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ABSTRACT
The creation of high-performing concrete (HPC) is greatly influenced by the selection of mate-
rials, with cost and sustainability factors playing a bigger part in contemporary building tech-
niques. To overcome these limitations, we developed a Multi-Objective Ant Colony Adap-
tive Dense Convolutional Neural Network (MOAC-ADenseNet) with 5-K-Fold cross validation, a
dependable and precise forecasting model for the cost-effective selection of HPCmaterial. First,
we collect a concrete material dataset for evaluating the suggested method. MOAC-ADenseNet
utilized Dense convolutional neural networks and ant colony optimization for complex material
data analysis, which makes it easier to choose expensive and sustainable materials for high-
performance concrete manufacturing operations. The experimental findings of the suggested
approach are evaluated for the relative measure such as Pearson’s Linear Correlation Coefficient
(R) is 0.93, the Root Mean Square Error (RMSE) is 91.38, Mean Absolute Error (MAE) of 58.15, and
Mean Absolute Percentage Error (MAPE) is 8.79. The outcomes demonstrated that the mate-
rial cost of HPC was correctly predicted by the MOAC-ADenseNet. The actual measured value
and the MOAC-ADenseNet model predictions, following 5-K-fold cross-validation and input fea-
ture improvement, shows its effectiveness. A The MOAC-ADenseNet approach provides feasible
method for enhancingmaterial selection inHPCmanufacturing accomplishing sustainability and
cost-effectiveness goals.
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1. Introduction

The requirement for durable and high-strength mate-
rials is growing to improve the sustainability of civil
infrastructure [1]. The increased fibre and cementitious
concrete known as ultra-high-performing concrete
(UHPC) have high compressive strength
(120–250MPa), tensile strength (15–20MPa), and
exceptional durability. Its particle packing density is
0.825–0.855. UHPC has three to 16 times the com-
pressive force of ordinary concrete and 300 times flex-
ibility and absorption of energy of HPC [2]. UHPC
was regarded as the ideal material for seismic design
purposes because of its exceptional mechanical prop-
erties, excellent ductility and durability under strain.
Improving the long-term durability of structures and
infrastructure facilities is conceivable using UHPC
[3]. UHPC’s increased durability could be helpful for
infrastructure that was subjected to extreme environ-
mental loads [4]. Utilizing UHPC also results in shorter
construction times, less labour and equipment neces-
sary for the construction of precast elements and net
area by reducing the quantity of concrete required in
a project. However, UHPC has a high packing density
and lacks a coarse aggregate, it contains a large amount

of concrete, quartz sand, quartz powder and silica fume,
which raises the cost of UHPC and it has a signifi-
cant negative environmental effect [5]. The construc-
tion industry is increasingly examining smart material
selection techniques to optimize UHPCmanufacturing
processes in response to the rising need for sustainable
building practices.

1.1. Significance of smart constructionmaterial
(SCMs) selection techniques

It is promising to use smart construction materials
(SCMs) for structural health monitoring in construc-
tion and civil infrastructure [6] that can detect dam-
age and self-stress. SCMs are anticipated to address
the drawbacks of existing monitoring systems that use
widely attached or embedded sensors connected by
wire to data collecting systems, such as their poor
durability, high cost and limited capacity for local-
ized sensing [7]. By using fine steel slag aggregates
(FSSAs), smart high-performance concrete (S-UHPC)
can sense compressive stress up to 60 MPa, demon-
strating impressive self-stress capabilities. Applying the
S-UHPC to the tendons’ anchoring zone would allow to
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track the reduction in stretching force in prestressing
steel (PS) structures. The measurement of the related
resistance to power of the S-UHPCs with steel fibres
supported the effective identification of fractures or
other damage inside tensile samples of S-UHPCs under
direct stress [8].

