
Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/taut20

Performance-efficient flexible architecture of
m–Crypton cipher for resource-constrained
applications

Pulkit Singh, S. V. S. Prasad, Shipra Upadhyay & Rajan Singh

To cite this article: Pulkit Singh, S. V. S. Prasad, Shipra Upadhyay & Rajan Singh (2024)
Performance-efficient flexible architecture of m–Crypton cipher for resource-constrained
applications, Automatika, 65:4, 1447-1457, DOI: 10.1080/00051144.2024.2395617

To link to this article:  https://doi.org/10.1080/00051144.2024.2395617

© 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 08 Sep 2024.

Submit your article to this journal 

Article views: 204

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

https://www.tandfonline.com/journals/taut20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2024.2395617
https://doi.org/10.1080/00051144.2024.2395617
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2024.2395617?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2024.2395617?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2395617&domain=pdf&date_stamp=08%20Sep%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2395617&domain=pdf&date_stamp=08%20Sep%202024
https://www.tandfonline.com/action/journalInformation?journalCode=taut20


AUTOMATIKA
2024, VOL. 65, NO. 4, 1447–1457
https://doi.org/10.1080/00051144.2024.2395617

Performance-efficient flexible architecture of m–Crypton cipher for
resource-constrained applications

Pulkit Singh a, S. V. S. Prasad b, Shipra Upadhyay c and Rajan Singh b

aDepartment of Electronics and Communication Engineering, SRM Institute of Science and Technology, Kattankulathur, India;
bDepartment of Electronics and Communication Engineering, MLR Institute of Technology, Hyderabad, India; cDepartment of Electronics
and Communication Engineering, Ramaiah Institute of Technology, Bengaluru, India

ABSTRACT
Some traditional cryptographic techniques, like the Secure Hash Algorithm (SHA-256 for hash-
ing), Rivest-Shamir-Adleman (RSA/Elliptic Curve for signing) and Advanced Encryption Standard
(AES for encryption), perform well on systems with good hardware memory and processing
capabilities. However, these techniques engage in conflict to keep up with the world of sensor
networks and embedded systems. Lightweight cryptography plays a major role in security con-
straints, especially in resource-limited devices such as RFID tags, smart cards, sensor nodes and
IoT. This paper proposes a flexible hardware architecture of lightweight m-Crypton block cipher
for high-speed resource-constrained applications. The proposed architecture enables a single
architecture appropriate for the many encryptions’ key sizes. Therefore, the proposed architec-
ture changes the security level in resource-constrained applications by integrating several key
sizes into a single design. Furthermore, this architecture outperformed the conventional block
ciphers in terms of throughput-to-area ratio achieving a 10.37 throughput-to-area ratio better
than other lightweight block ciphers. The proposed design can be used in high bandwidth appli-
cations, high-end RFID and IoT smart devices. Hence, the proposed design demonstrates that
increasing the speed of cipher implementation results in more plaintext transformations into
ciphertext. All results have been verified and simulated for several Xilinx design suite families.

ARTICLE HISTORY
Received 4 January 2024
Accepted 17 August 2024

KEYWORDS
FPGA; hardware
implementation; lightweight
cryptography;
resource-constrained device;
throughput

1. Introduction

Nowadays, the usage of RFID tags is aggressively
increasing, but there is a need to secure the informa-
tion on smart cards or tags. Furthermore, the Internet
transmission of information is crucial for transactions
using cards or tags and protecting such information is
essential [1]. Encrypting the data is the best technique
for protecting the information. Data can be encrypted
in a variety of ways. One of the encryption methods
involves incorporating stream and block ciphers. The
block ciphers are used for security purposes, but they
require high computational power and time. Hence, the
use of ciphers inRFID tags is not convenient. Therefore,
the researchers came up with the idea of lightweight
block ciphers for secure implementation [2,3].

Cryptography plays a significant role in making
secure communication. It is used to send information
or messages in a secure way to protect it from unau-
thorized access. Cryptography is the study of statis-
tical procedures inter-related to information security
characteristics such as confidentiality, non-repudiation,
data integrity and authentication. It involves encryp-
tion and decryption to secure the data while transmis-
sion through the channels. Ciphers are data encrypting

technique that involves several processes to protect
hidden information during data transmission. Using
these methodologies, data can be barred from metic-
ulous attacks. Conventional cryptographic algorithms
are not suitable for devices with small available com-
puting power. These algorithms such as AES are suit-
able for securing high-security applications like bank-
ing and social networking where a user shares critical
information through laptops and desktops [4,5]. On the
other hand, resource-constrained devices require light-
weightiness andmoderate security with reduced energy
requirements. Moreover, resource-bind applications
require less hardware and power requirement. There-
fore, many previous methods have attempted to mod-
ify the conventional ciphers for resource-constrained
applications but those methods have not fitted well to
provide multiple security levels in such applications.
Lightweight cipher techniques are preferable for low-
resource devices because of their limited computing
power. Moreover, block cipher techniques play a very
important role in the security of such devices [6,7].

Lightweight block ciphers are generally based on
substitution, permutation and key addition. These are
the cipher’s core building blocks and their processing

CONTACT Shipra Upadhyay shipra@msrit.edu Department of Electronics and Communication Engineering, Ramaiah Institute of Technology,
Bengaluru, Karnataka 560054, India

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in anymedium, provided the original work is properly cited. The terms onwhich this article has been published allow the posting of the Accepted
Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2395617&domain=pdf&date_stamp=2024-09-03
http://orcid.org/0000-0001-8196-5768
http://orcid.org/0000-0003-0940-9243
http://orcid.org/0000-0002-7078-8716
http://orcid.org/0000-0001-8510-4113
mailto:shipra@msrit.edu
http://creativecommons.org/licenses/by/4.0/


1448 P. SINGH ET AL.

varies depending on the substitution blocks, permu-
tation method and key scheduling. These blocks pro-
vide security with low computational power and less
required time for the encryption operation. Different
types of lightweight block ciphers have been used for
encryption such as PRESENT [8], LED [9], SIMON
[10], m-Crypton [11], MIDORI [12], etc. These ciphers
take plaintext blocks as inputs and encrypt the cipher-
text as an output. Moreover, these ciphers operate on
different keys and block sizes; for example, the key sizes
of the PRESENT cipher are 64 bits and 128 bits; for
the LED cipher, it is 64 bits and 128 bits and for the
m-Crypton, it is 64 bits, 96 bits and 128 bits, whereas
plaintext block size is 64 bits for all aforementioned
ciphers [13].

