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ABSTRACT
This paper proposes a novel approach that leverages a hybrid deep learning framework called
the Squirrel Search-optimized Attention-Deep Recurrent Neural Network (SS-ADRNN) to opti-
mize the management of charging stations, ensuring efficient resource allocation while safe-
guardinguserdata andminimizingoperational costs. TheSS-ADRNNmodel incorporates squirrel
search optimization, which is inspired by the foraging behaviour of squirrels, to dynamically
adjust charging station operations based on environmental conditions and demand patterns.
Additionally, attention mechanisms are employed to prioritize relevant input features, enabling
the model to focus on critical information during decision-making processes. Deep recurrent
neural networks (RNNs) are utilized to capture temporal dependencies in charging station data,
allowing formore accuratepredictions andadaptive control strategies. Experimental evaluations
demonstrate the effectiveness and feasibility of theproposed SS-ADRNN-based approach in real-
world scenarios. The results showcase significant improvements in the detection of malicious
traffic and cost minimization compared to traditional charging station management methods.
Overall, this research contributes to advancing the field of intelligent charging station opti-
mization, offering a robust and adaptable solution for EV and UAV charging infrastructures that
prioritize both security and operational efficiency.
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1. Introduction

The world is facing a fuel crisis, and the global com-
munity is looking for an alternate option to utilize
renewable energy sources to meet the energy demands.
The rise of Electric Vehicles (EVs) presents a trans-
formative shift towards cleaner and more sustainable
transportation solutions [1,2]. However, as the demand
for EV escalates [3], it is essential that secure and cost-
effective EV charging infrastructures are developed.
The pandemic lockdown led to the rapid prolifera-
tion of Unmanned Aerial Vehicles (UAVs) which is yet
another intelligent sustainable transportation solution
for all industrial sectors [4]. UAV technology has been
used for diverse applications in multiple domains such
as military, medical services, surveillance and agricul-
ture. These two technologiesmake transportationmore
productive, eco-friendly and reliable. This transition
led to the pressing need for robust and secure elec-
tric charging infrastructure capable of accommodating
the burgeoning demand. The two critical challenges
that hinder the faster EV and UAV market growth
in its nascent stage are security and charging cost
optimization.

Generally, EVs and UAV charging station comprises
of four essential elements: sensing, communication, net
working and computational [5]. The first component

consists of a sequence of wired or wireless sensors to
determine the safety and health of different electri-
cal parts in the EV and UAV charging stations [6].
The second component interconnects with the local
grid system, Supervisory Control And Data Acquisi-
tion (SCADA) module, EVs, UAVs and other inter-
nal sensors using the internet connection to confirm
the availability and energy efficiency [7]. The inter-
net connection can be any wireless technology like
Wi-Fi, Bluetooth, mobile networks, etc. Finally, the
computational element performs arithmetic, logic and
control operations. EV and UAV holders must sched-
ule the charging through the Internet, integrating the
maximum number of EV and UAV users into the
grids [8]. Before the charging process, the EV and
UAV charging stations typically request user autho-
rization, enabling financial and personal data to be
shared through platforms like Bluetooth, Radio Fre-
quency Identification (RFID), etc. However, transmit-
ting information through wireless technology imposes
vulnerabilities in EV and UAV charging systems [9,10].
These vulnerabilities in charging infrastructure impose
significant challenges in terms of security and data pri-
vacy. Hence, a robust and effective threat detection and
privacy preservation model is necessary to ensure the
security and integrity of EV and UAV charging stations
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[11]. The security of the EV and UAV charging infras-
tructure can be enhanced by introducing Intrusion
Detection Systems (IDS).

While IDS safeguards the EV users and energy
providers, efficient resource allocation for this energy
trading is ensured with the optimum cost of charg-
ing. The proposed intelligent IDS leverages cutting-
edge technologies that provide way to bridge this divide
to achieve efficient and sustainable charging station
operations.

Numerous studies have been developed for security
and privacy preservation of EV and UAV charging sta-
tions using IDSs. These studies used techniques such
as Support Vector Machine (SVM) [46] Random For-
est (RF) [13], Deep Neural Network (DNN) [14] and
so on. These techniques leverage their learning effi-
ciency to distinguish between normal and malicious
data. Typically, thesemodels are trained in either super-
vised or unsupervised ways and accurately detect cyber
threats and other vulnerabilities. Despite their advan-
tages, these methods face significant challenges. One
of the most common challenges is the lack of gener-
alization. Generally, deep learning and machine learn-
ing techniques are overtrained on the training samples,
inducing overfitting. This problem causes the system
not to generalize well on unseen or real-world scenar-
ios. In addition, these models face issues like limited
scalability, high computational time, lower adaptabil-
ity, etc. One of the other main challenges is to guar-
antee optimized charging operations that meet fluc-
tuating demand with minimum operational costs and
ensure data privacy and security for EV users. The pro-
posed system aims to balance these objectives by inte-
grating hybrid deep learning with optimization algo-
rithms. The hybrid deep learning approach employed
in the proposed algorithm ensures the security of the
user data by detecting malicious data from the net-
work. Consequently, a squirrel search algorithm was
deployed to optimize the functioning of the charging
station considering the demand, available energy and
real-time environmental conditions, thereby reducing
the energy cost and waiting time for the users. Through
this research, we intend to support the advanced trans-
portation sector by providing reliable and promising
solutions for securing charging infrastructure.

1.1. Case studies revealing the significance of the
proposed system

According to the recent announcements made by the
government of India Indian Computer Emergency
Response Team (CERT-In), which is assigned the
responsibility to keep record of the cybersecurity inci-
dents in India, have reported vulnerabilities in the Elec-
tric Vehicle Charging station applications. CERT-In
raised alerts and vulnerability notes seeking reforma-
tive measures.

A white hat attack on German Tesla charging sta-
tions was made in January 2023 which revealed that
Tesla vehicles were getting hacked andwere performing
the vehicle operations such as unlocking doors, honk
horns and even drive the car [15].

As per the statistics provided by CERT-In, the num-
ber of cyberattacks against EV charging from 2018 to
2022 has drastically increased from 2 lakhs to almost
14 lakhs.