1.2. Challenges of UHPC production

The UHPC has several advantages, but several produc
tion-related issues need to be resolved for sustain-
ability and economy [9]. The selection of appropriate
materials, such as cement, aggregates, mixtures and
SCMs is one of the main issues. The lifetime and per-
formance of UHPC structures are strongly influenced
by the quality, availability and environmental effects
of these materials. Sustainable manufacturing meth-
ods are necessary since the manufacturing process may
contribute to waste creation, resource depletion and
carbon emissions [9]. The goal is to create an accurate
and dependable forecasting model MOAC-ADenseNet
for the cost-effective selection of HPC materials. It is
accomplished by combining deep learning and multi-
objective optimization techniques to integrate sustain-
ability and economic factors.

1.3. Contribution of the study

• The study created a cutting-edge model for cost-
effective material selection in the manufacturing of
HPC called MOAC-ADenseNet.

• The article MOAC-ADenseNet to accomplish the
important goal of UHPC issues by accurately pre-
dicting material costs.

• The study used ant colony optimization for opti-
mization problems and dense convolutional neu-
ral networks for complex material data analysis,
improving selection efficiency.

• The study improves the selection ofmaterials used in
the production of HPC, thereby fulfilling the objec-
tives of cost- and sustainability-effectiveness inHPC.

The article’s structure is explained in the following
manner. Section 2 of this study reviews the relevant
literature. The dataset and suggested methodology are
described in Section 3. Sections 4 explain the findings
and discussion of the research. Finally, Sections 5 give
findings at the end of this investigation.

2. Related work

The article [10] provided measures and instruments
for assessing the structural efficiency, price and car-
bon dioxide (CO2) emissions of mixes of concrete.
Due to popular assumptions, durability and perfor-
mance can be maximized in concrete with a high
binder composition and ultra-high strength. Through

a multi-objective approach utilizing Bayesian opti-
mization Random Forest (BO-RF) and non-dominated
sorting genetic algorithm (NSGA-III), the study [11]
optimized concrete cost and performance in hostile
conditions, producing precise forecasts and thorough
mix proportions for increased durability. The study [12]
improved the development of UHPC by utilizing AI
approaches. It delivers accurate design, better predic-
tion and user-friendly software, via the use of an artifi-
cial neural network (ANN) based on genetic algorithms
(GA) and the Modified Andreasen and Andersen sys-
tem. The research [13] created geopolymer materials
fine-grained cement for sustainable building that was
both cost-effective and ecologically beneficial. Consid-
erable increases in properties of strength have been
achieved by adjusting the quantity of the activator
and the temperature of treatment, indicating that the
approach has the potential to be widely used. To opti-
mize the proportions of a HPC mix, the research [14]
integrated the RF, least-squares support vectormachine
(LSSVM), and NSGA-II methods into a hybrid smart
framework. For durable and affordable concrete formu-
lations, it detects important variables, forecasts perfor-
mance and accomplishes multi-objective optimization.

The research [15] described an Artificial Intelli-
gence (AI)-driven strategy for automatically identify-
ing UHPC that was low-carbon and economical. It
reduces the impact on the environment and material
costs by combiningmany-objective optimization, auto-
mated neural networks and generative modelling. An
automated technique to acquire concrete design data
from publications was developed in the study [16]
which improved Machine learning (ML)-based cre-
ation of low-carbon, economical UHPC. In time, the
optimization efficiency and accuracy of prediction of
the approach are enhanced by its self-updating process.
The research [17] developed sophisticated forecasting
algorithms that include both mechanical and environ-
mental factors for high-strength fibre-reinforced con-
crete beams. All of the existing strategies are accurate;
the Bayesian neural network (BNN) model executes
most effectively and provides comprehensive design
insights. The research [18] optimized the proportions
of the UHPC combination for cost, carbon emissions
and fundamental features. Using the analytical hierar-
chy process and ML, suggests a well-balanced UHPC
formulation for broad use. The paper [19] created AI-
based instruments for assessing how the structure of
themixture of concrete impacts cost, eco-efficiency and
mechanical durability. The results contradict industry
norms by demonstrating that high-strength concrete
solutions significant for cost or environmental effi-
ciency. The study [20] used AI-guided algorithms to
identify low-cost, low-carbon UHPC. Significant cost
of materials and life-cycle carbon footprint decreases
are possible with the integration of automated ML and
generative modelling. The research [21] examined the
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Figure 1. Overview of proposed methodology.

application of nanoparticles in concrete to improve
its mechanical qualities and solve environmental and
financial issues. Improved performance, robustness,
sustainability and financial viability are shown by the
results. Concrete self-healing solutions in response to
the effects of climate change are thoroughly exam-
ined in the paper [22]. It highlighted the possibility
for increased sustainability, a longer lifetime and lower
maintenance costs by analyzing materials, techniques
and environmental factors.