Lightweight cryptography plays amajor role in secu-
rity constraints, especially in resource-limited devices
such as RFID tags, smart cards, sensor nodes and IoT.
In lightweight cryptography, there must be a trade-off
between complexity and security. Conventional cryp-
tographic algorithms are generally used on desktops,
servers, smartphones and tablets, whereas lightweight
cryptography algorithms are used in embedded sys-
tems, RFID and sensor networks. Keeping these fac-
tors in mind, an efficient hardware implementation of
cryptographic algorithms is required so that it can use
fewer components and take up less space, whilemeeting
timing and power requirements [14].

In short, the major contributions of this paper are as
follows:

• Proposed a flexible hardware architecture of the m-
Crypton lightweight block cipher available for vari-
ous key sizes.

• Evaluated the performance of the proposed architec-
ture in hardware metrics such as frequency, area and
speed.

• Compared the proposed implementation to state-of-
the-art lightweight block ciphers and analysed the
results in terms of hardware metrics.

The rest of the paper is organized as follows. Section
2 summarizes the state-of-the-art works of lightweight
block ciphers. Section 3 presents a detailed overview
of the m-Crypton algorithm. The proposed hardware
architecture of m-Crypton lightweight block cipher is
designed in Section 4. Implementation results and com-
parison are discussed in Section 5. Finally, Section 6
summarizes the concluding remarks.

2. Related work

An Advanced Encryption Standard (AES) has gar-
nered more attention to alternative ciphers. AES cipher
works on 128-bit word length and key sizes vary from
256, 192 and 128 bits. AES has a Substitution Per-
mutation Network (SPN) and performs operations by

taking input messages or keys in the form of matri-
ces [15]. Different lightweight block ciphers have been
designed for resource-constrained applications. Over
the years, various hardware implementations of FPGA
have been developed using different design method-
ologies. The m-Crypton algorithm was first proposed
in 2005 [11]. This cipher was designed to provide the
required security in resource-constrained devices. m-
Crypton algorithm has an SPN network with 13 rounds
and is suitable for both hardware and software applica-
tions. In [16], the authors proposed the FPGA imple-
mentation on a Spartan-3 device and managed to store
the constant key in RAM rather than key scheduling for
efficient implementation. They achieved low hardware
implementation but compromised with the latency. In
[12], the authors developed a split datapath architec-
ture such as 16-bit and 4-bit datapath of m-Crypton
suitable for constrained devices. From these implemen-
tations, one can see that there was a slight decrease in
area but throughput was reduced tremendously when
the design moved from 16-bit datapath to 4-bit datap-
ath. It was due to the increase in the number of control
signals whereas 16-bit datapath and 4-bit datapath were
the serial implementations of the m-Crypton cipher.

The performance and security of various lightweight
encryption schemes other than m-Crypton cipher such
as KLEIN, TEA, KATAN HIGHT etc., are used in
resource-constrained applications. Those applications
have been introduced to assess their memory efficiency,
power utilization and performance analysis along with
estimated degree of diffusion and confusion for secu-
rity analysis. For each lightweight block cipher, every
bit of data is getting altered by performing substitu-
tion cells, mixed columns, add round key and shift row
operations. Among the lightweight ciphers, PRESENT
cipher is generally used for highly resource-constrained
applications. Generally, it operates on a word size of
64 bits and key sizes of 80 bits and 128 bits [17].
Moreover, PRESENT cipher consumed large cycles in
the software implementation, so a new algorithm is
being proposed called RECTANGLE lightweight block
cipher. This algorithm provided very competitive per-
formances in software and it was best suited for many
platforms, which had very low areas in hardware but its
throughput was not good. It supports word sizes of 64
bits and key sizes of 80 bits and 128 bits [18,19].

There have been other lightweight block ciphers pro-
posed to get high throughput. CLEFIA is one of ciphers
with a word size of 128 bits and key lengths of 256,
192 and 128 bits. It is very good in terms of hardware
performance and gives better security to the informa-
tion [20]. CAMELLIA is also one of a symmetric block
cipher. It has a word size of 128 bits and key sizes of 256,
128 and 192 bits. CAMELLIA is best suited for smart
cards and network systems with ultra-fast speed [21].
TWINE cipher gives good performance on embedded
software devices, one more advantage of the TWINE



AUTOMATIKA 1449

algorithm is that its hardware occupies very little space
with acceptable throughput. There are two types of
TWINE cipher. These are TWINE-80 and TWINE-
128, here 80 and 128 signify their key sizes but both
have a word size of 64 bits. These lightweight ciphers
have hardware architectures for different key sizes [22].

A common architecture can be designed for light-
weight block ciphers so that an architecture can be
utilized for all available key sizes. The authors selected
two lightweight cryptographic algorithms: ASCON and
ISAP, as the security scheme. They proposed a uni-
fied architecture that supported the operation of both
ASCON-128 and ISAP-A-128A(Enc), which reduced
hardware resources without significant loss of speed
through the reuse of structures. In this paper, ASCON
and ISAP can be selected to satisfy the speed prior-
ity or strengthen the protection of passive side-channel
attacks [23]. Moreover, the author proposed a flexi-
ble structure that can perform various configurations
of CLEFIA cipher to support variable key sizes 128,
192 and 256 bits. This architecture provided a ver-
satile implementation that supported different secu-
rity levels using a variable key size [24]. In addition,
a highly flexible and reconfigurable FPGA hardware
accelerator was proposed for efficient inference of vari-
ous CNNs. Two levels of optimization were performed
in the work, (1) resource level: the dataflow and con-
trol logic of certain types of layers were merged and
reused to reduce the design complexity: (2) perfor-
mance level: several processingmethods were proposed
to process different types of convolutions [25]. Further-
more, the authors proposed a serial-based architecture
of XXTEA lightweight block cipher supporting vari-
able length block size. The variable length functionality
incorporated in a single architecture gave the designer
flexibility to work on different input block sizes. The
serial implementation focused on achieving area opti-
mization [26]. There aremany similarities betweenAES
and SM4 iterative round computation, similar non-
linear S-box substitution and the same block width.
Because of these similarities, the compact and unified
implementation of the two algorithms was possible.
The authors designed a unified S-box for AES-128 and
SM4 successfully and proposed a kind of reconfigurable
S-box logic in the pipeline circuit, which improved the
unified coprocessor’s working frequency [27].

