cyber threats. Figure 9 provides a
visual representation of the features or patterns used
to filter and differentiate the attacks and normal
data.

5. Performancemetrics

5.1. Thresholdmetrics

• F-Measure: It is ameasure used to calculate the accu-
racy of a classificationmodel. The value corresponds
to the harmonic mean between recall and precision,
as shown in Equation (1).

F − Measure = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(1)

AUTOMATIKA 1375

Figure 9. Filter Attack and Normal.

5.2. Rankingmetrics

• Accuracy: It is determined as the percentage of cor-
rectly predicted labels from the total number of
instances in a dataset, as shown in Equation (2).

Accuracy = (Number of correct Prediction)

Total number of Prediction
(2)

• Recall: This measure is calculated as the proportion
of original positive instances that are correctly iden-
tified by the model as positive, as shown in Equation
(3).

Recall =
True Positive

(True Positive + False Negative)
(3)

1376 N. MAHESWARAN ET AL.

• Precision: Precision corresponds to a measure for
the accuracy of a measurement or a system that
produces the measurements, as shown in Equation
(4).

Precision

=
Number of correctly

estimated measuerements
Total number of measurements

∗100 (4)

Table 2 shows the accuracy, precision, recall, and
F-measure for the GRU, LSTM, and Ensemble models.
In Table 3, the proposed GRU+ LSTM model stands
out with an impressive accuracy rate of 97.8%, surpass-
ing competing models in performance. By amalgamat-
ing the strengths of both GRU and LSTM architectures,
our model effectively captures and processes sequen-
tial data, yielding highly accurate predictions. Com-
pared to alternative approaches, which often fall short

Table 2. Accuracy, precision, recall and F-measure in GRU, LSTM and Ensemble Model.

LSTM GRU ENSEMBLE MODEL

MODEL Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score Support

0 0.928571 0.26087 0.4073 299 0.771429 0.271 0.401 299 0.747253 0.227 0.34872 299
1 0 0 0 39 0 0 0 39 0 0 0 39
2 0.892811 0.997409 0.9422 24318 0.893131 0.997 0.942 24318 0.892569 0.997 0.94203 24318
3 0.912932 0.903192 0.908 11435 0.917811 0.906 0.912 11435 0.915739 0.899 0.90733 11435
4 0.924539 0.944509 0.9344 13750 0.927599 0.947 0.937 13750 0.924644 0.934 0.92946 13750
5 0.974872 0.850324 0.9083 19756 0.975344 0.853 0.9101 19756 0.924644 0.854 0.90665 19756
6 0 0 0 206 0 0 0 206 0 0 0 206
7 0 0 0 40 0 0 0 40 0 0 0 40
Accuracy 0.922741 0.922741 0.9227 0.9227 0.924201 0.924 0.9242 0.9242 0.920908 0.921 0.92091 0.92091
Macro avg 0.579216 0.494538 0.5125 69843 0.560664 0.497 0.5128 69843 0.555809 0.489 0.50427 69843
Weighted Avg 0.922074 0.922741 0.9194 69843 0.923047 0.924 0.9209 69843 0.919259 0.921 0.91748 69843

Table 3. Accuracy of proposed system vs existing system.

Author Year Methodology Accuracy

Almasri T et al [22] 2022 Naïve Bayes 93.50%
Bhardwaj et.al [16] 2022 Clonal Selection Model 95%
Luo K et.al [20] 2023 Optimized Decision Tree 96.80%
Sharma et.al [2] 2023 Dynamic SDNmodel 83.00%
Logeswari G et al. [23] 2023 CFS-LGBMModel 95%
Maheswaran N et al. [24] 2022 Random Forest 86%
L Yang et al. [25] 2022 Griffin Real Time Network 97%
Proposed Model GRU+ LSTM 97.80%

Figure 10. Performance outcome of four randomly picked samples.

AUTOMATIKA 1377

in accuracy and efficiency, ourmodel excels in handling
complex patterns and long-term dependencies within
the data. Figure 10 shows the outcomes from four ran-
domly selected datasets. These datasets contain both
attack data and normal data. The classification rate is
similar to accuracy.

6. Conclusion

This research proposes and validates a new approach to
enhance network security in SDN environments using
a Deep Hybrid IDS model. The proposed model lever-
ages both ML techniques and DNNs to detect known
and unknown attacks through integrated anomaly-
based intrusion detection and signature-based intru-
sion detection techniques. The model was tested on a
network, and the results confirm that it outperformed
all other conventional IDSs in terms of false positive
rate and detection accuracy. Overall, the proposed deep
hybrid IDSmodel is a promising approach to overcome
the security challenges encountered in SDN environ-
ments and can contribute to the development of highly
advanced and effective network security solutions.