This study fills a gap in the literature by concentrat-
ing on concrete performance, cost and environmen-
tal impact from a different perspective. By combin-
ing deep learning models with sophisticated optimiza-
tion approaches, our study provides a comprehensive
method to improve UHPC’s sustainability and cost-
effectiveness. Our method fills a critical gap in the
development of balanced, high-performance and envi-
ronmentally friendly concrete formulations by combin-
ing multi-objective optimization with state-of-the-art
AI approaches, in contrast to prior works that either
maximize specific properties or employ conventional
methods.

3. Proposedmethodology

The current study established a framework for choos-
ing the cost-effective HPC material while taking cost
and environmental sustainability under extremely non-
linear restrictions by utilizing the capabilities of the
MOAC-ADenseNet approaches. Figure 1 provides an
overview of the study’s approach.

3.1. Data acquisition

Themodel was changed in this study using an overall of
931 instances of HPC materials. The 701 findings from

scientific journals can provide additional information
regarding the database [23] and consulting experimen-
tal activities use internal experimental data to perform
thorough analysis and improve the model. The data set
is divided into to two sets, train set 80% of the entire
dataset and a validation set 20%.

3.2. 5-K-fold validation

By dividing the data set into five groups, training the
model on four of the subsets, and iteratively validating
it on the fifth, the study used 5-K-Fold cross-validation
to evaluate the model’s performance resilience. The
flow chart in Figure 2 illustrates how the k-fold cross-
validation begins with the data being randomly divided
into K groups. Each group is then subjected to the
subsequent actions are performed,

• The testing dataset should be selected from among
the training folds.

• A training set consisting of the remaining K−1 cat-
egories is employed.

• Model training and evaluation should be per-
formed with the chosen training dataset and testing
dataset.

Typically, k in the limited dataset of this study is set
to 5, an empirical value derived from numerous exper-
imental trials. When MOAC-ADenseNet simulation is
used directly, the outcome has minimal volatility and
little bias. Furthermore, a distinct testing fold ranging
from D1 to D5 was consistently chosen as the veri-
fication set. These five data sets were systematically
entered into the MOAC-ADenseNet model. Using
5-time cross-validation, the model evaluation error
resulting from the unintentional partitioning of the
sample can be eliminated.
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Figure 2. 5-K-Fold cross validation.

3.3. Multi-objective ant colony-based adaptive
dense convolutional neural networks
(MOAC-ADenseNet)

We improve concrete material selection for sustainable
and economical HPC manufacturing using MOAC-
ADenseNet. The smaller parameters, ADenseNet is a
state-of-the-art CNN framework considered for cost-
effective HPC recognition. For HPC to be produced
sustainably and economically while maintaining envi-
ronmental responsibility, it is essential to select con-
crete materials. Combining mathematical models and
data-driven insights, the adaptive dense convolutional
neural networks (ADenseNet) can improve the mate-
rial selection procedure. ADenseNet is comparable to
ResNet with several key variations. ResNet uses an
additive attribute (+) to mix that came before with the
future layers, whereas ADenseNet uses its concatenated
(.) attributes to integrate the output of the prior layer
with a future layer. The goal of the ADenseNet Archi-
tecture is to solve this issue of cost-effective HPC by
strongly coupling every layer [24]. The DenseNet-121
[5 + (6 + 12 + 24 + 16) × 2) = 121]framework, one
of the several ADenseNet models contains DenseNet
(121), (160), (201). Various DenseNet-121 details: 5
layers are for convolution and pooling, 3are for tran-
sition layers (6, 12, 24), 1 is for classification layer
(16), and 2 is for dense block (1x1 and 3 × 3 conv.)
for material selection for producing sustainable, cost-
effective and HPC. Conventional CNNs typically com-
pute the output layers (kth)by applying a transformation
that is not linear Gk(·) to the previous layer’s output
(Wk−1)represent in equation (1).