In this paper, a flexible hardware architecture is
designed for a lightweight m-Crypton block cipher
and assessed their hardware performance in terms of
hardware resources, maximum operating frequency,
etc. The target m-Crypton block cipher takes a 64-bit
plain block as input and converts it into 64-bit cipher-
text using either 64-bit or 96-bit or 128-bit key sizes.
There are twelve rounds, each round performs non-
linear substitution, bit permutation, column-row trans-
pose and key addition operations. Hence, a totally dif-
ferent way of cryptography, i.e. lightweight is to build

from the bottom level to a new optimized hardware.
Moreover, make a slight change in basic architecture
so that it can operate for all available key sizes in
lightweight block ciphers.

3. Algorithm overview: m-Crypton cipher

m-Crypton is one of the lightweight block ciphers,
which takes 64-bit block and variable key size as the
inputs and converts them into a ciphertext [11]. There
are twelve rounds in the encryption process.

Each round has four types of operations. These are

• Non-linear substitution
• Bit-permutation
• Colum-row transpose
• Key-addition

Now, let us discuss each operation briefly how they
work. Basically, while doing these operations, the m-
Crypton algorithmmostly uses nibbles in all operations
so the first plain message breaks down into 16 nibbles
(h0, h1, h2, . . . ., h15) in thematrix format as given below
and performs further operations. Here, column-wise,
four nibbles are grouped and represented as in Equation
(1):

H =

⎡
⎢⎢⎣

h0h1h2h3
h4h5h6h7
h8h9h10h11
h12h13h14h15

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Hr[0]
Hr[1]
Hr[2]
Hr[3]

⎤
⎥⎥⎦

= (Hc[0],Hc[1],Hc[2],Hc[3]) (1)

where Hc[0] consists of h0, h4, h8, h12.
First, a non-linear substitution operation is per-

formed, which is similar to the substitution in the
PRESENT cipher. Here, the m-Crypton cipher uses
four substitution boxes instead of one in the PRESENT
cipher. The nibble of a plainmessage is replaced accord-
ing to the position of the nibble and substitution box.
The substitution will be selected according to the posi-
tion of the nibble in the plain message.

3.1. Non-linear substitution (γ )

The non-linear substitution is performed using the four
4-bit substitution boxes Si as given in Table 1, in which
nibble will be taken as input and substituted with the
corresponding nibble in the substitution box, as given
in Table 2. Here, S-boxes (S2 and S0), (S3 and S1) are
inverse to each other. γ i(a) is usually done for the ith
row or column, i.e. for a 4-nibble word (h0, h1, h2, h3)
as performed in Equation (2).

γi(a) = (Si(h0), Si+1(h1), Si+2(h2), Si+3(h3)) (2)

If i > 3 in Si, then i = imod 4.



1450 P. SINGH ET AL.

Table 1. S-boxes Si of m-Crypton cipher.

Si 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S0 4 15 3 8 13 10 12 11 5 7 14 2 6 1 9 0
S1 1 12 7 10 6 13 5 15 11 2 0 8 4 9 14 3
S2 7 14 12 2 0 9 13 3 15 5 8 6 4 11 1 10
S3 11 0 10 7 13 6 4 12 14 3 9 1 5 15 8 2

Table 2. Substitution operation in matrix H.

h0 h1 h2 h3 S0(h0) S1(h1) S2(h2) S3(h3)
h4 h5 h6 h7 → S1(h4) S2(h5) S3(h6) S0(h7)
h8 h9 h10 h11 S2(h8) S3(h9) S0(h10) S1(h11)
h12 h13 h14 h15 S3(h12) S0(h13) S1(h14) S2(h15)

The transformation will look like this as given in
Equation (3):

γ (H) = (γ0(Hc[0])γ1(Hc[1])γ2(Hc[2])γ3(Hc[3]))
(3)

3.2. Bit permutation (π )

Bit permutation is performed column-wise in the m-
Crypton cipher. In this operation, four masking nibbles
are given asQ0 = 11102,Q1 = 11012,Q2 = 10112 and
Q3 = 01112. The column-wise nibbles are selected and
the permutation operation is performed, as given in
Equations (4) and (5). It is based on the position of
nibbles and followed by xored to get one nibble.

π(H) = (π0(Hc[0])π1(Hc[1])π2(Hc[2])π3(Hc[3]))
(4)

p = π i(h)⇔ pj = ⊕(k=3)
(k=0)(Qi+j+kmod4 · hk) (5)

where Z<<k: left rotation of a 16-bit word Z by k-bit
positions. •,⊕: bit-wise logical operations for ANDand
XOR, respectively.

3.3. Column-to-row transposition (τ )

After bit permutation, the 4× 4 nibble matrix is trans-
posed by interchanging columns with the rows. The 4
bits at (i,j)th are interchanged with the 4 bits positioned
at (j,i)th, as given in Equation (6):

P = τ(H)⇔ pj,i = hi,j (6)

3.4. Key addition (σ )

P = σK(H) is defined by Pr[i] = Hr[i] ⊕ K[i] (0 ≤ i
≤ 3), where K = (K[0], K[1], K[2], K[3]) is a round
key. The round key will be generated from the key
scheduling algorithm. The round key has a 64-bit size
and it will be xored with the output of column-to-row
transposition. Then, it completes one round out of a
total of twelve rounds.

3.5. Key scheduling

The round key for each round of the encryption pro-
cess is generated from the key scheduling algorithm.
The given master key is updated for each round. The
updating process involves substitution and permuta-
tion operations. For substitution purposes, the S-box
(S0) is used and masks are different in the key schedul-
ing algorithm compared to themasks used in the round
operation.

The key scheduling is performed by dividing the
master key into 16-bit words like K = {K[i]t−1i=0,1,2,3} =
(K[0], K[1], · ··, K[t − 1]). The number of 16-bit
words, i.e. the value of t depends on the master key
size. It is 4, 6 and 8 for 64 bits, 96 bits, 128 bits,
respectively. The round key generation uses a 16-bit
round counter, which updates for each round. The
round constant C[i] consists of four identical nibbles,
i.e. C[i] = 0xCiCiCiCi. The value of Ci is of 4-bit size,
which is generated by xi in GF(24) defined by the
irreducible polynomial f (x) = x4+ x+ 1, i.e. C0 = 1,
C1 = 2, C2 = 3, C3 = 8, C4 = 3, C5 = 6, etc.