7. Future work

Future work for enhancing network security in SDN
environments using the deep hybrid IDS model should
focus on improving the accuracy and scalability of the
models through further experimentation and valida-
tion under different SDN environments. Another area
of focus is the integration of the deep hybrid IDSmodel
with the rest of the security solutions to develop a highly
cohesive security framework for SDN networks. Addi-
tionally, otherML and DNN’s can be applied to achieve
refined results in terms of enhanced network secu-
rity. Finally, adapting the proposed model to address
emerging security threats in SDN environments, such
as insider attacks, can also be a potential research
area. Overall, future work should aim to improve and
adapt the proposed model to ensure the security and
resilience of SDN networks against evolving security
threats.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

References

[1] Chaudhary R, Aujla G.S, Kumar N. and Chouhan
P.K. A comprehensive survey on software-defined net-
working for smart communities. Int J Commun Syst.
2022;n/a(n/a):e5296. doi:10.1002/dac.5296

[2] Sharma A, Balasubramanian V, Kamruzzaman J. A
novel dynamic software-defined networking approach
to neutralize traffic burst. Computers. 2023. doi:10.
3390/computers12070131

[3] Al-ShareedaM,AlsadhanAA,QasimHH,&Manickam
S. Software defined networking for internet of things:
review, techniques, challenges, and future directions.
2024;13:638–647. doi:10.11591/eei.v13i1.6386

[4] Karunarathne G, Kulawansa K, Firdhous M. (2018).
Wireless communication technologies in internet of
things: a critical evaluation. doi:10.1109/ICONIC.2018.
8601226

[5] Etxezarreta X, Garitano I, Iturbe M, Zurutuza U.
Software-Defined Networking approaches for intrusion
response in Industrial Control Systems: a survey. Int J
Crit Infrastruct Prot. 2023;42:100615. doi:10.1016/j.ijcip.
2023.100615

[6] Raikar MM, S MM. MullaMM Software Defined Inter-
net of Things using lightweight protocol. Procedia
Comput Sci. 2020;171:1409–1418. doi:10.1016/j.procs.
2020.04.151

[7] Siddiqui S, Hameed S, Shah SA, Ahmad I, Aneiba
A, Draheim D, Dustdar S. Toward Software-Defined
Networking-Based IoT Frameworks: a systematic liter-
ature review, taxonomy, open challenges and prospects.
IEEE Access. 2022;10:70850–70901. doi:10.1109/
ACCESS.2022.3188311

[8] Vimal V, Muruganantham R, Prabha R, Arularasan
AN, Nandal P, Chanthirasekaran K, Reddy Ranabothu
G. Enhance Software-Defined Network Security with
IoT for strengthen the encryption of information
access control. Comput Intell Neurosci. 2022: 4437507.
doi:10.1155/2022/4437507

[9] Kumhar M, Bhatia J. Software-defined networks-
enabled fog computing for IoT-based healthcare: secu-
rity, challenges and opportunities. Secur Priv. 2023;6(5):
e291. doi:10.1002/spy2.291

[10] Zeleke EM, Melaku HM, Mengistu FG. Efficient Intru-
sion Detection System for SDN Orchestrated Internet
of Things. J Comput Netw Commun. Edited by I. Ali.
2021: 5593214. doi:10.1155/2021/5593214

[11] Saheed YK, Misra S. A voting gray wolf optimizer-
based ensemble learning models for intrusion detec-
tion in the Internet of Things. Int J Inf Secur. 2024.
doi:10.1007/s10207-023-00803-x

[12] Shoaib F, Chow YW, Vlahu-Gjorgievska E, and Nguyen
C.MitigatingTiming Side-ChannelAttacks in Software-
Defined Networks: detection and response. Telecom.
2023: 877–900. doi:10.3390/telecom4040038

[13] Najar AA, Manohar Naik S. Cyber-Secure SDN: a
CNN-based approach for efficient detection andmitiga-
tion of DDoS attacks. Comput Secur. 2024;139:103716.
doi:10.1016/j.cose.2024.103716

[14] Rajan D, Aravindhar DD. Detection and mitigation of
DDOS attack in SDN environment using hybrid CNN-
LSTM. Migr Lett. 2023;20:407–419. doi:10.59670/ml.
v20iS13.6472

[15] Ahmed MR, et al. 2022. Intrusion Detection System
in Software-Defined Networks using machine learning
and deep learning techniques –a comprehensive survey.

