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An innovative maximum power point tracking for photovoltaic systems
operating under partially shaded conditions using Grey Wolf Optimization
algorithm

Muhannad J. Alshareef
Department of Electrical Engineering, College of Engineering and Computing in Al-Qunfudhah, Umm Al-Qura University, Mecca,
Saudi Arabia

ABSTRACT
Partial shading conditions (PSCs) may be unpredictable and difficult to forecast in large-scale
solar photovoltaic (PV) systems. Potentially degrading the PV system’s performance results from
numerous peaks in the P–V curve caused by PSC. On the other hand, the PV system must be
run at its maximum power point (GMPP) to maximize its efficiency. Swarm optimization strate-
gies have been employed to detect the GMPP; however, these methods are associated with an
unacceptable amount of time to reach convergence. In this research, an innovative grey wolf
optimization, abbreviated as NGWO, is presented as a solution to overcome the shortcomings
of the standard GWOmethod, which includes long conversion times, a rate of failure, and large
oscillations in a steady-state condition. This paper seeks to address these issues and fill a gap
in research by enhancing the GWO’s performance in tracking GMPP. The original GWO is mod-
ified to incorporate the Cuckoo Search (CS) abandoned process to shorten the time it takes for
effective adoption. Based on the simulation finding, the proposed IGWO method beats other
algorithms inmost circumstances, particularly regarding tracking time and efficiency, where the
average tracking time is 0.19s, and the average efficiency is 99.86%.
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1. Introduction

1.1. Motivation and incitement

Modern power grids increasingly view solar photo-
voltaic (PV) as their most promising energy source [1].
With global energy demand rising, skyrocketing fos-
sil fuel costs and mounting environmental concerns,
there has been a surge in interest in renewable energy
sources. Recent years have seen significant increases
in photovoltaic energy generation, leading to greater
utilization of solar energy. PV systems offer the ben-
efits of minimal maintenance costs, absence of oper-
ating or rotating parts, and pollution-free operation
[1,2]. Many countries have rapidly expanded PV power
generation systems through feed-in tariffs, subsidized
programmes and more. However, PV power generat-
ing systems are often criticized for their poor energy
conversion efficiency and high costs. Consequently,
they are frequently optimized to harvest the maximum
amount of power possible from the PV source. Max-
imum Power Point Tracking (MPPT) is a common
method for optimizing the use of PV systems, involv-
ing a DC-DC converter or an inverter. MPPT aims to
maximize the power extracted from PV systems under

varying temperatures and irradiation levels. Given that
both solar irradiation and temperature affect the PV
curves, theMPPT process becomesmore complex. Par-
allel and series connections of PV panels are often used
to meet the power requirements of the load. When the
weather changes, the location of the PV system’s MPP
shifts, and several MPPT algorithms have been pro-
posed to detect it, as documented in references [3–9].
This list includes techniques like open-circuit voltage,
Perturb and Observe (P&O), and Incremental Con-
ductance (IC) methods. The study comprehensively
reviews various strategies for detecting MPP in PV sys-
tems. Suppose the P–V curve has just one MPP during
typical uniform irradiation conditions. The tracking
methods described in these studies have been shown to
be reliable and to provide a satisfactory rate of tracking.

The P–V curve of a PV system operating in
PSCs has numerous peaks, and for optimal power
extraction, the system must converge to its global
maximum power point (GMPP). As a general rule,
a low-cost digital controller is required to imple-
ment an MPPT algorithm that has simple computing
steps, quicker convergence and a certain converge to
GMPP.
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1.2. Research gap

Several MPPT (Maximum Power Point Tracking)
strategies have been developed to locate the global
MPP under Partial Shading Conditions (PSCs) [10].
More complex approaches, such as fuzzy logic and
Artificial Neural Networks (ANNs), require substantial
data for control purposes. Examples of swarm intel-
ligence algorithms used for GMPP tracking include
Particle Swarm Optimization (PSO) [11–13], Artificial
Bee Colony (ABC) algorithm [14], Firefly algorithm
[15], Grey Wolf Optimization (GWO) [16] and the
Bat algorithm [17]. PSO and its variants are particu-
larly noted for their simplicity in design and imple-
mentation [11]. A multi-module PV system featur-
ing numerous converters was designed using a PSO-
based centralized MPPT controller. An MPPT strategy
that relies on the PSO algorithm was implemented to
control the duty cycle directly, minimizing the need
for proportional–integral control loops in Pulse Width
Modulation (PWM) signals [12]. Standard PSO for
MPPT presents two main drawbacks due to significant
divergence from high-velocity updated particles and
extended convergence times with low-velocity parti-
cles. Study in [18] and [13] give suggestions for address-
ing these issues. Linearly increasing social parame-
ter whereas, linearly lowering cognitive parameter and
inertia weight was utilized to adjust the standard PSO
in [18]. A reduction in the iterations needed to attain
the GMPP was found to be the result of making some
modifications but this increases the complexity of the
algorithm.

In [19–21], two-stage algorithm integrates into the
first stage swarm intelligence algorithm for capability
to search globally, and P&O method is integrated into
the second stage, which merges the local search abil-
ity, and uses MPPT control under PSCs. However, the
P&O method can oscillate around the GMPP, which
may result in degradation of PV efficiency.