Wk = Gk(Wk−1) (1)

ADenseNets output layer capability maps should be
concatenated with the inputs instead of adding them
together. A simple communication mechanism for
improving information movement among layers is
provided by ADenseNet. The characteristics of all

earlier layers provide inputs to the lth layer shown in
equation (2).

Wk = Gk[(W0,W1,W2, . . . . . . ,Wk−1)] (2)

3.3.1. Dense block
Where the output maps of earlier layers are concate-
nated to produce a single tensor, [W0,W1,W2, . . . . . . ,
Wk−1]. Among the functions, the non-linear transfor-
mation function is represented by Gk(·). Three main
processes make up this function, pooling and convo-
lution (CONV), activation (ReLU) and batch normal-
ization (BN) [25–27]. Figure 3 illustrates the architec-
ture of ADenseNet. But the growth rate l does in the
following ways to help generalize the kthlayer: l[k] =
(l[0] + l(k − 1)). Where the number of connections is
expressed as l[0]. These l feature maps, which are pro-
duced by each dense block, can be intuitively seen as
their local states, which concatenate to contribute to the
worldwide state of the network.

3.3.2. Transition layers
Since only map features of the same size can be com-
bined, adaptive dense blocks are unaffected by feature
size-down sampling. A crucial component of CNNs is
down sampling [28]. To accomplish this, dense blocks
are connected by transition layers with pooling, creat-
ing an ADenseNet. The BN − ReLUConv(1 × 1) with
Average Pooling (2 × 2) is the fundamental design of
the transition layer [29].

3.3.3. Composite function
The Gk(·) is the combination function of three suc-
cessive operations: a 3 × 3Conventional, a ReLU, and
BN.

3.3.4. Pooling layers
When featuremaps fluctuate in size, Equation (2)’s con-
catenation procedure becomes unworkable. However,
convolutional networks require layers of down-sampled
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Figure 3. Architecture of ADenseNet.

data to change the dimensions of the feature maps.
The framework segments the system into several tightly
connected blocks to enable down sampling. Transition
layers are the layers that perform pooling and convo-
lution in between blocks. It employed transition lay-
ers that comprised of a batch normalization layer, an
2 × 2 average pooling layer and a 1 × 1 convolutional
layer [30]. The categorical cross-entropy loss function
is the loss function to reduce classification mistakes;
the model is guided by this function, which calculates
the difference between the true class labels and the pre-
dicted class probabilities, whenused to solvemulti-class
classification issues.

3.3.5. Growth rate
The kthlayer has l[k] = (l[0] + l(k − 1))input feature
maps if each function Gk generates l feature maps,
where l[0] is the input layer’s channel count. ADenseNet
differs significantly from current network topologies
that can contain extremely narrow layers, such as l =
12. The hyperparameter k is referred to the network’s
growth rate. The rate of growth controls the quantity
of new data that every layer advances the overall condi-
tion.Different fromconventional network topologies, It
is not necessary to duplicate the global state from layer
to layer once it is written because it can be accessed from
anywhere in the network. ADenseNet’s dense connec-
tion structure allows to capture complex interactions
between different material attributes, which are used
in material selection for the production of concrete. It
can manage complex data patterns extremely well. Due
to its versatility and resilience, ADenseNet is an effec-
tive tool for examining a variety of datasets in different
applications.