Several charging stations in Russia were disabled
while the stations’ video displays showed annoying
words on Russian President, as well as denying charge
to EV users [12].

The studies made at SaiFlow, an Israel-based com-
pany, states that the vulnerabilities in the EV charg-
ing infrastructure can be exploited for DoS Attacks
[16].

All the above-mentioned recent case studies from
different parts of the world reveal the necessity of the
deployment of an efficient IDS to detect the mali-
cious traffic and protect the system. As described in
the objectives of the proposed system ensures secu-
rity and privacy to the user information by accurately
detecting and classifying the intrusions or malicious
traffic entering the charging infrastructure. The pro-
posed methodology is trained using the dataset con-
taining normal andmalicious traffic for attack detection
and classification and provides solution for the above
security breaches which is elaborated in Section 5.3. In
this scenario, using IoT devices, we collect the infor-
mation of the vehicle and the users. After detection,
the identified attacks are neglected from the charg-
ing infrastructure, while the normal data are allowed
to enter in the network. Consequently, the system
offers cost minimization by optimally selecting the
charging unit.

The major contributions of the study are described
below.

• The presented study introduces a multi-objective
framework using deep learning and metaheuristic
optimization algorithms to preserve security and
minimize charging costs in the EV and UAV charg-
ing stations.

• The study developed the ADRNN module, which
combines the efficiency of the Attention mecha-
nism with a deep recurrent neural network for
accurate and reliable attack prediction in charging
infrastructure.

• Further, we employ the Squirrel Search Algorithm
to optimize users’ charging costs by selecting the
appropriate charging unit, enhancing both cost and
resource utilization efficiency.

• Finally, the study’s results were determined and vali-
datedwith conventional algorithms in terms of accu-
racy, precision, recall, f-measure and computational
time.
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The following parts of the article are described as
follows: Section 2 provides the detailed review of the
current IDS frameworks, Section 3 presents the prob-
lem statement, Section 4 details the working of the
proposed strategy, Section 5 provides the detailed dis-
cussion of the results, and Section 6 presents the article
conclusion.

2. Related works

The EV andUAV charging infrastructure comprises the
sensing, communication, and networking components.
The sensing part is mainly prone to physical attacks
which are small scale. The installation of surveillance
systems and tamper proof hardware units may primar-
ily resolve these issues. The large-scale attack mainly
occurs at the networking and internet connection side
where all the communication occur between the energy
requestors and providers. In the grids, the incorpora-
tion of open communication layer into the physical

layer offers various facilities such as automation, intelli-
gence resourcemanagement and bidirectional commu-
nication. However, this layer is prone to cybersecurity
threats and reduces the integrity and confidentiality of
the grid resources. The Confidentiality Integrity Avail-
ability (CIA) Triadwhen compromised leads to security
breaches. Figure 1 depicts the systematic architecture
of EV and UAV charging infrastructure with the major
category of attacks.

The major category of attacks are Denial of Ser-
vice (DOS) Attacks, Man-in-Middle attacks, False Data
Injection as well as Malware Injection [17]. The DOS
attacks mainly occur by flooding the EVCS with large
amount of request which leads to blocking of the sys-
tem’s normal function. These attacks are critical as
the EV users might approach CS when in emergency
and being denied of the service leads to fatal situation.
Man-in-Middle is an active kind of attack in which the
intruder intercepts the communication between the EV
users and this may lead to misinterpretations in the

Figure 1. Systematic architecture of EV charging infrastructure and major attacks.
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energy trading. The charging request can be altered
leading to excessive charging or discharging as well as
sensitive information of the users can be leaked. The
False Data Injection attacks cause unauthorized access
in the communication protocols which may result in
varying the battery status information or charging rates.
In an STRIDE attack, the attackers send forged de-
authentication packets to disconnect legitimate users
from the network. In a jamming attack, the attackers
flood the networkwith radio signals to disturb the com-
munication. TheGPS attacks includeGPS jamming and
GPS spoofing. In the case of GPS jamming, the attacker
emits a signal at an identical frequency as the authen-
tic GPS signal, aiming to interfere with and disrupt the
communication ofGPS signals. On the other hand,GPS
spoofing involves the attacker transmitting fabricated
GPS signals tomisleadUAVsby providing false location
information.

Malware injection attacks mainly occur when mali-
cious scripts are injected to the publicly available Elec-
tric Vehicle Supplier Equipment (EVSE) from where it
stretches out to the other units of EV charging infras-
tructure. These types of phishing attacks can pose a
major threat to EV charging as the web applications
may contain malicious script which led to bogus web-
site. It may cause theft of sensitive data of the users and
regular security checking is to be maintained to protect
the system from these attacks. It is crucial to identify
these attacks in prior [18]. A study on detection of
whether an URL is benign or not using machine learn-
ing algorithm is described in [19]. Among the several
machine learning algorithms, Random Forest provided
a higher accuracy rate of 97% in identification of mali-
cious URL [20]. Further study using ensemble model
reveals the outstanding performance ofCatboostmodel
for identifying an URL is benign or not [21]. These
attacks mainly occurs via web applications and hence
the identification of the malicious network traffic prior
to usage of the application will help to safeguard the
energy trading infrastructure of EV and UAVs from
these kind of attacks. A constant watch on the incoming
traffic for the identification of all potential threats is the
main goal of IDSs.

The conventional intrusion detection models use
signature-based and anomaly-based detectionmethods
to identify and mitigate cybersecurity threats, ensuring
data security in the charging infrastructure [22]. These
models scan unusual activities and send instant alerts
to system administrators, assisting them in respond-
ing to security threats quickly. Themost common types
of intrusion detection models include Signature-based
detection (SD), Anomaly-based detection (AD) and
Stateful protocol analysis (SPA).

In SD approach, the attack patterns are compared
with the incoming data patterns, making the system
to identify the malicious data entry. However, this
approach cannot learn or capture the new or unknown

attacks. In addition, the system operator must upgrade
the fingerprint (patterns) of the unknown or new
attacks manually. The AD-based IDS approach iden-
tifies the malicious data entry by examining whether
the incoming packet varies from the normal network
characteristics or not, and this is the most employed
IDS framework. Despite its widespread use, the AD
approach has limitations, such as a higher rate of false
positives and minimum accuracy than the SD tech-
nique. Some studies focused on developing hybrid
models combining SD and AD to mitigate these limita-
tions. By leveraging the strengths of bothmethods, they
intended to enhance detection accuracy and reduce
false positives.