In [22], the Artificial Bee Colony (ABC) algorithm
was employed to determine the Global Maximum
Power Point (GMPP) under Partial Shading (PS) con-
ditions, showing superior convergence compared to the
Particle SwarmOptimization (PSO) method. Nonethe-
less, the ABC algorithm tends to get stuck in a Local
Maximum Power Point (LMPP) when operating with
a limited number of bees. Another technique, the
Ant Colony Optimization (ACO), as developed by
[23], exhibits performance comparable to PSO under
both uniform and varying shade conditions. Mean-
while, study in [24] introduced an enhanced differential
evolution strategy to attain GMPP under PS, offer-
ing rapid convergence and straightforward deployment
because of its minimal control parameters. However,
this method lacks a mechanism to recall past particle
movements and locations,making it prone to becoming
trapped at local maxima.

Grey wolf optimization (GWO)was first utilized in a
PV generation system as noted in [16,25], yet it encoun-
ters inherent challenges that can extend the search
duration. In [26], GWO is merged with the perturb
and observe (P&O) method to achieve quicker conver-
gence. Nonetheless, the characteristics of P&O can lead
to undesirable steady-state power oscillations. Study in
[27] enhanced the performance of GWO by adjust-
ing the balance between exploration and exploitation
phases. However, introducing additional parameters
can complicate the system further.

Slap swarm algorithm (SSA) and GWO are com-
bined to create the MPPT controller [28]. The GWO
method’s leadership structure is included in the stan-
dard SSA algorithm to improve global search capabil-
ities. The starting value of the crow search algorithm
(CSA), according [29], should be set to the ideal duty
ratio as found by GWO.

Additionally, a technique for determining the DC
impedance of a PV string using GWO is presented
to prevent extreme local problems [30]. The cuckoo
search (CS) was first introduced in the year 2009 [31],
which was influenced by the brooding habits of Cuck-
oos. The method proved to be more effective than PSO
[21,32–34]. However, the convergence speed of CS is
influenced by the Lévy flight, which can result in slower
convergence.

The enhanced GWO method developed in [35]
removes the (δ) and (ω) wolves from the standard
GWO algorithm to simplify the computation process
and is directly utilized for PV generating systems to
monitor the GMPP. However, eliminating the δ and ω

wolves, which contribute toward GMPP, may cause the
algorithm to become trapped at local MPP under com-
plex partial shading conditions. This method has better
speed of tracking and good accuracy in comparison to
the other methods. As a result, EGWO will be utilized
to compare to the method proposed here.

1.3. Contribution

The primary aim of this research is to enhance the
functionality of the conventional Grey Wolf Optimiza-
tion (GWO) method by decreasing tracking time and
improving efficiency. This is achieved by integrating the
abandoning mechanism from Cuckoo Search (CS) into
the GWO, resulting in the proposed Modified Novel
Grey Wolf Optimization (NGWO). The simulation
results show that this method significantly improves
convergence time and accuracy. The structure of this
paper is as follows: Section 2 provides an overview of
photovoltaic (PV) modelling in partial shading con-
ditions. Section 3 outlines the Conventional GWO.
Section 4 details the proposed NGWO algorithm and
its application in Maximum Power Point Tracking
(MPPT) for PV systems. The results and discussion
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Figure 1. Model of a solar cell.

of the simulations are presented in Section 5. Finally,
Section 6 summarizes the findings.

2. Characteristics of photovoltaic array

2.1. The photovoltaic cell model

Figure 1 depicts the PV cell’s equivalent circuit. The
incoming light (G) can produce current IPV , Id is the
diode’s forward bias current, and RP and RS denote
the cell’s inherent shunt and series resistance, corre-
spondingly. It is possible to represent mathematically
the relationship that exists between the current (I) and
voltage (V) of the PV solar cell as follow:

I = IPV − IO
{
exp

[
q(V + IRS)

nKT

]
− 1

}
− V + IRS

RP
(1)

Where PV current, leakage current, are denoted by Iph
and Io, respectively. The reverse saturation current of a
diode is depicted by the IO, K is the constant of Boltz-
mann, the temperature is expressed in kelvins as T, q
denotes the charge of an electron, the diode ideality
constant is denoted by n, while the diode cross-voltage
is denoted by the voltage V+ IRs.

Under three different scenarios (open circuit, short
circuit and maximum power point), the information
included in the datasheet may be used to derive the
five parameters of the circuit model (IPV , I0, RS and
RP), which are referred as collectively as [36]. As
a consequence of this, the following are the finding
obtained by substituting the parameters of the maxi-
mum power point (V = Vmpp, I = Impp), the open cir-
cuit (V = VOC, I = 0), the short circuit (V = 0, ISC),
conditions into (1):

0 = IPV − IO
[
exp

(
qVOC

nKT

)
− 1

]
− VOC

RP
(2)

ISC = IPV − IO
[
exp

(
qISCRS
nKT

)
− 1

]
− ISCRS

RP
(3)

Isc = IPV − IO
{
exp

[
q(VMPP + IMPPRS)

nKT

]
− 1

}

− VMPP + IMPPRS
RP

(4)

ISC indicates short-circuit current, VOC stands for
open circuit voltage, IMPP refers to current at maximum

power point and VMPP stands for maximum power
point voltage. When building practical devices, the
shunt resistance RP is usually large enough to ignore.
RS’s value may also be found in the datasheet, as well.
It is also possible to extract additional circuit model
unknown parameters using (2)–(4).

2.2. Irradiance and temperature effects

A standard test condition (STC) is defined as an irradi-
ation of 1000W/m2, a cell temperature of 25°C with an
air mass (AM 1.5 spectrum).