[16] Bhardwaj A, Tyagi R, Sharma N, Khare A, Punia MS,
Garg VK. Network intrusion detection in software
defined networking with self-organized constraint-
based intelligent learning framework. Meas: Sens.
2022;24:100580. doi:10.1016/j.measen.2022.100580

[17] Chaganti R, Suliman W, Ravi V, Dua A. Deep
learning approach for SDN-enabled Intrusion Detec-
tion System in IoT networks. Information. 2023.
doi:10.3390/info14010041

[18] ElSayed MS, Le-Khac NA, Albahar MA, Jurcut A. A
novel hybrid model for Intrusion Detection Systems

https://doi.org/10.1002/dac.5296
https://doi.org/10.3390/computers12070131
https://doi.org/10.11591/eei.v13i1.6386
https://doi.org/10.1109/ICONIC.2018.8601226
https://doi.org/10.1016/j.ijcip.2023.100615
https://doi.org/10.1016/j.procs.2020.04.151
https://doi.org/10.1109/ACCESS.2022.3188311
https://doi.org/10.1155/2022/4437507
https://doi.org/10.1002/spy2.291
https://doi.org/10.1155/2021/5593214
https://doi.org/10.1007/s10207-023-00803-x
https://doi.org/10.3390/telecom4040038
https://doi.org/10.1016/j.cose.2024.103716
https://doi.org/10.59670/ml.v20iS13.6472
https://doi.org/10.1016/j.measen.2022.100580
https://doi.org/10.3390/info14010041

1378 N. MAHESWARAN ET AL.

in SDNs based on CNN and a new regularization
technique. J Netw Comput Appl. 2021;191:103160.
doi:10.1016/j.jnca.2021.103160

[19] Alzahrani AO, Alenazi MJF. Designing a Network
Intrusion Detection System Based on machine learning
for software defined networks. Future Internet. 2021.
doi:10.3390/fi13050111

[20] Luo K. A distributed SDN-based Intrusion Detection
System for IoT using optimized forests. PLoS One.
2023;18(8):e0290694. doi:10.1371/journal.pone.029
0694

[21] Radhi Hadi M, Saher Mohammed A. (2022). ‘A novel
approach to Network Intrusion Detection System using
Deep Learning for SDN: Futuristic Approach’, in
Machine learning& applications. Academy and Industry
ResearchCollaborationCenter (AIRCC) (CMLA2022).
doi:10.5121/csit.2022.121106

[22] AlMasri T, Snober M, Al-Haija Q. (2022). ‘IDPS-SDN-
ML: an intrusion detection and prevention systemusing

Software-Defined Networks and Machine Learning’,
in 1st International Conference on Smart Technology.
Surakarta, Indonesia.

[23] Logeswari G, Bose S, Anitha T. An Intrusion Detection
System for SDN using machine learning. Intell Autom
Soft Comput. 2023;35(1):867–880. doi:10.32604/iasc.
2023.026769

[24] Maheswaran N, Bose S, Logeswari G, et al. Hybrid
Intrusion Detection System Using Machine Learning
Algorithm. In: Khanna A, Polkowski Z, Castillo O, edi-
tors. Proceedings of data analytics and management.
lecture notes in networks and systems, vol. 572. Singa-
pore: Springer; 2023. p. 333–346. doi:10.1007/978-981-
19-7615-5_30.

[25] Yang L, Song Y, Gao S, Xiao B. Griffin: real-time
Network Intrusion Detection System via ensemble of
autoencoder in SDN. in IEEE Trans Netw Serv Manag.
September 2022;19(3):2269–2281. doi:10.1109/TNSM.
2022.3175710

https://doi.org/10.1016/j.jnca.2021.103160
https://doi.org/10.3390/fi13050111
https://doi.org/10.1371/journal.pone.0290694
https://doi.org/10.5121/csit.2022.121106
https://doi.org/10.32604/iasc.2023.026769
https://doi.org/10.1007/978-981-19-7615-5_30
https://doi.org/10.1109/TNSM.2022.3175710

	1. Introduction
	2. Objectives
	3. Literature survey
	4. Proposed system
	4.1. Collector
	4.1.1. Network traffic capturing
	4.1.2. VMnet setup
	4.1.3. Generate traffic
	4.1.4. Capture network traffic data using tshark
	4.1.5. Extract the required features using CICFlowmeter

	4.2. Detector
	4.2.1. Label encoding
	4.2.2. Standardization
	4.2.3. feature extraction
	4.2.4. Deep hybrid learning model

	4.3. Defender – IPS

	5. Performance metrics
	5.1. Threshold metrics
	5.2. Ranking metrics

	6. Conclusion
	7. Future work
	Disclosure statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