The key scheduling process for different key sizes is
mentioned in this section. The key is stored in the reg-
ister, which is modified by performing some operations
stated below to update the master key. Then, the value
of the register is replaced by a new value in each round.
The key updating also involves left shifting of words by
3 or 8 bits based on the key sizes. The substitution S-box
(S0) is used for the first 16-bit keyword for generating
the round key, i.e. h = (h0, h1, h2, h3), S(h) = (S0(h0),
S0(h1), S0(h2), S0(h3)). After performing the substitu-
tion operation, xored operation is performed with a 16-
bit round constant C[i] value, which is used to produce
D vectors (intermediate values of the round key). Then,
different masks are used to extract the ith nibble to pro-
duce Di. The masks are Q0 = 0xf000, Q1 = 0× 0f00,
Q2 = 0× 00f0, Q3 = 0× 000f.

3.5.1. Key scheduling for 64 bits
The initial master key is stored in the V register fol-
lowed by performing some operations. Kr represents
the round key for each round. All the operations from



AUTOMATIKA 1451

Equations (7–9) are done by taking the nibbles as input.

D← S(V[0])⊕ C[r],Di← D • Qi(0 ≤ i ≤ 3) (7)

Kr← (V[1]⊕ D0,V[2]⊕ D1,V[3]⊕ D2,V[0]⊕ D3)
(8)

V ← (V[1],V[2],V[3],V[0] << 3) (9)

Likewise, the round key will be updated for the
remaining rounds.

3.5.2. Key scheduling for 96 bits
All the operations from Equations (10–12) are used for
96-bit key scheduling.

D← S(V[0])⊕ C[r],Di← D •Qi(0 ≤ i ≤ 3) (10)

Kr← (V[1]⊕ D0,V[2]⊕ D1,V[3]⊕ D2,

V[4]⊕ D3) (11)

V ← (V[5],V[0] << 3,V[1],V[2],V[3]

<< 8,V[4]) (12)

3.5.3. Key scheduling for 128 bits
All the operations from Equations (13–15) are used for
96-bit key scheduling.

D← S(V[0])⊕ C[r],Di← D • Qi(0 ≤ i ≤ 3) (13)

Kr← (V[1]⊕ D0,V[2]⊕ D1,V[3]⊕ D2,

V[4]⊕ D3) (14)

V ← (V[5],V[6],V[7],V[0] << 3,

V[1],V[2],V[3],V[4] << 8) (15)

Hence, each round operation of m-Crypton cipher
applies the γ , π , τ and σ steps in order and is defined
for round key Ki by Equation (16):

ρKi = σKi ◦ τ ◦ π ◦ γ (16)

Finally, the encryption transformation EK of m-
Crypton cipher under the secret key K consists of an
initial key addition σ 0 and 12 times repetitions of ρ.
Then, a final output transformation, i.e. EK can be
defined as Equation (17). Here

EK = ϕ ◦ ρK12 ◦ ρK11 ◦ . . . ◦ ρK2 ◦ ρK1 ◦ ρK0 (17)

where ϕ = τ ◦ π ◦ τ .

4. Proposed flexible implementation

The implementation of the proposed architecture of
m-Crypton cipher mainly occurs in the key updating
part and round key generation part of the key schedul-
ing block. However, the remaining blocks such as the

non-linear substitution block, bit permutation block
and transpose block remain the same irrespective of the
key sizes. The flexible structure for the key updating
and round key generation can be used for all key sizes,
which can be selected by the user among all available
key lengths.

Now, let us discuss key updating part. First of all, the
given input master key is padded by zeroes to make it a
length of 128 bits, if the key length is less than 128 bits.
After that, the first word is left shifted by 3 bits and the
fourth word is left shifted by 8 bits in key lengths of 96
and 128 bits, respectively. This can be made very eas-
ily using multiplexers in the flexible architecture. The
input master key is given to the multiplexers according
to the available key lengths of 64, 96, and 128 bits. The
output of themultiplexers is selected using the selection
line provided for different selections of keys as shown in
Figure 1.

Moreover, in the key updating block, the selection
line inputs SEL(0) and SEL(1) are used to choose the
particular bits of 128-bit key. The 64-bit and 96-bit keys
are arranged by padding zeroes at the end so that all
available keys ofm-Crypton cipher canwork for 128-bit
keys only. It is incorporated by giving the input GND, as
shown in Figure 2. The inputs for 64, 96 and 128 bits are
connected at S1, S2, S3 leaving the S0 empty. For this, the
values of the selection line are 2’b01, 2’b10 and 2’b11 for
64-bit, 96-bit, and 128-bit key sizes, respectively.

After the completion of the key updating part, the
round key generation part is changed in the proposed
architecture, which is used for the xored with the input
plaintext. The proposed flexible architecture can be
made suitable for all the key sizes by incorporating the
multiplexers. The multiplexers select the correct 16-bit
word in round key generation such as V[127:112] for
64-bit and V[63:48] for 96- and 128-bit key sizes. The
output block performs the substitution operation of the
first word using S-box(0) and further executes the xored
operation with the round counter value generated for
the round. It produces a 16-bitM value. The produced
M value operates with the masks Q0, Q1, Q2 and Q3
and produces M0, M1, M2 and M3, respectively. Fur-
thermore, these values perform xored operation with
the key stored in the register producing a round key for
each round. The value of the round counter is gener-
ated using the irreducible polynomial X4+X+ 1. The
hardware architecture of the round key generation part
is shown in Figure 3.

The operations of M0, M1, M2, M3 are used for
implementation of masks Q0, Q1, Q2 and Q3, respec-
tively. These are used as masks for producing the V
vectors and making the circuits as simple and fast as
possible. Figure 4 shows the operation of M0, M1, M2
and M3 to generate the masks Q0, Q1, Q2 and Q3. The
implementation of a round counter remains unchanged
for all key sizes. It is the most simplified architecture,
which performs only a 1-bit xor operation producing



1452 P. SINGH ET AL.

Figure 1. The proposed flexible architecture for key updating block.