Utilizing the effective and adaptive search capabil-
ities inspired by the collective behaviour of ants, the

multi-objective ant colony (MOAC) approach is used
for HPC production because it can simultaneously
optimize conflicting objectives like sustainability, cost-
effectiveness and performance in material selection.
An effective way to address the intricate and multi-
faceted problems associated with intelligent material
selection methods for concrete production is provided
by this integration, which combines the advantages of
MOAC with the flexibility and resilience of ant colony
algorithms. Due to their higher-order structures, series
controllers are widely used. The following equation (3)
defines the transfer function for HPC production in a
continuous system.

hd(o) = Lo + Lj
t

+ Lct (3)

Based on the design, the constants Lo, Lj, andLc must
be determined to achieve the necessary performance
requirements. The continuous-time HPC production
model is used in equation (4).

f (s0 = q(s) − z(s), v(s)

= Lof (s) + Lj
s∫
0
f (τ )dτ + Lcf (s)

= vo(s) + vj(s) + vc(s) (4)

Where the distinction between the reference signal,
q(s), and the regulated process’s output, z(s), is rep-
resented as f (s) = q(s) − z(s). In addition to lowering
or eliminating the material cost and SteadyState error,
the use of HPC production aims to enhance dynamic
response. To calculate the transient response perfor-
mance indices, such as rise time (sq), overshoot (Pt),
settling time (st) and integral square error (ISE), to
evaluate the efficiency of the HPC production systems.
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It would be preferable to express our optimization prob-
lem as a construction graph to maximize the advan-
tage of the ACO algorithm. The number of individuals
is represented by a 100 ∗ 3 matrix, and the ants use
the objective function LA to minimize in selecting the
optimal parameters Lo, Lj andLc of the material selec-
tion system. Each of the three study parameters Lo, Lj
andLcis represented by 100 numbers, or nodes. Conse-
quently, the ideal values of the parameters Lo, Lj andLc
are represented by a single node. Selecting the opti-
mization concrete material criteria that are used to fit
the first stage of optimization approach. It can integrate
multiple indexes of the transient response performance
of the HPC production into a single objective function
that is made up of the weighted sum of the objec-
tives. The objective function needs to be specified in
equation (5).

KB = min(�E) (5)

Where isE to equal [E1E2E3E4E5E6E7],S represents the
vector of objective functions;E1denotes the setting time
(sq),E2 represents overshoot (Pt),E3 represents rise time
(st), E4 reflects integral absolute error (IAE),E5 sym-
bolizes integral square error (ISE),E6 represents inte-
gral time absolute error (ITAE),E7 represents integral
time square error (MSE), and � = [λ1λ2λ3λ4λ5λ6λ7],
vector of nonnegative weights. Concrete material chal-
lenges request to identify the optimal trade-off between
several, competing goals. There will be multiple solu-
tions that optimize the objectives at the same timewhen
considering all the objectives in these situations and
none of these solutions appears better than the other. In
most cases, no single optimal solution outperforms the
others about all objectives. As a result, the Pareto front
presents with a collection of solutions that are supe-
rior to residual answers. Solutions that fall inside the
Pareto front among the workable solutions are referred
to nondominated solutions and the remaining options
are referred to be dominated. Since none of the Pareto-
set solutions is naturally superior to the other non-
dominant options, they are all equally acceptable in
terms of achieving all of the goals. MOAC builds pos-
sible good solutions using the pheromone matrix τ =
{τji}.τji = τ0 for all (j, i) is the initial value of τ , where
τ0 > 0. Equation (6) defines the probability PAij(t)of
selecting a material nodei at node j. Beginning at the
source node, the ant uses (6) to build a comprehensive
solution at each iteration of the algorithm.

OB
ji(s) = [τji(s)]α[ηji]β∑

j,iεSB [τji(s)]
α[ηji]β

ifj, iεSB (6)

Where ηji stands for heuristic functions, α and β are
constants that indicate how much the pheromone val-
ues and the heuristic values influenced the ant’s deci-
sion, and SB is the path that the ant B selected at a
particular moment. There is a method to prevent an

infinite growth in pheromone paths, pheromone evap-
oration. Additionally, poor decisions are illustrated in
equation (7).

τji(s) = ρτji(s − 1) +
NA∑
B=1


τBji (s) (7)

Where ρ is the evaporation rate (0 < ρ ≤ 1),NA is the
number of ants and 
τBji is the number of pheromones
on each path. Algorithm 1 creates an empty Pareto
set for the best solutions while initializing heuristic
matrices and pheromone trails. It assesses pathways
iteratively, updating the optimal answer and remov-
ing dominating ones according to probability. It directs
material selection towards high-performance, econom-
ically viable, and sustainable concrete production by
iteratively evaluating weighted objectives and updat-
ing pheromone trails, ultimately returning the optimal
solution and Pareto set.