The parameters and equations of the circuit model
presented in this section depend on the STC. IPV
which depends exponentially on solar irradiance and is
impacted by changes in temperature and irradiance, it
can be corrected by (5):

IPV = (IPV ,STC + KI�T)
G

GSTC
(5)

G is the amount of irradiance that is present on the
surface of the cell, and GSTC refers to 1000 W/m2. KI
represent the current’s temperature coefficient, the dif-
ference in temperature between the cell and the stan-
dard 25°C is denoted by �T. Another interesting fact
about diodes is that they have a reverse saturation cur-
rent (I0) that is greatly influenced by temperature, and
it can be modelled by (6)[37]:

IO = ISC,STC + KI�T

exp
[
q(VOC,STC+KV�T)

nKT

]
− 1

(6)

Short circuit current and open circuit voltage are
characterized by IOC,STC and VSC,STC correspondingly,
whereas temperature coefficients for current and volt-
age are denoted by the KI and KV , respectively. The
normal operating cell temperature (NOCT) parameters
given in the datasheets are commonly used to deter-
mine Tcell of the solar cell. Open circuit cells with 800
W/m2, a temperature of 20°C and awind speed of 1m/s
attain a temperature known as NOCT. As a result, Tcell
may be computed from NOCT using this method (7):

Tcell = Ta + G
800

(NOCT − 20) (7)

2.3. PSCs and bypass diodes effects

APVmodule is generally made up of solar cells that are
linked in series and/or parallel to produce the required
output voltage. Consequently, (1) can be modified to
describe the current of a PV module and shown in the
form of (8):

I = NPIPV − IO
{
exp

[
q(V + IRS)
nKTNS

]
− 1

}
− V + IRS

RP
(8)
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NS stands for the number of cells that are linked in
series; Np stands for the number of cells that are linked
in parallel. In the same way, PV arrays comprise of a
group of interconnected PV modules, and PV mod-
ules are often protected from reverse flow and hot spots
using blocking and bypass diodes. At the same time, the
P–V curve under PSCs may display several LMPPs if
bypass diodes are included in the circuit. The tracking
of MPP becomes more difficult as a result of this [38].

Figure 2 shows a PV string where, PV modules
linked in series with blocking and bypass diodes. Each
module in the string is joined with a bypass diode
to avoid overheating. Furthermore, each string of PV
modules is ended with a blocking diode. When mea-
suring the voltage drop over the blocking diode Vbl
and the voltage across individual PV module Vmd, the
whole voltage across the PV stringVst can be computed
by adding the previous two values together. It is also
important to note that eachmodule’s string short circuit
current ISCi (nearly equivalent to themodule photocur-
rent) and string current Ist are used to computeVmd,i. It
is possible to computeVmd,i through using the Lambert
W function if Ist is equal to or lower than ISCi; how-
ever, if Ist is more than ISCi, this allows the bypass diode
to conduct, and the Vmd,i is clamped at a tiny voltage
which is similar to diode’s forward bias voltage. This
means that the bypass diode is responsible for carrying
the discrepancy between the Ist and ISCi. A mathemat-
ical model of how PV string voltage Vst and current Ist
are related can be described as follow:

VST =
∑
i=1

Vmd,i + Vbl (9)

Vmd,i

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

RP × (IPV + IO) − (RS + RP) × IST − a × W{
RPIO
a exp

[
RP(IPV+IO−IST)

a

]}
, IST ≤ ISC,i

−nbpKT
q × ln

(
IST−ISC,i
IO,bp

+ 1
)
, IST > ISC,i

(10)

Vbl = −nblKT
q

× ln
(

IST
IO,bl

+ 1
)

(11)

Where IO,bl refers to the blocked diode’s reverse
saturation currents, whereas IO,bp refers to the bypass
diode’s reverse saturation currents, W(x) indicates the
Lambert W function diodes, nbp refers to the bypass
diodes ideality constant, whereas nbl refers to the block-
ing diodes ideality constant.

It is possible that the value of ISC,iin (10), will be
variable for each of the modules that comprise a PV
string when using PSCs. Because of this, the I–V curves
could have steps, and the P–V curves might have sev-
eral LMPP. A PV array is seen in Figure 3 under the
conditions of uniform irradiance (Pattern A) and PSC
(Pattern B). The PV array includes four PV modules
that are coupled in series. Figure 4 depicts the results
of a series connection of four modules, each of which

Figure 2. Shows a PV string that includes blocking and bypass
diodes.

is exposed to a different level of irradiance, the P–V
curves have an LMPP number of 4, and the interval
number is also 4. Because of this, the P–V curve that
is produced will be more complex, producing several
peaks in a single array along with extended strings.
When this occurs, standard MPPT algorithms might
get stuck at one LMPPs and miss the GMPP entirely,
which can cause the PV modules’ output power to be
drastically reduced. Additionally, there is a high proba-
bility that the irradiance level will vary quickly, leading
to shifts in the GMPP’s position. In light of this, the
MPPT algorithm has to rapidly and precisely identify
the GMPP among the LMPPs to capture the highest
power that the PV system generates while subject to
PSCs.

3. Overview of Grey wolf optimization

According to Mirjalili et al. [39], the GWO algorithm
was developed to mimic the social hierarchy and hunt-
ing strategies of grey wolves in their native environ-
ment. Predators, such as grey wolves, prefer to travel
in social groups known as packs rather than alone.
Grey wolves of the alpha (α), beta (β), delta (δ) and
omega (ω) species are used to represent the several
levels of hierarchy. In addition, they maintain a very
rigid social dominant hierarchy, which can be seen
in Figure 5, where the level of dominance held by
each wolf decreases as one moves down the hierar-
chy. At GWO, the alpha (α) mathematically represents
the fittest solution to model the wolf social hierarchy.
The best solutions that came in second and third place,
respectively, have been labelled with the beta (β), delta
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Figure 3. PV array function under (a) uniform irradiance
(b) partial shading condition (PSC).