Figure 2. Encryption processes in the proposed flexible implementation of m-Crypton cipher.

4-bit round counter output and can be made 16 bits
by repeating four times. The architecture of the gen-
eration of the round counter value is followed by the
connections, as shown in Figure 5.

The proposed flexible architecture claimed the use of
all available key variants for one common design. Fur-
thermore, flexible architecture provided the option to

use a variant of key sizes according to the requiredmul-
tiple security levels. In home appliances IoT applica-
tions, security levels differ in accordance with the avail-
ability of hardware resources and strength of security.
Some appliances like smartphones, computers, smart
locks, etc., require a high level of security. Here,
the security provided by the 128-bit key is sufficient



AUTOMATIKA 1453

Figure 3. Modified round key generation in the proposed implementation.

Figure 4. Operations of M0, M1, M2, M3 in the round key generation.

and appropriate. On the other hand, some systems
like healthcare systems, logistics and tracking appli-
cations, etc. need a moderate level of security. Secu-
rity provided by 96-bit key is sufficient and appropri-
ate for those applications. Moreover, some appliances
like smart TVs, controlling air conditioners etc., need

a low level of security. Therefore, 64-bit key secu-
rity is enough and does not have a large number of
hardware resources. Hence, devices connected through
the internet in IoT applications can be connected
with multiple security levels with limited hardware
resources.



1454 P. SINGH ET AL.

Figure 5. Generation of round counter values.

5. Results and comparison

The proposed flexible architecture ofm-Crypton cipher
is implemented on different FPGA platforms, such as
Spartan-3, Virtex-4 and Virtex-5 devices. The archi-
tecture is implemented in such a way that it provides
a hardware solution to introduce secure implementa-
tion for resource-constrained applications. The pro-
posed hardware architecture is synthesized in Xilinx
using the ISE design suite and simulation is performed
using the ISIM simulator. Each FPGA family has a dif-
ferent number of LUTs, flip-flops and slices, as well as
different maximum frequencies and throughput values.
The architecture realized on FPGA is evaluated using
various parameters such as area and speed. The speed
metric evaluates performance based on frequency and
latency. Parameters, such as Slices, LUTs and flip-flops,
are used to describe the required hardware area. More-
over, latency is defined as the time duration between
inserting the input of plaintext into an algorithm and
getting an output of ciphertext. Hence, latency is equal
to the number of clock cycles required to reach the first
output.

Table 3 shows hardware performance metrics
obtained for the proposed work on different FPGA
devices. The maximum operating frequency values are
high, which suggests high-speed implementation. The
results achieved for Virtex-5 and Virtex-4 for maxi-
mum operating frequencies 453.23 and 417.31 MHz,
respectively, are better than the those obtained on

other ciphers for the same FPGA devices. The hard-
ware implementation results of the proposed architec-
ture are compared with the implementation of differ-
ent lightweight and conventional block ciphers given
in Table 3. As can be seen from Table 3 throughput
is high for the proposed implementation compared to
other state-of-the-art implementations of ciphers such
as LBlock [26], XXTEA [26], SIT [28], LED [29], m-
Crypton [16], LBlock [33], PRESENT [34], Lilliput
[35], PRESENT [17], Clefia [36], Clefia [37], PRINT-
CIPHER [38], XTEA [39], KLEIN [40], Humming bird
[41], Piccolo [42], QTL [43], LEA [44], etc., for the
same FPGA devices. Moreover, the proposed imple-
mentation has high hardware efficiency in terms of
throughput per area (Mbps/slice) compared to other
state-of-the-art implementations of ciphers such as m-
Crypton [16], LBlock [33], PRESENT [34], PRESENT
[17], Clefia [36], Clefia [37], PRINTCIPHER [38],
XTEA [39], KLEIN [40], Humming bird [41], Piccolo
[42], QTL [43], LEA [44], etc., for the same FPGA
devices. Hence, the proposed flexible implementation
of m-Crypton lightweight block cipher showed higher
speed in terms of throughput (Mbps). Figure 6 shows
that the proposed flexible architecture of m-Crypton
lightweight block cipher achieved higher efficiency in
terms of throughput per area (Mbps/slice) than other
lightweight block ciphers in respective FPGA devices.

6. Conclusion

This paper proposed a flexible hardware architecture
of a lightweight m-Crypton block cipher for high-
speed resource-constrained devices. The proposed flex-
ible architecture has been implemented on different
FPGA devices, such as Spartan-3, Virtex-5, Spartan-6,
Spartan-7 and Virtex-7. The proposed work is suit-
able for reprogrammable architecture in FPGAs as this
architecture is a highly attractive design option for
hardware implementation of encryption algorithms.
The proposed flexible architecture claimed the use of
all available key variants for one common design. Fur-
thermore, flexible architecture provided the option to
use a variant of key sizes according to the required
multiple security levels. In home appliances and IoT
applications, security levels differ in accordance with
the availability of hardware resources and strength of
security. Some appliances like smartphones, computers,
smart locks, etc., require a high level of security. Here,
the security provided by the 128-bit key is sufficient
and appropriate. On the other hand, some systems like
healthcare systems, logistics, tracking applications, etc.,
need a moderate level of security. Security provided by
96-bit key is sufficient and appropriate for those appli-
cations. Moreover, some appliances like smart TVs,
controlling air conditioners, etc., need a low level of
security. Therefore, 64-bit key security is enough and
does not have a large number of hardware resources.



AUTOMATIKA 1455

Table 3. FPGAs implementation results of m-Crypton and other ciphers.