Another approach is SPA, which can monitor the
state and behaviour of network protocols, identify-
ing deviations from expected communication pat-
terns. Unlike SD and AD, which focus primarily on
data patterns and statistical anomalies, SPA delves
into protocol-level interactions, making it reliable for
detecting attacks and preserving privacy [23]. The pri-
mary difference between the AD and SPA approaches
is that the SPA equates the actual network charac-
teristics against standard security protocols, while the
AD equates it against the observed network char-
acteristics. The SPA approach is resource intensive,
as it must track and analyse the protocol states.
In addition, it cannot examine the normal proto-
col characteristics, making it not suitable for real-
world applications. Hence the studies on the IDS types
concluded that the AD-based approach is more effec-
tive and reliable than others and is widely used in
current applications. Through a comprehensive explo-
ration of several AD-based IDS approaches using differ-
ent Deep Learning (DL) and Machine Learning (ML)
algorithms such as Support Vector Machine (SVM),
Random Forest (RF), Principal Component analy-
sis (PCA) and KNN Classifier, Convolutional Neural
Network (CNN), ML-based IDS, Embedding Feature
Selection and ensemble learning-based IDS, Voting
based on Negative Selection Algorithm based ID, etc.,
we analysed. The key issues like limited generalizabil-
ity, computational time, overfitting, complexity, etc.
are yet to be addressed precisely. Some of the recent
works associated with the IDS for EV are summarized
in Table 1.

In addition to threat detection, ensuring privacy is
significant in charging infrastructure to ensure the con-
fidentiality and integrity of user data. Since the com-
munication between EVs and UAVs is established in a
dynamic environment, a stable and effective connec-
tion needs to be established among the entities. One
common approach to establishing stable connections
is content-centric networking. This approach improves
communication by focusing on the transmitted con-
tent rather than the endpoints [34]. Other preserving
techniques involve using cryptographic approaches and
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Table 1. Summary of recent works in intrusion detection mechanisms for EV.

Author Title Algorithm/Model Dataset Performance Metrics Inference Limitations

Manoj Basnet et al. Deep Learning-based Intrusion Detection
System for Electric Vehicle Charging
Station [24]

LSTM+DNN CICIDS 2018 Accuracy LSTM is a highly efficient algorithm
with high accuracy rate of
approximately 97.6%

This method lacks generalizability and
faces higher false alarm rate

Manoj Basnet et al. Ransomware Detection Using Deep
Learning in the SCADA System of Electric
Vehicle Charging Station [25]

LSTM+DNN+ CNN Simulation Dat for ransome
and normal samples

Accuracy, F1 Score,
AUC

A distinct and unique ransomware
identification method for the
Supervisory Control and Data
Acquisition (SCADA)-assisted EVCS

Although the system provides low false
alarm rate, the integration of multiple
DL algorithms into single approach is
complex and requires knowledge
expertise

Manoj Basnet et al. Exploring cybersecurity issues in 5G
enabled electric vehicle charging station
with deep learning [26]

LSTM+NN Dataset created from the
proposed system EVSE
architecture

Accuracy False Data Injection and DDoS Attacks
on the networking component of
EVSE were simulated and studied

The study solely concentrates on attacks
faced by the 5G enabled SCADA

ElKashlan et al. A Machine Learning-Based Intrusion
Detection System for IoT Electric Vehicle
Charging Stations (EVCSs) [27]

Naïve Bayes classifier, J48
classifier, attribute-select
classifier, Filtered
classifier

IoT-23, validated using the
real IoT EVCS traffic
database

Accuracy, Precision,
Recall, F1 Score

Considering precision, F-1 score and
Recall, the filtered classifier has the
highest rank and lowest modelling
time

The scope of the study is limited to low
dimensional data, and hence further
analysis must be done for large-scale
dataset. This framework demands
more resources for training, and it is
costly

ElKashlan, M et al Intrusion Detection for Electric Vehicle
Charging Systems (EVCS)[28]

Decision Table and Filtered
Classification Algorithm

IoT-23 Accuracy, Precision,
Recall, F1 Score

filtered classifier algorithm can handle
missing attribute scenarios

the performance of this approach
decreases when the IoT data increases

Manoj Basnet et al. Deep Reinforcement Learning-Driven
Mitigation of Adverse Effects of
Cyber-Attacks on Electric Vehicle
Charging Station [29]

Twin Delayed Deep
Deterministic Policy
Gradient (TD3)

Simulation-based data Hyperparameter
sensitivity,
convergence,
stability

To alleviate the type I and type II
attacks on EVCS controllers
TD3-based software clones are used.

The system resolves the issue of
incremental bias, and hyperparameter
sensitivity of the conventional EVCS
controllers

5G-based applications are yet to be
analysed, training this model is
resource intensive and
time-consuming

Manoj Basnet et al. WCGAN-Based Cyber-Attacks Detection
System in the EV Charging Infrastructure
[30]

External classifier
Wasserstein condition
GAN (EC-WCGAN)

Synthetic data generation
using GAN Network, NSL
KDD Dataset

Accuracy, Recall,
Precision

To identify DDoS attack in EV charging
infrastructure, WCGAN provides
improved performance than Deep
learning algorithms

The training process is highly complex
and requires more resources, it is not
directly applicable for real-world EVCS,
as it cannot adapt dynamic
characteristics of charging station

Warraich et al. Early detection of cyber-physical attacks
on fast-charging stations using machine
learning considering vehicle-to-grid
operation in microgrids [31]

Discrete samples of power
demand readings

Decision tree model and K
Fold Validation

Classification Accuracy
and F1 Score

To detect the attacks affecting the
fast-charging stations which aims to
allow fast charging for Evs along with
frequency and voltage regulation to
electricity grid

The proposed system takes into
consideration power demand profile
and most salient features can be
extracted by computing the rank of
predictors for better performance, this
approach cannot identify diverse
attack scenarios and different kinds of
attacks