(δ). All other solutions are assumed to be omega (ω).
The GWO engages in primary processes, which are
displayed in Figure 6: hunting, chasing and tracking
for prey; encircling prey and attacking prey. During
the hunt, wolf packs circle their prey. The following
equations can model this behaviour.

Grey wolf positions may be updated using the (12)
and (13) [35]:

�D = |�C × �XP(t) − �X(t)| (12)

�X(t + 1) = �XP(t) − �A × �D (13)

where t denotes the current iteration, XP represents the
prey position, the greywolf’s position is indicated by the
X. A, C and D represent the coefficient vectors. Vectors
A and C can be determined as follows [16]:

�A = 2�a × �r1 − �a (14)

�C = 2 × �r2 (15)

The random variables r1 and r2 are in the range [0,1],
and their values drop gradually from 2 to 0. Hunting is
generally directed by α in their search (optimization).
The β and δ may hunt on occasion. These three wolves
are being pursued by the other wolves. The following
formula should be used while updating position:

The grey wolves will begin their attack as soon as
their prey stops moving.

�Dα = |�C1 × �Xα(t) − �X(t)|,
�Dβ = |�C2 × �Xβ(t) − �X(t)|,

�Dδ = |�C3 × �Xδ(t) − �X(t)| (16)

�X1 = �Xα(t) − �A1 × �Dα ,

�X2 = �Xβ(t) − �A2 × �Dβ ,

�X3 = �Xδ(t) − �A3 × �Dδ (17)

�X(t + 1) = �X1 + �X2 + �X3

3
(18)

4. The novel GWO algorithm and its use in
MPPT design

4.1. Novel Grey wolf optimization (NGWO)

In this proposed method, Grey Wolf Optimization
(GWO) is integrated with the Cuckoo Search (CS)
abandoning mechanism to minimize the time spent on
tracking. The unique brooding behaviour of cuckoos
drives CS: cuckoos lay their eggs in the nests of host
bird species to enhance their offspring’s chances of sur-
vival. However, there is a risk that the cuckoo’s eggs
will be discovered by the host, who may then destroy
or abandon them.This approach has been combined
with BA to improve the tracking performance of the
BA [40] The implementation of CS is guided by three
idealized principles:

• The nests in which cuckoos deposit their eggs are
chosen randomly.

• Only the highest quality eggs are retained for the
next generation.

• A predefined number of host nests exist, and the
probability that the host will detect foreign eggs is
represented by Pa [0, 1]. If the host discovers alien
eggs, it will destroy the nest or abandon it and build a
new one elsewhere. This can be simulated by replac-
ing a percentage Pa of N nests with new solutions.
The inclusion of the CS abandoning mechanism
restricts the search to potentially feasible candi-
date solutions, potentially speeding up convergence.
It is recommended to integrate the abandonment
concept into GWO to enhance convergence speed.
Before activating the abandonment mechanism, the
positions of the grey wolves Xi are sorted in ascend-
ing order, and the poorest performers are replaced
with new entries. Ultimately, a number of Nr grey
wolves are abandoned. The difference between the
abandoned grey wolf position Xab and the global
best position Xbes can be determined by (19). This
ensures an equivalent number of grey wolves are
replenished.

�Xab = |Xbest − Xab| (19)

A comparison will be made between the value of
�Xab and a threshold value of Thr. It can be deduced
that the worst grey wolf Xab is very close to Xbest if the
value of �Xab is either equal to or smaller than Thr. As
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Figure 4. Shows (a) P–V curve under normal irradiance and PSC (b) I–V curve under normal irradiance and PSCs.

Figure 5. The grey wolf’s hierarchical order.

a result, the value of the regenerating grey wolf, Xi,new,
has been set to Xbest. Nevertheless, if the value of �Xab
is more than Thr, this indicates that Xab is a consider-
able distance from Xbest. As a result, the regenerating
grey wolf can be described based on the form of (20).

Xi,new = Xbest ± �Ri (20)

Then �Rican be defined in (21):

�Ri = r × �Xab × Fc (21)

where r is a random number between 0 and 1, and the
following expression describes the cooling factor Fc:

Fc = 1
t

(22)

Consideration is given to the following factors when
deciding whether �Ri should be added or subtracted
from Xbest Suppose that Xcb is the current iteration’s
best solution. To put it another way if Xbest > Xcb, it
means that Xcb is to the left of Xbest . Thus, the regen-
erating grey wolf Xi,new is set as the corresponding
Equation (23) to discover the left side of Xbest , as can
be seen in Figure 7(a).

Xi,new = Xbest − �Ri (23)

Figure 7(b) shows the changes in the search space
as shown in this scenario. The search space includes
zones 1 and 2. This can conceivably speed up the con-
vergence time of the system by removing X2 (Xab) from
the left subspace in Figure 7(b) and putting the regen-
erating grey wolf X2,new; in this case, the search space
excludes zone 1 and retains only zone 2. However, Xcb
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Figure 6. Grey wolf hunting strategies: (a–c) following, and tracking prey (d) encircling (e) stationary situation and attack.

is set on the right side of theXbest when theXbest < Xcb.
Figure 8(a) shows how to explore the right side of Xbest
by setting Xi,new as (24).

Xi,new = Xbest + �Ri (24)

Figure 8(b) depicts how the search space changes in this
scenario by removing X2 (Xab) and replacing it with
X2,new as per (24), all of the wolfs are restricted to the
right subspace (Zone 2).