Algorithm 1:Multi-objective Ant Colony Optimization (MOACO)

Initialize: Pheromone trails τ(τ l), heuristic matrix η(ηl), Pareto set Os = φ
Determine the weights for each objective (e.g., randomly)
Begin

While (the stopping criteria are NOT met) do
For each path

Evaluate the probability of take
Update the best solution and remove the dominant ones

End for
For each objective

Evaluate the weighted sum of objectives
Determine the best solution
Update the Pheromone trails

End for
End while
Return ND and Os
End

Using the complementing strengths of MOAC-
ADenseNet is a promising method for forecasting cost-
effective HPC materials. It is intended to be used
for optimization problems in the areas of material-
technical and scientific. Its potential is found in its
capacity to better decision-making processes by offer-
ing observations into the trade-offs between various
goals, which makes informed and optimal material
selection possible in a variety of applications.

4. Result and discussion

This section begins with a discussion of each net-
work’s training process. Next, a comparison is made
between the conventional method. The suggested
MOAC-ADenseNet approach was performed by creat-
ingMicrosoft Excel macro code on a PC equipped with
an Intel 3.20 GHz processor and 8 GB of RAM.

A large collection of UHPC was gathered for this
study from [23]. However, the raw database has several
problems, including notable data imbalance and signifi-
cant gaps in the experimental data. For example, only 27
mixes had the component metakaolin and 59 mixtures
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Figure 4. Testing and training subgroups.

contained husks of rice ash. To ensure the durabil-
ity and dependability of the dataset, a preprocessing
phase was performed to address these problems. This
phase included a systematic elimination of anomalies
and the removal of values-containing records that were
missing. As a result, 540 UHPC data formed the final
dataset. Nineteen design factors comprised the input
variables; these were listed in Table 1. 19 of the input
factors listed below were chosen: “Cement (C), fly ash
(FA), silica fume (SF), ground granulated blast-furnace
slag (GGBFS), recycled glass powder (GP), rice husk
ash (RHA), fluid catalytic residue (FC3R), metakaolin
(MK), limestone powder (LP), water (W), high-range
water-reducer superplasticizer (HRWR), quartz pow-
der (QP), the maximum size of aggregate (MSA), water
to binder ratio (WB), water to total powders ratio
(WP), total aggregate (A), and virtual packing density
(VPD)”. To tackle the constraints caused by themodels’
low learning rates at high elements, the input vari-
ables are adjusted to fall between 0 and 1. This scaling
helps to mitigate concerns linked to variable size differ-
ences by ensuring that all inputs contribute equally to
the model’s learning process. After that, the adjusted
information is divided into two sets: a train set that
covers80% of the entire dataset and a validation set that
covers20%. Figure 4(a) and (b) illustrate the regression
graphs for the training and test datasets, which are the
two subsets.

The training samples are progressively selected as the
input information using the 5-K-fold cross-validation
approach. Next, the MOAC-ADenseNet system is
employed to select the most cost-effective UHPC smart
material.

4.1. Validity

The outcomes of the 5-K-fold cross-validation process
for various datasets are shown in the Table 2. In this
stage, the evaluation metrics are compared to assess
which model has the best prediction performance.

Table 1. Input variables.