Dalal et al. Extremely boosted neural network for
more accurate multi-stage Cyber-attack
prediction in cloud computing
environment [32]

Multi-Step Cyber-Attack
Dataset (MSCAD)

Boosted Neural Network 99.72% accuracy The system is used to detect
multi-stage cyberattacks

The system is not studied on real-time
traffic

Guru Bhandari et al. Distributed Deep Neural Network-Based
Middleware for Cyber-Attacks Detection
in Smart IoT Ecosystem: A Novel
Framework and Performance Evaluation
Approach [33]

Deep Neural Network Aposemat IoT-23 dataset,
Edge-IIoTset

Detection Accuracy
and F1 Score

DNN provides better results for
malware detection considering all
the samples of both the datasets

The system needs to be improvised so
that minimal resources are used and
provide better performance. Device
specific data from the hardware can be
taken for study of device centric
security issue
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Figure 2. Summary of various parameters related to EV charging.

secure data transfer protocols to ensure the privacy
and security of the data during transmission. Some
of the commonly used approaches include symmet-
ric encryption and asymmetric encryption methods.
These encryption algorithms encode the data into
another form, ensuring protection against threats and
unauthorized data access. Symmetric encryption offers
speed and efficiency, while asymmetric encryption pro-
vides stronger security through key pairs. Although the
encryption techniques offer security during transmis-
sion, they face challenges, including key management
complexities and computational overhead. Moreover,
they cannot secure data against other security threats,
such as insider attacks or system vulnerabilities [35].
These challenges make the existing approach ineffec-
tive in providing security and privacy to the data and
hence intensive studies are being carried out to fill in
these gaps.

Another primary concern hindering the fast adop-
tion of EV and UAV is the charging cost optimiza-
tion of energy trading. A summary of the various
parameters related to energy charging discussed in
the existing studies is shown in Figure 2. Based on
this analysis, the vital objective function was narrowed

down to minimize the charging rate taking into
consideration the history of charging. The different
mathematical models [36], simulation models [37]
and metaheuristic algorithms [38,39] that are feasible
for the system implementation were identified as in
the summary figure. The recently developed Squirrel
Search Algorithm (SSA) and its outstanding perfor-
mance in comparison with six other optimization algo-
rithms are discussed in [40]. The effectiveness of this
SSA in terms of convergence rate and accuracy can be
used to obtain more optimal solutions for the pricing
mechanisms in EV energy trading.

Thus the proposed system focuses on the dual
objectives of security from malicious traffic and cost
minimization in the context of EV and UAV charg-
ing stations. Key components of the system design
include defining privacy constraints and cost opti-
mization metrics, identifying data sources, and pre-
processing requirements, and outlining the integra-
tion of deep learning models into the charging station
infrastructure. The proposed system model addresses
the need for real-time decision-making based on opti-
mized resource allocation and charging strategies to
ensure efficient operation of charging stations while
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safeguarding user privacy and reducing operational
costs.

3. Problem statement

The proposed model integrates a hybrid deep learning
approach, specifically leveraging the Squirrel Search-
optimized Attention-Deep Recurrent Neural Network
(SS-ADRNN), to make intelligent decisions based on
real-time data and constraints. The system collects data
from EVs and UAVs, including charging demands,
environmental conditions and historical usage patterns.
This data undergoes pre-processing to clean and nor-
malize it, preparing it for input into the SS-ADRNN
model. The Squirrel Search optimization algorithm
dynamically optimizes charging station operations,
adjusting charging rates and schedules to minimize
costs while adhering to privacy constraints. The atten-
tion mechanism within the SS-ADRNN model allows
for the focusing of relevant features and inputs, enhanc-
ing interpretability and performance. The deep RNN
architecture captures temporal dependencies in charg-
ing station data, enabling the model to learn from
past behaviours and predict future demands. Privacy-
preserving strategies are implemented throughout the
charging station operations to anonymize user data and
protect privacy during data handling, processing and
communication.

4. Proposedmethodology

The proposed methodology for privacy preservation
and cost minimization in EV and UAV charging sta-
tions revolves around a Hybrid Deep Learning frame-
work termed Squirrel Search-optimized Attention-
Deep Recurrent Neural Network (SS-ADRNN). This
framework integrates the strengths of deep learning
with the efficiency of evolutionary algorithms, specif-
ically tailored for privacy-sensitive and cost-efficient
charging station management. SS-ADRNN employs a
hierarchical architecture, where attention mechanisms
focus on relevant features while deep recurrent neu-
ral networks capture temporal dependencies in charg-
ing station operations. Furthermore, Squirrel Search
optimization ensures robustness against local optima,
enhancing the model’s ability to find globally optimal
solutions. The architecture of the proposed framework
is shown in Figure 3.

By leveraging SS-ADRNN, the methodology addres
ses critical challenges in EV and UAV charging sta-
tion management. Privacy preservation is ensured
through advanced encryption techniques and data
anonymization strategies embedded within the deep
learning framework. Moreover, the optimization objec-
tives encompass both cost minimization and opera-
tional efficiency, enabling charging stations to adapt
dynamically to fluctuating demand and energy prices.

Through extensive simulations and real-world deploy-
ment, the proposed methodology demonstrates supe-
rior performance in balancing the competing goals of
privacy preservation and cost efficiency, thereby offer-
ing a scalable solution for sustainable and secure charg-
ing infrastructure in the era of electric and unmanned
mobility.

4.1. Data collection

The proposed mechanism commences with the collec-
tion of datasets. This study utilizes a publically available
UAV network communication dataset from the GitHub
site, available at https://github.com/naiksrinu/UAV_
DataSet_NetworkCommunication. The UAV Network
Communication Experimental dataset collects traf-
fic captured from a wireless network used by UAVs
during a simulated search and rescue mission. The
dataset includes both legitimate network traffic and
traffic generated by WiFi and GPS attacks. The WiFi
attacks include different STRIDE and jamming attacks.
This study also utilizes the EV network communica-
tion dataset named CICEV2023, and it is available at
https://www.unb.ca/cic/datasets/cicev2023.html. This
database contains four distinct attack scenarios based
on Correct EV ID, incorrect EV, incorrect EV
Timestamp and incorrect CS Timestamp. The features
present in this dataset are described in Table 2.