4.2. The implementation of a novel GWO for the
purpose ofMPP tracking

Figure 9 shows the flowchart of NGWO-based MPPT
algorithm. Vpv and Ipv are measured by sensors and the
output power is determined for a given number of grey
wolves, or duty cycles.

The P–V curve contains a number of peaks as a
consequence of the condition of partial shading that
took place, each with LMPPs and a one GMPP. As it
turns out, when wolves locate the GMPP, their associ-
ated coefficient vectors almost reach zero. This method
attempts to incorporate the proposed NGWO control
and maintain of the duty cycle constantly at the MPP;
this could diminishes the steady-state oscillations that
are characteristic of classic MPPT approaches, which,
in turn, minimizes the power loss that is occurred by
oscillation, which ultimately increases in the system’s
overall efficiency. When using an MPPT built upon the
NGWO, the duty cycle D is referred to as a grey wolf.

As a consequence of this, (16)–(18) are modified in the
ways that are described in the following:

�Dα = |�C1 × �dα(t) − �d(t)|,
�Dβ = |�C2 × �dβ(t) − �d(t)|,
�Dδ = |�C3 × �dδ(t) − �d(t)| (25)

�d1 = �dα(t) − �A1 × �Dα , �d2 = �dβ(t) − �A2 × �Dβ ,

�d3 = �dδ(t) − �A3 × �Dδ (26)

�d(t + 1) =
�d1 + �d2 + �d3

3
(27)

where Dα and Dβ are the distances of dα and dβ from
the point where the power is at its maximum.

This leads to the following formulation for the fitness
function of the GWO algorithm:

P(dki ) > P(dk−1
i ) (28)

where d stands for the duty cycle, P stands for out-
put power, i represents the grey wolf’s number, and the
number of iterations is denoted by k.

The proposed NGWO includes the following steps:

Step 1: Initialization of the parameters: The first step
is to set up the parameters. To begin, a four-duty cycle
with a range of [0, 1] is generated. During the GMPP
exploration phase, particles are initiated on the left,
Centre, and right sides to guarantee that every search
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Figure 7. (a) The case when Xbest > Xcb (b) After sorting by fitness, Grey wolf positions include Zones 1 and 2 of the search space.
(b) The abandonment mechanism reduced the search space to only zone 2.

space is completely covered. These calculations, the
starting positions are as follows: (0.1, 0.4, 0.6 and 0.9).
Step 2: Evaluation of fitness: includes the subsequent

computation of the PV array’s output power corre-
sponding to each duty cycle. Current and voltage mea-
surements are required for this purpose. In terms of
fitness, the duty cycle, which is regarded as the optimal
solution maps to the maximum possible power level
donated by Di,best . In terms of fitness, the duty cycle,
which is regarded as the worst solution maps to the
minimum possible power level donated by Di,worst .
Step 3: See whether rand > pa. If this is the case,

proceed to Step 4; else, go to Step 6.
Step 4: Replace the worst grey wolves (duty cycles)

with new ones using the abandoning mechanism

using (19)–(24), then see whether dikworst > dmax, then
dikworst = dmax; alternatively, if dikworst < dmin, then
dikworst = dmin.
Step 5: Send the new worst value dikworst to the PV

system so that it can compute the Pikworst , then check if
Pikworst > Pmax, then Pmax = Pikworst , dmax = dikworst ;
otherwise keep the previous value of Pmax and dmax
Step 6: Update the position of grey wolfs (duty cycles)

using an equation of GWO (25)–(27), then check if
dikworst > dmax, then dikworst = dmax; otherwise, if
dikworst < dmin, then dikworst = dmin.
Step 7: Send the new value of worst dikto the PV

system so that it can compute the Pik, then check if
Pikt > Pmax, then Pmax = Pik, dmax = dik; otherwise
keep the previous value of Pmaxand dmax
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Figure 8. (a) The case when Xbest < Xcb Figure 5 (b) After sorting by fitness, Grey wolf positions include Zones 1 of the search space.
(b) The abandonment mechanism reduced the search space to only zone 2.

Step 8: Checking the iteration there is an evaluation
of the convergence criterion. The calculation will be
finished when the predetermined iteration number has
been attained. If this is not the case, it is expected that
steps 2 through 7 will be repeated until the termination
requirements are met.
Step 9: The change in the environment may affects

the maximum output power of a PV system. The pro-
posed NGWO algorithm uses a restart mechanism to
respond quickly to changes in PSC. For the proposed

NGWO algorithm to restart, the following equation
must be valid: Evaluate the stopping criteria shown in
(29). Proceed to Step 1 if it is valid; otherwise, continue
to Step 2.

Pi − Pm
Pm

> �P (29)

Where Pi is the new actual output power, Pm is the out-
put power of the PV arraymeasured atMPP depending
on the conditions of themost current operation, and the
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Figure 9. Flowchart of the proposed NGWO algorithm.

PV array’s output power change threshold is denoted
by �P.

5. Simulation analysis and discussion

A simulation study in MATLAB/SIMULINK was con-
ducted to verify the effectiveness of the proposed
NGWO method. Figure 10 illustrates the basic struc-
ture of the PV system explored in this study, which

consists of a PV array, a battery pack, a DC-DC boost
converter, and an MPPT controller. The converter was
designed to operate in continuous inductor current
mode. The key properties of the PV module are pre-
sented in Table 1.