Input Variables

Material Min Max Mean SD

Cm3/m3 0.120 0.530 0.267 0.062
SFm3/m3 0.000 0.155 0.048 0.040
FAm3/m3 0.000 0.250 0.017 0.044
GGBSFm3/m3 0.000 0.247 0.007 0.025
GPm3/m3 0.000 0.202 0.026 0.051
RHAm3/m3 0.000 0.177 0.004 0.018
FC3R m3/m3 0.000 0.091 0.004 0.013
MKm3/m3 0.000 0.161 0.002 0.013
LPm3/m3 0.000 0.190 0.024 0.043
Wm3/m3 0.103 0.364 0.200 0.034
HRWRm3/m3 0.017 0.042 0.027 0.005
QPm3/m3 0.000 0.235 0.027 0.052
MSAµm 0.000 19,000 1765.970 2580.085
WB (ratio) 0.124 0.322 0.189 0.036
WP (ratio) 0.107 0.322 0.177 0.034
Am3/m3 0.000 0.649 0.34585408 0.117
VPD (ratio) 0.609 0.877 0.774 0.041
CSMPa 100 214 143.464 21.925

Note: Max = Maximum, SD = Standard Deviation and Min = Minimum.

Table 2. Result of 5-K-Fold Cross validation of
MOAC-ADenseNet.

Metric 1 2 3 4 5

MAE 8.068 5.622 7.083 6.838 4.737
RMSE 10.094 24.294 18.024 8.988 7.145
MAPE 28.175 17.408 18.787 46.888 18.47
R 0.876 0.868 0.879 0.843 0.979

Some test groups score worse in both the RMSE and
MSE measures and the results perform worse, while
having correlated values closer to 1.

The results of the K-fold cross-validation, which are
displayed in Table 4, indicate that group 5 should be
the best model because it’s R, MAE, RMSE and MAPE
values.

4.2. Performance evaluation

In this section, we compare the performance of the cur-
rent approach and the proposed MOAC-ADenseNet
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Figure 5. Result of MAPE.

Table 3. Values of MAPE.

Methods MAPE

RF [31] 16.58
SVR – RBF [31] 12.03
GPRARD [31] 11.6
MOAC – ADenseNet [Proposed] 8.79

method using metrics: the mean absolute percentage
error (MAPE) and Pearson’s linear correlation coeffi-
cient (R) as relativemeasures, and the rootmean square
error (RMSE) andmean absolute error (MAE). The tra-
ditional methods like Support Vector Regression with
Radial Basis Function kernel (SVR-RBF) [31], Ran-
dom Forest (RF) [31] and Gaussian process regression
Automatic Relevance Determination (GPR ARD) [31].

4.2.1. Mean absolute percentage error (MAPE)
MAPE is assessing forecasting model or prediction
accuracy in cost-effective UHPC material selection.
The absolute percentage inaccuracy is averaged to
calculate it. Equation (8) for MAPE. Figure 5 and
Table 3 represent the comparison outcome of the
suggested method. The MOAC-ADenseNet method
attains 8.79, while current methods like RF obtained
16.58, GPRARDobtained 11.60 and SVR-RBF obtained
12.03. The MOAC-ADenseNet approach is very useful
for cost-effective UHPC material selection.

MAPE = 100
N

N∑
H=1

∣∣∣∣ch − ph
ch

∣∣∣∣ (8)

4.2.2. Mean absolute error (MAE)
A model employed in the material selection process is
measured by MAE, which estimates the average abso-
lute variance between its actual values and anticipated.
MAE is calculated using the following equation (9).

Table 4. Numerical values of MAE.

Methods MAE

RF [31] 93.53
SVR – RBF [31] 68.25
GPRARD [31] 63.25
MOAC – ADenseNet [Proposed] 58.15

Table 5. Comparison values of RMSE.

Methods RMSE

RF [31] 129.05
SVR – RBF [31] 109.32
GPRARD [31] 95.98
MOAC – ADenseNet [Proposed] 91.38

The proposed method is compared to current meth-
ods, shown in Figure 6 and Table 4. The suggested
MOAC-ADenseNet strategy (58.15) has lower numeri-
cal results while compared to an existing method like
RF has 93.53, GPRARD has 63.25 and SVR-RBF has
68.25. The MOAC-ADenseNet has a significant effect
on cost-effective UHPC material selection.