4.2. Data pre-processing

Data pre-processing plays a pivotal role in ensuring
privacy preservation and cost minimization in EV
and UAV charging station management using the pro-
posed SS-ADRNN framework. In this methodology,
pre-processing involves several key steps. First, sen-
sitive information such as user identities and charg-
ing patterns is anonymized using encryption tech-
niques to protect individual privacy. Additionally, data
is cleaned and normalized to ensure consistency and
reliability in model training. Moreover, feature selec-
tion techniques are employed to identify relevant charg-
ing station parameters while mitigating the risk of data
leakage. Furthermore, outlier detection and removal
procedures are applied to enhance the robustness of
the model against potential attacks or anomalies. By
meticulously pre-processing the data, the SS-ADRNN
framework ensures that the subsequent deep learn-
ing algorithms operate on sanitized inputs, thereby
balancing the imperatives of privacy preservation and
cost minimization effectively in the context of EV and
UAV charging station management. Here, we used z-
score normalization was employed for converting the
data samples into common scale, and is formulated in
Equation (1).

Zs =
(
Da − μ

σ

)
(1)

https://github.com/naiksrinu/UAV_DataSet_NetworkCommunication
https://www.unb.ca/cic/datasets/cicev2023.html
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Figure 3. The proposed framework: (a) architecture of the proposed framework; (b) functional block diagram of the proposed
system.

where Zs denotes normalized score for the data sam-
pleDa,μ indicates the mean and σ represents standard
deviation. Similarly, for each data sample in the dataset,
the normalized value was determined. These steps not
only improve data quality but also increase the speed of
data processing and confirm consistency and quality.

4.3. Attention-based deep recurrent neural
network

The pre-processed data is passed to the ADRNN mod-
ule. The ADRNN module combines the efficiency of
AttentionMechanism and Deep Recurrent Neural Net-
work. The attention mechanism integrated into the
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Table 2. Dataset description.

Features Description

Instruction overhead It offers high-level details regarding libraries and code symbols utilized in the Linux kernel by quantifying the count of
instructions employed in profiling targets, specifically either CS or GS

CPU cycle overhead Perf computes the number of cycles utilized by profiling targets and details the overhead associated with libraries and code
symbols in the Linux kernel

Time delta It defines the duration between the immediately preceding and subsequent authentications
Branches It indicates the number of branch commands implemented by the profiling target
Branch overhead It offers insights into the overhead associated with libraries and code symbols utilized in the Linux kernel by tallying the count

of branch instructions employed by the profiling target
Instructions It indicates the number of instructions utilized by the profiling target
Cycles It refers to the number of cycles consumed by the profiling target

proposed framework enables to focus on most impor-
tant attributes for the attack prediction in EV and
UAV charging infrastructure. On the other hand, the
DRNN acts as classifier, which predicts the normal and
malicious traffic by understanding the interrelationship
and patterns between the input and output. Attention
mechanism is a deep learning, which is employed for
selecting the most informative features from the pre-
processed dataset. The input of the attention mecha-
nism is expressed in Equation (2).

PR(Da) = {da1, da2, da3, . . . , dan} (2)

where PR(Da) defines the pre-processed database, da
denotes the attributes present in the dataset. The atten-
tion mechanism generates the attention score Ats for
each feature da in the dataset using a scoring function.
The attention score is determined using Equation (3)

Ats = softmax(wt .da) (3)

where wt defines the weight function used for evaluat-
ing the attention scores. After evaluating the attention
scores, the features with greater attention scores are
selected for DRNN training. This feature set contains
most important and relevant attributes for classifying
the normal and malicious data. This feature sequence
is fed as input to the DRNN module for training and
attack prediction.

TheDRNN is a deep learning algorithm that consists
ofmultiple recurrent layers in the neural network archi-
tecture. Generally, the RNN contains single recurrent
layer, which can process the sequential data by storing
the previous inputs in the memory. In DRNN, the out-
come of one recurrent layer is forwarded as input to
the next recurrent layer, and the number of recurrent
units depends on the complexity of the problem. These
multiple recurrent layers help the system to capture,
understand, and learn the intricate patterns and inter-
connections between the normal and malicious data.
The designed DRNN mechanism contains three layers
such as input layer, two or more recurrent layers, and
output layers. These layers relate to each other through
neurons. The connection involves feedback of weights
and bias vector in between the neuron connection. In
DRNN, the recurrent layer acts as the memory unit,
and eachmemory unit containsmemory cells with self-
connections for storing the temporal state information.

This capacity of DRNN enables to learn the long-term
temporal dependencies in the sequential input data.

The presented study utilizes the LSTM architecture
of DRNN. This architecture of LSTM contains various
gates to control or regulate the information flow in the
network. The LSTM gates includes input gate, forget
gate, cell state and output gate. The LSTM’s input gate
is represented mathematically in Equation (4).

Igt = σi(WigAot + Whihst−1 + Big) (4)

where Igt represents the input gate at time t, σi denotes
the input gate activation function,Wig defines the input
gate weight matrix, Whi indicates the weight matrix
between the input gate and hidden unit, hst−1 repre-
sents the hidden state at previous time sequence and
Big refers to the input gate bias vector. The input gate
of the LSTM helps to learn that what portion of the
input sequence must be integrated into the cell state.
After input gate, a forget gate was designed, which takes
decision regarding what feature or data from the previ-
ous cell state should be forwarded to the next cell state,
and what feature should be eliminated. It is expressed
in Equation (5)

f gt = σfg(WfgAot + Whf hst−1 + Bfg) (5)

where f gt indicates the forget gate at time step t, σfg
defines the forget gate activation function,Whf denotes
the weight matrix interconnecting forget gate and hid-
den state,Wfg represents the forget gate’s weightmatrix,
and Bfg defines the forget gate bias vector. This gate acts
as the bridge between the input gate and the cell state.
After forget gate, a cell state is placed, which gathers the
information or feature from the input and forget gates,
and update its state. This feature enables the system
to learn and capture the intricate features and patterns
for malicious data prediction and it is computed in
Equation (6)

cst = f gt ∗ cst−1

+ Igt ∗ tan h(WcsiAot + Wcshhst−1 + Bcs) (6)

where cst represents the cell state at time t, cst−1 refers to
the previous cell state, tanh indicates tangent activation
function, Wcsi defines the weight matrix interconnect-
ing cell state and input gate, Wch refers to the weight
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matrix interconnecting cell state and forget state and
Bcs represents cell state bias vector. The updated feature
sequence from the cell state is forwarded to the output
gate. The updated feature sequence contains informa-
tion regarding the pattern difference between the nor-
mal and malicious data. The output gate is expressed in
Equation (7)