Four PSC patterns are used to assess the algorithm’s
effectiveness: patterns (Figure 11), which are generated
sequentially by varying the irradiation levels of the four
modules (0.9, 1, 0.85, 0.5) [kW/m2], (0.9, 0.6, 0.5, 1)
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Figure 10. Block diagram of the proposed PV system.

Table 1. PV module specification.

Specification of single PV module Values

Maximum Power (Pmpp) 41.05 W
Open Circuit Voltage (Voc) 9.87 V
Maximum Power Voltage (Vmpp) 7.41 V
Short Circuit Current (ISC) 5.76 A
Maximum Power Current (IMPP) 5.54 A
Configuration of PV module 4-Series

Table 2. Parameter sets for various MPPT algorithms.

Algorithms Parameters

P&O �d = 0.01, d = 0.6
GWO a from 2 to 0 and r1 and r2 = {0,1]
EGWO a – self-adaption
NGWO Pa = 0.25, a from 2 to 0 and r1 and r2 = {0,1],

[kW/m2], (0.9, 0.9, 0.5, 0.9) [kW/m2], and (0.7, 0.8,
0.8, 1) [kW/m2] (Table 2).

Two alternative soft computing algorithms, the Grey
Wolf Optimization (GWO) algorithm proposed in
[35] and the conventional Perturb & Observe (P&O)
algorithm, were compared with the NGWO to verify
the reliability of the proposed NGWO algorithm. Each
algorithm was evaluated using the same model and
under identical conditions. Power, current and volt-
age waveforms, along with their overall performance,
are displayed for each method in Figures 12–15. Both
NGWO and the other soft computing methods suc-
cessfully detected the GMPP as shown in the figures.
However, they differed in tracking speed, oscillation
around the GMPP, and efficiency; notably, the P&O
algorithm tends to get trapped at the Local Maximum
Power Point (LMPP) rather than the GMPP. Table 3
lists the numerical results for each algorithm, with the
NGWO outperforming all compared methods. In the
simulation, voltage and current values are recorded
using oscilloscope readings. The voltage measurement,
denoted as Vm, typically has an uncertainty, �Vm, of
±0.1 V, while the current measurement, Im, carries an
uncertainty, �Im, of ±5 mA. The uncertainty in power
measurement, �Pm, can be calculated as follows:

�Pm ∼= Vm�Im + Im�Vm (30)

In this study, the usual uncertainty or sensitivity in
power measurement ranges from ±0.3 to ±0.7 W.

The first simulation study (Section 5.1) demon-
strates how well the proposed method functions for

various shading patterns. The second simulation study
(Section 5.2) will analyse each optimization method
using a range of peaknumbers and swarm sizes to deter-
mine its effectiveness. The following provides further
information regarding these two studies.

5.1. The statistical performance of NGWOunder
PSC

In pattern (1): As shown in Figure 11(a), the GMPP
is located at the centre of the P–V curve at 111.87
W. Figure 12 presents the simulation results for sev-
eral algorithms under pattern 1. The GWO algorithm
reaches the GMPP in 0.48 s with a GMPPT efficiency
of 99.50%. In contrast, EGWO [35] tracks the GMPP
in only 0.36 s with a GMPPT efficiency of 99.62%.
Although the P&O algorithm can operate rapidly in
0.16 s, it fails to track the GMPP and instead captures
one of the local LMPPs, resulting in a tracking efficiency
of 85.45%. However, the proposed NGWO algorithm
takes only 0.22 s with a tracking efficiency exceeding
99.90%, indicating that NGWO’s tracking time is about
63% and 113% quicker than the EGWO and GWO
algorithms, respectively.

In pattern (2): As shown in Figure 11(b), the GMPP
is on the right side of the P–V curve at 93.8 W, and all
algorithms were able to detect it. Figure 13 displays the
simulation results for several algorithms under pattern
2. It takes 0.41 s for the GWO-based MPPT to stabi-
lize at the GMPP, with a tracking efficiency of 99.58%.
Meanwhile, EGWO [35] tracks theGMPP in 0.37 s with
a tracking efficiency of 99.48%.TheP&Oalgorithmalso
effectively converges to the GMPP, achieving a tracking
efficiency of 99.42%. GWO similarly tracks the GMPP
with a tracking efficiency of 99.42%. Additionally, the
P&O algorithm’s ability to detect GMPP is influenced
by the search starting location. The P&O approach, for
example, cannot track the GMPP if the beginning point
for a search is a duty cycle of 0.2 s. However, the pro-
posed NGWO method takes 0.17s to attain the GMPP
and has a tracking efficiency of 99.72%.

In pattern (3): As shown in Figure 11(c), the GMPP
is located on the left side of the P–V curve at 112.81
W. Figure 14 presents the simulation results for sev-
eral algorithms under pattern 3. Although the P&O
algorithm only requires 0.18 s to track an MPP, it erro-
neously tracks the LMPP instead of theGMPP, resulting
in significantly lower MPPT efficiency due to getting
stuck at the LMPP. In scenarios where the output pow-
ers were 112.66, 112.69 and 112.72 W, respectively, the
GWO, EGWO [35], and the proposed NGWO algo-
rithms took 0.48, 0.39 and 0.17 s to track the GMPP.
The tracking efficiency of the four algorithms ranged
from 87.16% to 99.86%, 99.89% and 99.92%, respec-
tively. Consequently, the NGWO algorithm proves to
be quicker and more efficient than the other MPPT
algorithms. Additionally, the proposedNGWOexhibits
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Figure 11. Different PSC layouts for PV arrays that have been adopted.

Table 3. Comparison analysis of the GWO, EGWO, NGWO and P&O algorithms under four different patterns.