MAE = 1
n

N∑
H=1

|ch − ph| (9)

4.2.3. Rootmean absolute percentage error (RMSE)
The difference between concrete material cost values
predicted by the model (ok) and the actual concrete
material cost observed (measured) values (dk) is quan-
tified by the RMSE. It is an indicator of the model’s
overall correctness. Equation (10) is used for calculat-
ing RMSE. Figure 7 and Table 5 shows the compari-
son result. The suggested method achieved 91.38 while
compared to the current approaches (RF −129.05,
GPRARD −95.98 and SVR-RBF −109.32). As a result,
the proposed method has lower values than exist-
ing methods, which indicates the MOAC-ADenseNet
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Figure 6. Result of MAE.

Figure 7. Comparison result of RMSE.

Table 6. Values of R.

Methods R

RF [31] 0.79
SVR – RBF [31] 0.86
GPRARD [31] 0.89
MOAC – ADenseNet [Proposed] 0.93

gives a better performance result of cost-effectiveness
in UHPC.

RMSE =
√√√√1

n

N∑
H=1

(ch − ph)2 (10)

4.2.4. Pearson’s linear correlation coefficient (R)
The linear correlation coefficient (R) quantifies the rela-
tionship between the values that the model ph predicts
and the actual values that are seen (measured), or ch.
Equation (11) for R [32, 33]. Figure 8 and Table 6
show the comparison result of the suggested method.
TheMOAC-ADenseNet achieved a greater result (0.93)

than existing methods (RF-0.79, GPRARD −0.89, and
SVR-RBF −0.86).

R =

√√√√√√√√

[ N∑
H=1

(ch − c̄)(ph − p̄)
]2

·
[ N∑
H=1

(ch − c̄)2(ph − p̄)2
]−1 (11)

where H = 1, 2, . . . ,N is the number of cases in the
collection and represents the mean of and the mean
of och.

4.3. Discussion

While SVR-RBF, RF and GPRARD are effective meth-
ods for modelling intricate relationships and pro-
ducing predictions, each has disadvantages when it
involves selecting materials for UHPC that are afford-
able. While strong against overfitting and adaptable,
RF [31] might not be able to capture the intricate
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Figure 8. Graphical representation of R.

nonlinear correlations present in UHPC material char-
acteristics and cost considerations. Furthermore, it
can be difficult to determine the importance of indi-
vidual variables for cost-effectiveness analysis due to
their ensemble nature. GPRARD [31] is excellent in
Bayesian optimization and uncertainty quantification,
it can be computationally costly and necessitate exten-
sive hyperparameter adjustment, which presents diffi-
culties for large-scale UHPC material selection appli-
cations. Modelling nonlinear relationships with SVR-
RBF [31] performs well, but selecting the right ker-
nel values and regularization terms can be challeng-
ing. Furthermore, SVR-RBF might not function as well
on very noisy or sparse data sets, which could make
less useful in some UHPCmaterial selection situations.
However, they frequently have drawbacks like hard-
ness in fine-tuning parameters, incapacity to manage
big datasets and challenges in deciphering outcomes.
TheMOAC-ADenseNet technique has several benefits.
By merging the capabilities of ant colony optimiza-
tion and deep learning, it generates high-performance
UHPC while efficiently optimizing several competing
goals, including cost-effectiveness and sustainability.
The shortcomings of current techniques are addressed
by MOAC-ADenseNet, which can handle complicated,
high-dimensional data with adaptability and scalability.
This results in a thorough and understandable solution
for economical UHPC material selection.

5. Conclusion

The study developed a MOAC-ADenseNet model with
5-K-Fold cross validation to address the inadequacies
of traditional material selection methods in the man-
ufacturing of HPC. The approach optimized material
selection while taking performance, cost-effectiveness
and sustainability factors are considered. With a strong
Pearson’s Linear Correlation Coefficient (R) and a low

Mean Absolute Percentage Error (MAPE), the method
showed excellent precision and dependability in its abil-
ity to anticipate the HPC cost of materials. The results
showed the efficiency of the MOAC-ADenseNet in
enhancing material selection for UHPC manufactur-
ing while achieving cost-effectiveness and sustainabil-
ity requirements. However, one of the limitations may
include the need formore testing and refinement under
various real-world conditions. Future research should
focus on expanding themodel’s applicability to broader
scenarios and incorporating more criteria for carefully
selecting materials in HPC production.
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