Ciphers Device Flip-flop LUTs Slices Max frequency (MHz) Throughput (Mbps) Throughput per area (Mbps/slice)

ASCON+ ISAP(ENC) [23] Virtex-7 – 1614 467 367.00 3767.00 8.07
LBlock [26] Spartan-3 151 223 – 181.76 363.52 –
XXTEA [26] Spartan-3 161 327 – 97.99 97.99 –
SIT [28] Spartan-3 83 462 240 62.07 794.53 3.31
LED [29] Spartan-3 – 328 – 207.59 17.20 –
PRESENT [29] Spartan-6 – 287 – 245.60 12.76 –
ECC+ PRESENT [30] Virtex-5 – 5016 1663 147.00 – –
KECCAK-CORE [31] Cyclone-V – – 4639 – 11264 2.43
AESHA [32] Virtex-6 3428 328.15 14876.13 4.34
m-Crypton [16] Spartan-3 – – 375 302.00 646.00 1.72
LBlock [33] Virtex-4 149 224 140 466.82 933.64 6.67
LBlock [33] Spartan-3 149 224 138 197.58 395.17 2.86
PRESENT Iterative [34] Virtex-5 200 285 87 250.89 341.64 3.93
PRESENT Serial [34] Virtex-5 203 237 70 245.76 53.32 4.21
Lilliput [35] Virtex-5 149 230 68 397.60 848.21 12.47
Lilliput [35] Virtex-4 149 347 178 318.37 679.19 3.81
PRESENT [17] Virtex-5 201 239 73 431.78 203.19 2.78
PRESENT [17] Virtex-4 201 265 152 364.56 171.19 1.13
PRESENT [17] Spartan-3 201 264 151 194.63 91.59 0.60
Clefia [36] Virtex-4 – – 1222 122.59 871.75 0.71
Clefia [37] Virtex-4 – – 14069 146.00 1038.22 0.07
Clefia [36] Spartan-3 – – 1086 65.51 465.85 0.43
PRINTCIPHER [38] Spartan-3 – – 210 147.73 147.70 0.70
XTEA [39] Spartan-3 – – 254 62.62 35.78 0.14
KLEIN [40] Virtex-5 141 327 110 407.84 932.19 8.47
KLEIN [40] Virtex-4 141 459 255 331.13 756.87 2.97
KLEIN [40] Spartan-3 141 461 263 159.39 364.32 1.39
Humming bird [41] Spartan-3 120 473 273 40.10 160.40 0.59
Piccolo [42] Virtex-5 200 604 249 282.24 694.74 2.79
QTL [43] Virtex-5 72 287 119 180.68 722.72 6.07
QTL [43] Virtex-4 72 417 214 140.14 560.56 2.62
LEA [44] Virtex-5 832 715 271 311.00 1206.30 4.43
AES [45] Virtex-5 286 274 137 77.29 61.83 0.45
Proposed Virtex-5 196 491 233 453.23 2417.21 10.37
Proposed Virtex-4 196 751 316 417.31 2225.65 7.03
Proposed Spartan-3 196 718 354 191.98 1023.89 2.89

Figure 6. Throughput per area (Mbps/slice) comparison of the proposed flexible implementation of m-Crypton Cipher.

Hence, devices connected through the Internet in IoT
applications can be connected with multiple security
levels with limited hardware resources. Moreover, the

proposed architecture achieved a 10.37 throughput-
to-area ratio better than other block ciphers. Hence,
this proposed design utilized high speed to transform



1456 P. SINGH ET AL.

plaintext into ciphertext. Hence, the proposed design
can be used in high-bandwidth applications and high-
end RFID smart devices. However, this architecture
used extra hardware to select a key size among available
key sizes. The hardware performance of the proposed
designs can be further enhanced by making appro-
priate designs with different optimization techniques.
The future scope of this work includes possibilities of
improvement in FPGA design to make an optimum
trade-off among area, power consumption and latency.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

ORCID

Pulkit Singh http://orcid.org/0000-0001-8196-5768
S. V. S. Prasad http://orcid.org/0000-0003-0940-9243
Shipra Upadhyay http://orcid.org/0000-0002-7078-8716
Rajan Singh http://orcid.org/0000-0001-8510-4113

References

[1] Flint D. RFID tags, security and the individual. Comput
Law Secur Rep. 2006;22(2):165–168. doi:10.1016/j.clsr.
2006.01.009

[2] Hatzivasilis G, Fysarakis K, Papaefstathiou I, et al. A
review of lightweight block ciphers. J Cryptogr Eng.
2018;8:141–184. doi:10.1007/s13389-017-0160-y

[3] Singh P, Acharya B, Chaurasiya RK. A comparative
survey on lightweight block ciphers for resource con-
strained applications. Int J High Perform Syst Archit.
2019;8(4):250–270. doi:10.1504/IJHPSA.2019.104953

[4] Elbirt J, Yip W, Chetwynd B, et al. An FPGA-based per-
formance evaluation of the AES block cipher candidate
algorithm finalists. IEEE Trans Very Large Scale Integr
VLSI Syst. 2001;9(4):545–557. doi:10.1109/92.931230

[5] Bui DH, Puschini D, Bacles-Min S, et al. AES datap-
ath optimization strategies for low-power low-energy
multisecurity-level Internet-of-Things applications.
IEEE Trans Very Large Scale Integr VLSI Syst. 2017;
25(12):3281–3290. doi:10.1109/TVLSI.2017.2716386

[6] LeanderG, Paar C, PoschmannA, et al. New lightweight
des variants. Lect Notes Comput Sci. 2007;4593:
196–210. doi:10.1007/978-3-540-74619-5_13

[7] Kong JH, Ang LM, Seng KP. A comprehensive sur-
vey of modern symmetric cryptographic solutions for
resource constrained environments. J Netw Comput
Appl. 2015;49:15–50. doi:10.1016/j.jnca.2014.09.006

[8] Bogdanov A, Knudsen LR, Leander G, et al. Present: an
ultra-lightweight block cipher. Berlin: Springer; 2007. p.
450–466. doi:10.1007/978-3-540-74735-2

[9] Guo J, Peyrin T, Poschmann A, et al. The LED
block cipher. In: Preneel B, Takagi T, editors. Inter-
national Workshop on Cryptographic Hardware and
Embedded Systems. Berlin: Springer; 2011. p. 326–341.
doi:10.1007/978-3-642-23951-9_22

[10] Beaulieu R, Shors D, Smith J, et al. Simon and speck:
block ciphers for the internet of things. In: Proceedings
of the 52nd Annual Design Automation Conference –
DAC ‘15; 2015. p. 1–6. doi:10.1145/2744769.2747946

[11] Lim CH, Korkishko T. mCrypton – a lightweight block
cipher for security of low-cost RFID tags and sen-
sors. In: Song JS, Kwon T, Yung M, editors. Inter-
national Workshop on Information Security Applica-
tions. Berlin: Springer; 2006. p. 243–258. doi:10.1007/
11604938_19