Cases Index P&O GWO EGWO[35] NGWO

Case 1 Rated Power (W) = 111.87 W Pmpp 95.6W 111.31W 111.45W 111.76W
T(s) 0.16 0.48 0.36 0.22
η 85.45% 99.50% 99.62% 99.90%

Case 2 Rated Power (W) = 93.8 W Pmpp 93.26W 93.40W 93.48W 93.54W
T(s) 0.19 0.41 0.37 0.17
η 99.42% 99.58% 99.65% 99.72%

Case 3 Rated Power (W) = 112.81 W Pmpp 95.33W 112.66W 112.69W 112.72W
T(s) 0.18 0.48 0.39s 0.17s
η 84.50% 99.86% 99.89% 99.92%

Case 4 Rated Power (W) = 126.80 W Pmpp 125.29W 126.4W 126.54W 126.66W
T(s) 0.18 0.39 0.37 0.21
η 98.80% 99.68% 99.79% 99.89%

noticeably fewer oscillations compared to other MPPT
algorithms. Figure 15 will show the simulation results
under pattern 4.

According to the data summarized in Table 3, the
solutions obtained from the proposed NGWO are
almost always located at the global optima, indicat-
ing that additional energy is attained. Furthermore, the
NGWO exhibits the highest level of efficiency, aver-
aging 99.86%. NGWO outperforms the other MPPT
algorithms in terms of performance. The GMPP takes
an average of 0.19 s to track using NGWO, but
the GWO and EGWO take 0.44 and 0.38 s, respec-
tively. Simulation results show that NGWO outper-
forms the compared methods in every performance
criteria.

5.2. NGWOperformance under PSC in a dynamic
environment

The NGWO-based GMPPT approach is further vali-
dated by employing a changing sequence of Patterns
1 – Pattern 2 – Pattern 3 – Pattern 4 to observe
changes in the curve and verify the simulation. A
re-initialization strategy was implemented to ensure
the MPPT algorithm functions properly despite con-
stantly changing irradiance levels, which shift after
exactly one second. Figure 16 displays the results of
each algorithm’s simulation, including GWO, EGWO,
NGWOandP&O, showing thewaveformof the PVout-
put power, voltage and current. The simulation starts
with the PV array operating according to Pattern 1. The
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Figure 12. PV array output voltage, current and power waveforms for pattern 1: (a) GWO, (b) EGWO [35], (c) NGWO and (d) P&O.

EGWOMPPT algorithm requires approximately 0.22 s
to track the GMPP. At the time t = 1 s, the irradiance
of the PV array has altered, which ultimately results in
the irradiance moving to pattern 2. The change is rec-
ognized by the algorithm under consideration, which
then restarts its tracking of the new GMPP. The new
GMPP is tracked by the NGWO algorithm in about
0.17 s when pattern 2 is used. The simulations’ results
reveal that the NGWO demonstrates a good dynamic
performance. Once the time t = 2 s has passed, the PV
array’s irradiance shifts to pattern 3. The new GMPP
is tracked by the proposed NGWO, which identifies
the change and restarts the tracking process. Tracking
the new GMPP under pattern 3 takes roughly 0.17 s.
As time goes on, the PV array is exposed to different
solar radiation patterns, which occur at t = 3 s. The

NGWO algorithm tracks the new GMPP, identifying
the change and restarting the tracking process. The
NGWO algorithm takes roughly 0.21 s to track the new
GMPP under pattern 4.

Table 4 presents a comparison of the proposed
method with existing MPPT techniques. The results
conclusively demonstrate that the proposed method is
more reliable, accurate and faster, making it a supe-
rior option for identifying the GMPP of the PV system
under various partial shading conditions.

The optimization methods were studied under
three different partial shading conditions (PSC) with
one, five and ten peaks, using 4, 6, 8 and 10
searching agents or swarm-size values. The find-
ings, which include convergence time and failure rate
(FR), are presented in Table 5. Swarm optimization
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Figure 13. PV array output voltage, current and power waveforms for pattern 2: (a) GWO, (b) EGWO [35], (c) NGWO and (d) P&O.

Table 4. Comparative analysis of the performance of the proposed method against other MPPT approaches in the literature.

Parameters P&O [7] PSO [11] ABC [22] ACO [23] GWO [27] EGWO [35] Proposed method

Complexity Low Moderate Moderate Moderate High Moderate Moderate
Efficiency Low (under PSC) Moderate Moderate Moderate High High Very High
Tracking capability of GMPP Low High Moderate High High High High
Tracking speed High Moderate High Moderate High High Very High
Steady-state oscillation Yes No No No No No No

strategies performed admirably in scenarios with a
single peak.

In comparison, the proposed NGWO method
demonstrated its superiority by acquiring the GMPP in
less than half the time required by GWO, with respec-
tive times of 0.15, 0.19, 0.31, 0.44 and 0.49 s for 3,
4, 6, 8 and 10 searching agents. When facing 5 peaks
with three searching agents, GWO took 0.41 s to find
the GMPP and had a failure rate of 14%. In contrast,
NGWO tracked the GMPP in just 0.18 s with a fail-
ure rate of 11%, while EGWO took 0.32 s with a failure
rate of 15%. It is essential to note that the low num-
ber of agents is directly linked to the high failure rate.
With four searching agents, NGWO quickly acquired

the GMPP with a 0% failure rate, significantly outper-
forming other optimization methods, which demon-
strated longer convergence times and higher failure
rates. With six searching agents, no optimizationmeth-
ods recorded any failure rate. The time it took for
NGWO to capture the GMPP was 0.38 s, compared
to 0.57 and 0.53 s for GWO and EGWO, respectively.
When the number of searching agents increased to 8 or
10, the failure rate remained at 0% for all optimization
methods, but the time to converge towards the GMPP
increased; NGWO still had the quickest convergence
time. For P–V curves containing five peaks or fewer, it
is advisable to use at least four searching agents with the
NGWO algorithm.
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Figure 14. PV array output voltage, current and power waveforms for pattern 3: (a) GWO, (b) EGWO [35], (c) NGWO and (d) P&O.