Ogt = σog(WogiAot + Whohst−1 + Bog) (7)

where Ogt refers to the output gate at time step t, σog
represents the output gate activation function, Wogi
denotes the weight matrix interconnecting output gate
and input gate, Wog defines the weight matrix con-
necting the output gate to the hidden state, and Bop
represents the output gate bias vector. The output gate
represents the result of each LSTM layer, and the out-
put of last LSTM (recurrent) layer is forwarded into the
output layer. The DRNN’s output layer is expressed in
Equation (8)

Opt = softmax(Wop.Ogt + Bop) (8)

where Opt represents the outcome of the DRNN,
softmax defines the activation function, Wyo indicates
the weight matrix of the output layer and Byt denotes
the bias vector of the output layer. This output layer
provides the probability value, which helps to classify
the data as malicious or normal. The malicious activity
classification is represented in Equation (9).

Cf = argmax(Opt) (9)

whereCf indicates the classification function that deter-
mines the attack type with the highest probability.
Based on the probability value, the arg max function
returns a class (normal or attack types [STRIDE, jam-
ming, GPS jamming, GPS spoofing]). Thus, based on
the learned patterns, the proposed strategy detects the
intrusion by comparing the pattern of pre-processed
data with the learned malicious traffic pattern. If the
input data pattern matches with the malicious data pat-
tern, then the system predicts it as “Malicious”. Then
themodel intends to identify the type of attack or intru-
sion by estimating the probability value of the traffic.
After classification, the developed algorithm eliminates
the data to ensure security and confidentiality of the
charging infrastructure.

If the probability value range is [0, 0.1], the system
classifies the traffic as “normal”, if the range of proba-
bility value is [0.2, 0.3], the system classifies the traffic
as “STRIDE”. If the range lies in [0.3, 0.4], the system
categorizes it as “Jamming”, and if the range lies in [0.4,
0.5], the system predicts it as “GPS jamming”. Finally, if
the range of the probability value is [0.5, 0.6], then the
system classifies it as “GPS spoofing”.

The ADRNN framework undergoes intensive train-
ing, and the loss during training is measured using

Equation (10)

Ls = 1
Ts

Ts∑
i=1

(A′
s − Ps) (10)

where Ls defines the loss function, Ts denotes the total
number of training samples, A′

s represents the actual
outcome and Ps refers to the predicted value. This
loss can be resolved by tuning the hyperparameters of
ADRNN using the random search optimization.

4.4. Squirrel Search Algorithm

Once the attacks are identified and classified using the
ADRNN module, the malicious traffic is eliminated
from the system to ensure security and privacy for the
original users. After attack detection, Squirrel Search
Optimization was employed to optimize the charging
cost for users in the charging environments. A squir-
rel search algorithm is a nature-inspired optimization
approach inspired by flying squirrels’ foraging charac-
teristics (gliding). Gliding is an effective mechanism
that small mammals use to travel long distances [40].
The squirrels use this strategy to change their loca-
tion during warm weather to explore food resources.
After finding the food resources, they store the food
for winter. Typically, these squirrels are active in warm
climates and less active during winter. The mathemati-
cal formulation of these foraging characteristics is being
applied to resolving unimodal, multimodal and multi-
dimensional optimization problems. Each flying squir-
rel searches for food individually and optimally uses
available food resources by employing dynamic for-
aging behaviour. Similarly, we utilized these foraging
characteristics to search for charging unit with mini-
mumcost, considering the available energy resources in
EV and UAV charging stations. In the proposed work,
the SSA algorithm was employed to find the charging
unit with less cost in the charging environments. The
first step in SSA is the initialization of algorithmparam-
eters, which includes maximum iteration, population
size, number of decision variables, gliding constant, and
scaling factor. Consequently, the flying squirrel was ini-
tialized. The SSA optimization starts with the random
initialization of the location of flying squirrels. Like this,
we initialized the location of charging units and it is
expressed in Equations (11) and (12).

Cu =

⎡
⎢⎢⎢⎣

ch11ch12ch13 . . . ..ch1n
ch21ch22ch23 . . . ..ch2n

...
...
... . . . . . . .

...
chm1chm2chm3 . . . ..chmn

⎤
⎥⎥⎥⎦ (11)

Vi,j = Vl + rand() ∗ (Vu − Vl), i = 1, 2, . . . .., s (12)

where Cu defines the location of charging stations, ch
denotes the charging unit, vehicles (EVs or UAVs),
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Vu Vl the upper and lower bounds of the decision vari-
ables, and rand() random numbers in the range [0, 1].
Then the distance between the vehicle’s location and the
charging unit’s location was determined. The distance
calculation is expressed in Equation (13)

Di,j =
√

(xi − xj)2 + (yi − yj) (13)

where Di,j indicates the distance between the vehicles.
After initialization, the fitness of each flying squirrel is
determined. In the proposed work, the fitness value of
charging unit was evaluated based on the pre-defined
objective function.

Thus the second step is to determine the popula-
tion’s value based on the defined objective function.
The objective function is to reduce the charging cost of
vehicles by finding the charging unit with a lower cost,
considering the vehicle’s location from the charging
station. The objective function is defined in Equation
(14).

The objective function is defined in Equation (14).

Objective = min(Cch) (14)

whereCch denotes the charging cost at the charging unit
ch.

Then the fitness value of each charging unit is deter-
mined. The fitness value of the charging unit is repre-
sented in Equation (15)

F(Cu) =

⎡
⎢⎢⎢⎣

f (ch11 ch12 ch13 . . . ..ch1n)
f (ch21 ch22 ch23 . . . ..ch2n)

...
...