[12] Banik S, Bogdanov A, Isobe Tet al. Midori: a block
cipher for low energy. In: International Conference
on the Theory and Application of Cryptology and
Information Security. Springer; 2015. p. 411–436.
doi:10.1007/978-3-662-48800-3_17

[13] Rajesh S, Paul V,MenonVG, et al. A secure and efficient
lightweight symmetric encryption scheme for trans-
fer of text files between embedded IoT devices. Sym-
metry (Basel). 2019;11(2):293, doi:10.3390/sym1102
0293

[14] Singh P, Acharya B, Chaurasiya RK. Lightweight
cryptographic algorithms for resource-constrained IoT
devices and sensor networks. In: Sharma SK, Debnath
NC, Bhushan B, editors. Security and privacy issues
in IoT devices and sensor networks. Academic Press;
2021. p. 153–185. doi:10.1016/B978-0-12-821255-
4.00008-0

[15] Daemen J, Rijmen V, Leuven KU. AES proposal:
Rijndael complexity; 1999. p. 1–45. Available from:
http://ftp.csci.csusb.edu/ykarant/courses/w2005/csci5
31/papers/Rijndael.pdf

[16] Abbas YA, Hameed AS, Alwan SH, et al. Efficient
hardware implementation for lightweight mCrypton
algorithm using FPGA. Indones J Electr Eng Comput
Sci. 2021;23(3):1674–1680. doi:10.11591/ijeecs.v23.i3.
pp1674-1680

[17] Lara-Nino CA, Diaz-Perez A, Morales-Sandoval M.
Lightweight hardware architectures for the present
cipher in FPGA. IEEE Trans Circuits Syst I Regul Pap.
2017;64(9):2544–2555. doi:10.1109/TCSI.2017.2686783

[18] Zhang W, Bao Z, Lin D, et al. Rectangle: a bit-slice
lightweight block cipher suitable for multiple plat-
forms. Sci China Inf Sci. 2015;58(12):1–15. doi:10.1007/
s11432-015-5459-7

[19] Upadhyay S, Singh P, Pandey AK, et al. Comparative
performance analysis of present lightweight cipher for
security applications in extremely constrained environ-
ment. In: Jain S, Marriwala N, Singh P, et al., editors.
International Conference on Emergent Converging
Technologies andBiomedical Systems. Berlin: Springer;
2023. p. 511–521. doi:10.1007/978-981-99-8646-0_40

[20] Shirai T, Shibutani K, Akishita T, et al. The 128-bit
blockcipher CLEFIA (extended abstract). In: Biryukov
A, editor. Fast software encryption. FSE 2007. Lecture
Notes in Computer Science, Vol. 4593. Berlin: Springer.
2007. p. 181–195. doi:10.1007/978-3-540-74619-
5_12

[21] Aoki K, Ichikawa T, Kanda M, et al. Camellia: a 128-
bit block cipher suitable for multiple platforms – design
and analysis. In: Stinson DR, Tavares S, editors. Selected
areas in cryptography. SAC 2000. Lecture Notes in
Computer Science, Vol. 2012. Berlin: Springer. 2001. p.
39–56. doi:10.1007/3-540-44983-3_4

[22] Suzaki T, Minematsu K, Morioka S, et al. Twine:
a lightweight block cipher. Lect Notes Comput Sci.
2013;7707:339–354. doi:10.1007/978-3-642-35999-
6_22

[23] Guo C, Wang Y, Chen F, et al. Unified lightweight
authenticated encryption for resource-constrained elec-
tronic control unit. In: 29th IEEE International Con-
ference on Electronics, Circuits and Systems (ICECS).

http://orcid.org/0000-0001-8196-5768
http://orcid.org/0000-0003-0940-9243
http://orcid.org/0000-0002-7078-8716
http://orcid.org/0000-0001-8510-4113
https://doi.org/10.1016/j.clsr.2006.01.009
https://doi.org/10.1007/s13389-017-0160-y
https://doi.org/10.1504/IJHPSA.2019.104953
https://doi.org/10.1109/92.931230
https://doi.org/10.1109/TVLSI.2017.2716386
https://doi.org/10.1007/978-3-540-74619-5_13
https://doi.org/10.1016/j.jnca.2014.09.006
https://doi.org/10.1007/978-3-540-74735-2
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1007/11604938_19
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.3390/sym11020293
https://doi.org/10.1016/B978-0-12-821255-4.00008-0
http://ftp.csci.csusb.edu/ykarant/courses/w2005/csci531/papers/Rijndael.pdf
https://doi.org/10.11591/ijeecs.v23.i3.pp1674-1680
https://doi.org/10.1109/TCSI.2017.2686783
https://doi.org/10.1007/s11432-015-5459-7
https://doi.org/10.1007/978-981-99-8646-0_40
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/3-540-44983-3_4
https://doi.org/10.1007/978-3-642-35999-6_22


AUTOMATIKA 1457

IEEE; 2022. p. 1–4. doi:10.1109/icecs202256217.2022.
9971118

[24] Rashidi B. Efficient and flexible hardware structures of
the 128 bit CLEFIA block cipher. IETComputDigit Tec.
2020;14(2):69–79. doi:10.1049/iet-cdt.2019.0157

[25] Wu X, Ma Y, Wang M, et al. A flexible and effi-
cient FPGA accelerator for various large-scale and
lightweight CNNs. IEEE Trans Circuits Syst I: Regul
Pap. 2021;69(3):1185–1198. doi:10.1109/TCSI.2021.
3131581

[26] Kamble A, Mishra Z, Acharya B. Hardware implemen-
tations of LBlock and XXTEA lightweight block ciphers
for resource-constrained IoT application. Int J High
Perform Syst Archit. 2023;11(3):169–178. doi:10.1504/
IJHPSA.2023.130223

[27] Xu Y, Deng F, XuW, et al. Unified coprocessor for high-
speed AES-128 and SM4 encryption. In: 2022 IEEE
6th Advanced Information Technology, Electronic and
Automation Control Conference (IAEAC). IEEE; 2022.
p. 640–644. doi:10.1109/iaeac54830.2022.9929737

[28] Mishra Z, Acharya B. High throughput and low area
architectures of secure IoT algorithm for medical
image encryption. J Inf Secur Appl. 2020;53:102533,
doi:10.1016/j.jisa.2020.102533