Table 5. Comparison Variable swarm optimization methods with different swarm sizes and the number of peaks were tested in a
simulation.

1 Peak 5 Peaks 10 Peaks Average

Methods Swarm size FR Conv.time FR Conv.time FR Conv.time FR Conv.time

GWO 3 0 0.35 14 0.41 24 0.44 12.67 0.40
EGWO 0 0.3 15 0.32 30 0.39 15 0.33
NGWO 0 0.15 11 0.18 22 0.21 11 0.18
GWO 4 0 0.4 6 0.47 19 0.48 8.34 0.45
EGWO 0 0.36 10 0.46 16 0.49 8.67 0.44
NGWO 0 0.19 0 0.23 11 0.34 3.67 0.25
GWO 6 0 0.53 0 0.57 10 0.66 3.34 0.58
EGWO 0 0.48 0 0.53 12 0.58 4 0.53
NGWO 0 0.31 0 0.38 0 0.44 0 0.37
GWO 8 0 0.68 0 0.71 0 0.75 0 0.71
EGWO 0 0.64 0 0.68 0 0.73 0 0.69
NGWO 0 0.44 0 0.5 0 0.52 0 0.49
GWO 10 0 0.77 0 0.80 0 0.82 0 0.79
EGWO 0 0.70 0 0.80 0 0.84 0 0.78
NGWO 0 0.49 0 0.51 0 0.56 0 0.52
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Figure 15. PV array output voltage, current and power waveforms for pattern 4: (a) GWO, (b) EGWO [35], (c) NGWO and (d) P&O.

If there are 10 peaks, NGWO was the only method
that could capture the GMPP with a 0% FR using six
searching agents. Additionally, it had the fastest con-
version time of all the methods.When searching agents
are 8 or higher, the FR was 0%. This indicates that the
value of FR is higher than 0, which can be assigned to,
GWO and EGWO under the case of 3, 4 and 6 search-
ing agents, excluding the case with 8 and 10 searching
agents.

With 8 searching agents, all optimization methods
achieved an FR with the rate of 0%; the NGWO was
able to capture the GMPP in 0.52 s, while the GWO and
EGWO took 0.75 and 0.73 s, respectively.

When the number 10 of searching agents was
used, GWO, EGWO and NGWO successfully caught
the GMPP at 0% FR; however, NGWO had the
fastest convergence speed. This proves, once more,

that the NGWO has a better performance compared
to the GWO and EGWO that were utilized in this
study.

In addition, the average results across all of the eval-
uated numbers of peaks are displayed in Table 5. It is
abundantly evident that the average rates of failure for
all optimization methods for three and four searching
agents are greater than 0%. NGWO is the only tech-
nique to attain an FR of 0% with six searching agents,
whileGWOandEGWOhave FRs of 4%and 3%, respec-
tively. Compared with the average convergence times
associated with other optimization methods, NGWO
is noticeably faster across the board, regardless of the
number of various search agents that were employed.
The results of this study show that the NGWOmethod
outperforms all of the other MPPT methods that were
examined for use with PV systems.
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Figure 16. Dynamic performance under PSC changes: (a) GWO, (b) EGWO [35], (c) NGWO and (d) P&O.

Figure 17. Shows a visual representation of how the failure rate varied as the swarm size increased and with different number of
peaks for all optimization methods. (a) GWO; (b) EGWO; (c) NGWO.

Figure 17 shows the variation in swarm size and
failure rate for optimization methods that were tested.

Figure 18 shows the variation in swarm size and
convergence time for optimization methods that were
tested.

6. Conclusion

This paper proposes a novel Grey Wolf Optimization
(GWO) algorithm designed for use in photovoltaic

(PV) systems, capable of tracking the Global Max-
imum Power Point (GMPP) under various partial
shading conditions (PSCs). The abandonment mecha-
nism from Cuckoo Search (CS) is utilized to enhance
the performance of the GWO-based Maximum Power
Point Tracking (MPPT) by reducing tracking time and
improving efficiency through the retention of high-
quality solutions and the discarding of low-quality
ones. Extensive simulation studies were conducted
to demonstrate that the proposed Novel Grey Wolf
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Figure 18. Shows a visual representation of how the convergence time varied as the swarm size increased andwith different number
of peaks for all optimization methods. (a) GWO; (b) EGWO; (c) NGWO.

Optimization (NGWO) is both feasible and effective. A
numerical analysis of each optimization method’s per-
formance was presented, using a wide range of P–V
curve peak numbers and swarm sizes. The perfor-
mance of the NGWO algorithm was compared with
the traditional GWO, the Enhanced GWO (EGWO)
and the Perturb & Observe (P&O) algorithm. More-
over, the results of the MPPT tests conducted on PV
system simulation software confirmed the effectiveness
of the proposed NGWO algorithm. The findings indi-
cated that the NGWO algorithm outperformed other
algorithms in terms of speed of convergence, low fail-
ure rate, minimal oscillations during convergence and
overall tracking efficiency.
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