... . . . . . . .
...

f (chm1 chm2 chm3 . . . ..chmn)

⎤
⎥⎥⎥⎦ (15)

where f indicates the fitness of the charging unit. The
charging cost is determined by considering the avail-
able energy in the charging infrastructure, the distance
between the vehicle and the charging unit and the
energy demand of the user.

After fitness evaluation, the entire population was
sorted in descending order, such that the charging unit
with minimum cost was displayed first and the charg-
ing unit with maximum cost was displayed last. Then
the SSA explores the search space to find the optimal
solution (exploration). This exploration phase enables
the system to provide optimal solutions irrespective of
the changing conditions in the charging infrastructure.
This update follows the glidingmechanismof the squir-
rels. The positions of the charging units are updated
using Equation (16).

(cht+1) = (cht) + Di,jG.(ch′ − cht) (16)

where (cht+1) indicates the updated solutions, cht the
current solution andG the gliding constant. After posi-
tion updating, the fitness value was determined for the
updated solutions. If the fitness of the updated charging

Algorithm: SSA-ADRNN

Input: UAV network communication dataset, EV network communication
dataset, ADRNN hyperparameters, maximum iteration of SSA (tmax),
charging unit locations;

Output: Classification results (malicious or normal), optimized charging
unit with minimal cost

Initialization: EV and UAV datasets, ADRNN hyperparameters, SSA
parameters, charging unit locations
1. Data pre-processing:

For each database:
Perform outlier detection using linear interpolation
Handle missing values with mean imputation
Normalize features using z-score normalization

End for
2. Define the ADRNN architecture (LSTM layers, attention mecha-

nism):
For each data pointda in the databasePR(Da):

Determine attention scoreAts
Select dawith high attention score
Train DRNN with selected features

For each training epoch:
3. Compute probabilityOpt

if (Opt > 0.5)
Malicious

Else
Normal

End for
Compute loss using Equation (10)
Tune hyperparameters to minimize loss Ls

4. Squirrel Search Algorithm:
while t < tmax do

For each charging unit chin the population size of n do
Calculate f
Sort the population in descending order
Determine global best solutionch
Update the locations of charging units ch′
Calculate fitness f ′for updated solutioncht+1
If (f ′ > f )

Select updated charging unit
Else

Select initial charging unit location
t++
End for

Check termination criteria
End while

End

unit is high, then the system suggests the vehicle select
the updated charging unit. On the other hand, if the
fitness of the updated solution is low, then the system
suggests the old charging unit (charging station selected
before updation). The greater fitness value defines that
the charging unit with minimum cost. Hence after fit-
ness updation, the charging unit with higher fitness
value is selected for charging.

Thus the SSA algorithm optimizes the vehicles’
charging cost by suggesting a charging station with
minimal cost. This process continues until reaching
the maximum iteration or maximum convergence. At
each iteration, the system selects the charging unit with
minimum cost for the EVs and UAVs.

A flowchart of the proposed methodology is dis-
played in Figure 4. The working of the proposed
algorithm is presented in pseudocode format in
Algorithm 1.

5. Results and discussion

In this study, we developed a hybrid SS-ADRNNmech-
anism for effective identification of malicious activities
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Figure 4. Flowchart of the proposed framework.

in EV and UAV charging infrastructure. The proposed
methodology combines the efficiency of Squirrel Search
Optimization and Attention-assisted Deep Recurrent
Neural Network. The ADRNN acts as a classifier, which
identifies the normal and malicious data in charging
infrastructure by understanding the patterns and rela-
tions between them, while the SSA optimizes the cost
of the EV and UAV charging infrastructure, ensuring
improved resource utilization and charging cost mini-
mization for EV and UAV users. The presented frame-
work was implemented in Python software and the
results of the study were evaluated in terms of accu-
racy, precision, recall, f-measure, resource utilization
rate and cost.

5.1. Performance analysis

In this module, we examined the training and testing
performances of the proposed framework in terms of
accuracy and loss. In the initial phase, the dataset was
split into the ratios of 75:25 for training and testing
purposes. Table 3 presents the parameters of ADRNN.

The accuracy defines how efficiently and quickly the
proposed algorithm learns the patterns and interrela-
tions between the normal andmalicious data, while the
loss measures the variation between the actual and pre-
dicted outcomes. Figures 5(a, b) present the loss and
accuracy of the proposed framework for EV dataset.
The training accuracy measures the effectiveness of the
proposed algorithm for capturing and understanding
the correlation between the malicious and normal data
in EV and UAV charging infrastructures. It measures
how fast the developed strategy learns and predicts the

Table 3. Parameters of the ADRNNmodel.

Parameters Value/range

Training epochs 80, 25
Recurrent layer type LSTM
Learning rate 0.01
Batch size 32
Optimizer Random search optimizer
Loss function Cross-entropy
Number of layers 2
Hidden units 128
Dropout rate 0.1
L2 Regularization 0.0001

malicious data. On the other hand, the testing accu-
racy quantifies how efficiently the proposed framework
detects the malicious data on unseen data samples.
It measures the presented model’s generalizability to
unknown samples.

The training loss defines the difference between
the actual (real) and the predicted outcomes of the
proposed strategy for the train data samples. The
small deviation between the real and predicted results
demonstrates that the designed framework correctly
identifies the malicious class. On the other hand, the
testing loss measures the variation between the real and
evaluated results of the proposed strategy for test or
unknown data samples. This measures the generaliza-
tion ability of the developedmechanism for unseen data
samples. Also, it quantifies how precisely the proposed
system works for the unknown data. Figures 6(a, b)
illustrate the loss and accuracy of the developed frame-
work for UAV dataset.

This intensive evaluation of training and test-
ing performances of the proposed strategy highlights
that it obtained greater training and testing accuracy,
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Figure 5. Performance of EV dataset: (a) loss and (b) accuracy.

Figure 6. Performance of UAV dataset: (a) loss and (b) accuracy.

demonstrating its effectiveness in understanding the
pattern and interconnection between the normal and
malicious data. In addition, the minimum losses in
training and testing phases evaluate that the predicted
results are the same as the actual results. Figures 7(a, b)
present the confusion matrix for EV and UAV datasets.