[29] Rashidi B. Flexible structures of lightweight block
ciphers PRESENT, SIMON and LED. IET Circuits
Devices Syst. 2020;14(3):369–380. doi:10.1049/iet-cds.
2019.0363

[30] Rashid M, Sonbul OS, Arif M, et al. A flexible
architecture for cryptographic applications: ECC and
PRESENT. Comput Mater Contin. 2023;76:1009–1025.
doi:10.32604/cmc.2023.039901

[31] Maache A, Kalache A. Design and implementation
of a flexible multi-purpose cryptographic system on
low cost FPGA. Int J Electr Comput Eng Syst.
2023;14(1):45–58. doi:10.32985/ijeces.14.1.6

[32] Khalid A, Aziz A, Wang C, et al. Resource-shared
crypto-coprocessor of AES Enc/Dec with SHA-3. IEEE
TransCircuits Syst I: Regul Pap. 2020;67(12):4869–4882.
doi:10.1109/TCSI.2020.2997916

[33] Singh P, Acharya B, Kumar R. Low-area and high-
speed hardware architectures of LBlock cipher for Inter-
net of Things image encryption. J Electron Imaging.
2022;31(3):1–29. doi:10.1117/1.JEI.31.3.033012

[34] Hanley N, O’Neill M. Hardware comparison of the
ISO/IEC 29192-2 block ciphers. In: 2012 IEEE Com-
puter Society Annual Symposium on VLSI. IEEE; 2012.
p. 57–62. doi:10.1109/ISVLSI.2012.25

[35] Singh P, Acharya B, Chaurasiya RK. Efficient VLSI
architectures of LILLIPUT block cipher for resource-

constrained RFID devices. In: 2019 IEEE International
Conference on Electronics, Computing and Communi-
cation Technologies (CONECCT). IEEE; 2019. p. 1–6.
doi:10.1109/CONECCT47791.2019.9012869

[36] Singh P, Patro KAK, Chaurasiya RK, et al. Hardware-
software co-design framework of lightweight CLEFIA
cipher for IoT image encryption. Sādhanā. 2022;47(213):
1–7. doi:10.1007/s12046-022-01994-0

[37] Kryjak T, Gorgon M. Pipeline implementation of the
128-bit block cipher CLEFIA in FPGA. In: 2009 Inter-
national Conference on Field Programmable Logic and
Applications. IEEE; 2009. p. 373–378. doi:10.1109/fpl.
2009.5272264

[38] Okabe T. Efficient FPGA implementations of PRINTCI-
PHER. Int J Emerg Technol Innov Res. 2016;3(4):76–85.
Available from http://www.jetir.org/papers/JETIR160
4017.pdf

[39] Kaps J-P. Chai-tea, cryptographic hardware implemen-
tations of xTEA. In: Chowdhury DR, Rijmen V, Das
A, editors. International Conference on Cryptology in
India. Springer; 2008. p. 363–375. doi:10.1007/978-3-
540-89754-5_28

[40] Singh P, Acharya B, Chaurasiya RK. High through-
put architecture for KLEIN block cipher in FPGA. In:
2019 9th Annual Information Technology, Electrome-
chanical Engineering and Microelectronics Conference
(IEMECON). IEEE; 2019. p. 64–69. doi:10.1109/IEME
CONX.2019.8877021

[41] Fan X, Gong G, Lauffenburger K, et al. FPGA
implementations of the hummingbird cryptographic
algorithm. In: 2010 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST). IEEE;
2010. p. 48–51. doi:10.1109/hst.2010.5513116

[42] Ramu G, Mishra Z, Singh P, et al. Performance
optimised architectures of Piccolo block cipher for
low resource IoT applications. Int J High Perform
Syst Archit 2020;9(1):49–57. doi:10.1504/IJHPSA.2020.
107175

[43] Shrivastava N, Singh P, Acharya B. Efficient hard-
ware implementations of QTL cipher for RFID appli-
cations. Int J High Perform Syst Archit 2020;9(1):1–10.
doi:10.1504/IJHPSA.2020.107173

[44] Mishra Z, Nath PK, Acharya B. High throughput
unified architecture of LEA algorithm for image
encryption. Microprocess Microsyst 2020;78:103214.
doi:10.1016/j.micpro.2020.103214

[45] Canright D. A very compact S-box for AES. Lect Notes
Comput Sci 2005;3659:441–455. doi:10.1007/115452
62_32

https://doi.org/10.1109/icecs202256217.2022.9971118
https://doi.org/10.1049/iet-cdt.2019.0157
https://doi.org/10.1109/TCSI.2021.3131581
https://doi.org/10.1504/IJHPSA.2023.130223
https://doi.org/10.1109/iaeac54830.2022.9929737
https://doi.org/10.1016/j.jisa.2020.102533
https://doi.org/10.1049/iet-cds.2019.0363
https://doi.org/10.32604/cmc.2023.039901
https://doi.org/10.32985/ijeces.14.1.6
https://doi.org/10.1109/TCSI.2020.2997916
https://doi.org/10.1117/1.JEI.31.3.033012
https://doi.org/10.1109/ISVLSI.2012.25
https://doi.org/10.1109/CONECCT47791.2019.9012869
https://doi.org/10.1007/s12046-022-01994-0
https://doi.org/10.1109/fpl.2009.5272264
http://www.jetir.org/papers/JETIR1604017.pdf
https://doi.org/10.1007/978-3-540-89754-5_28
https://doi.org/10.1109/IEMECONX.2019.8877021
https://doi.org/10.1109/hst.2010.5513116
https://doi.org/10.1504/IJHPSA.2020.107175
https://doi.org/10.1504/IJHPSA.2020.107173
https://doi.org/10.1016/j.micpro.2020.103214
https://doi.org/10.1007/11545262_32

	1. Introduction
	2. Related work
	3. Algorithm overview: m-Crypton cipher
	3.1. Non-linear substitution ()
	3.2. Bit permutation ()
	3.3. Column-to-row transposition ()
	3.4. Key addition ()
	3.5. Key scheduling
	3.5.1. Key scheduling for 64 bits
	3.5.2. Key scheduling for 96 bits
	3.5.3. Key scheduling for 128 bits


	4. Proposed flexible implementation
	5. Results and comparison
	6. Conclusion
	Disclosure statement
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