5.2. Evaluationmetrics

This section discusses the metrics used to evaluate the
proposed strategy’s performance. The metrics include
accuracy, precision, recall, f-measure, computational
time, resource utilization and cost efficiency. The def-
initions of the above metrics are described below.

5.2.1. Accuracy
Accuracy measures how effectively the model detects
and classifies the normal and malicious traffic in

charging infrastructure. It is measured in percentage
(%). It defines the ratio of correct classifications to the
total classifications made by the system and is formu-
lated in Equation (17).

Accuracy = TPS + TNG

TPS + TNG + FPS + FNG
(17)

TPS, TNG, FPS and FNG define the true-positive, true-
negative, false-positive, and false-negative, respectively.

5.2.2. Precision
Precision defines the model’s efficiency in correctly
identifying and classifying the specific attack class
among the total instances labelled as malicious. It is
measured in percentage (%) and is defined in Equation
(18). It defines the proportion of true-positive pre-
dictions to the total number of instances labelled as
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Figure 7. Confusion matrix: (a) EV dataset and (b) UAV dataset.

positive.

Precision = TPS

TPS + FPS
(18)

5.2.3. Recall
Recall measures the proposed framework’s ability to
correctly detect all attack instances among the real
attack cases present in the database. It is measured in
percentage (%). It quantifies the proportion of the true-
positive predictions to the total number of real attack
cases and is formulated in Equation (19).

Recall = TPS

TPS + FNG
(19)

5.2.4. F-measure
The F-measure metric measures the harmonic mean of
precision and recall. It offers a balanced evaluation of
system performances, considering both false positives
and negatives. It is measured in percentage (%). The
formula for F-measure is expressed in Equation (20).

F − measure = 2
[
recall ∗ precision
recall + precision

]
(20)

5.2.5. Computation time
Computational time defines the total time the model
spends performing tasks such as data pre-processing,
feature extraction, model training, attack detection and
classification, and cost optimization. It is measured in
seconds (s). This metric enables us to determine the
computational efficiency of the proposed model; it is
mathematically represented in Equation (21).

Computational rate = Tdp + Tfs + Tmt + Tad + To
(21)

whereTdp indicates the computational time, defines the
consumed for performing data pre-processing, Tfs rep-
resents the time taken for feature extraction,Tmt defines
the time consumed for model training, Tad denotes the
time taken for attack detection and classification, and
To defines the time consumed for cost optimization
task.

5.2.6. Data confidential rate
The data confidential rate defines the rate at which the
proposed strategy protects sensitive information in EV
and UAV charging infrastructure from cybersecurity
threats. In other words, this metric enables us to assess
how effectively the developed mechanism preserves
privacy in the EV and UAV charging environment, and
it is represented in Equation (22).

Data confidental rate = Dpr
Tp

(22)

where Dpr indicates the number of data packets cor-
rectly received and Tp defines the total number of
packets sent in the charging environment.

5.2.7. Cost efficiency
Cost efficiency measures the proposed framework’s
ability to minimize the overall costs associated with
the charging stations for EVs and UAVs while main-
taining the charging standards, and it is measured in
percentages. It is formulated in Equation (23)

Cost efficiency = 1 − Cbs
Cas

(23)

where Cbs indicates the charging cost before SSA opti-
mization and Cas denotes the charging cost after SSA
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optimization. It is measured in percentage. The charg-
ing cost is determined by multiplying the total energy
consumed by the vehicle with the price of electricity.

5.2.8. Intrusion detection overhead
Intrusion detection overhead defines the proposed
strategy’s time to identify and respond to malicious
traffic. Thismetric determines how fast themodel iden-
tifies and classifies the traffic. It is expressed in Equation
(24).

Intrusion detection overhead = Td − Ts (24)

where Td denotes the time taken by the system for
detecting malicious data/traffic and Ts indicates the
time consumed by the system for responding to the
malicious data. It is measured in seconds (s).

The intensive evaluation of these metrics allows us
to determine the efficiency of the proposed strategy in
performing intrusion detection and cost minimization.
These metrics are evaluated by training and testing the
presented strategy using the EV and UAV databases on
the Python platform.

5.3. Comparative analysis

To validate the performance of the proposed strat-
egy, a comprehensive comparative analysis was made
with the state-of-the-art models and recently devel-
oped approaches. The techniques used for comparative
assessment include Random Forest (RF), Decision
Tree (DT), Logistic Regression (LR), Linear Discrim-
inant Algorithm (LDA) [41], Long Short-Term Mem-
ory (LSTM), Deep Neural Network (DNN) [14],
ContinuousWavelet transform with Convolution Neu-
ral (CWT-CN) [42], ResNet Autoencoder based
Cyber-Physical Anomaly Detection (RA-CAD) [43],
Self-Adaptive Intrusion Detection (SAID) [44] and
Exhaustive Distributed Intrusion Detection (EDID)
[45]. The performance metrics used for comparative
study include accuracy, precision, recall, f-measure,
cost efficiency, data confidential rate, computational
time and resource utilization efficiency. The perfor-
mances are measured by implementing all approaches
in the Python software and validating them using both
the UAV and EV datasets.

Accuracy measures the model’s effectiveness in pre-
dicting and classifying the normal and malicious traffic
in the EV and UAV charging infrastructure. Figure 8(a)
presents the comparative evaluation of accuracy. The
existing models, including RF, DT, LR, LDA, LSTM,
DNN, CWT-CN, RA-CAD, SAID and EDID, achieved
an average accuracy rate of 97.12%, 96.78%, 95.34%,
92.9%, 95.35%, 94.23%, 97.34%, 96.5%, 96.2% and
93.67%, respectively. In comparison, the proposed
methodology achieved a higher accuracy of 99.23%.
The significant improvement of accuracy by the pro-
posed algorithm manifests that it effectively predicts

and classifies the normal and malicious events in the
charging infrastructure. By predicting and classifying
the attacks, this strategy offers security to the charging
environments.

Consequently, the precision performance of the
proposed algorithm was compared with the above-
stated techniques. Figure 8(b) depicts the compari-
son of precision. The precision metric determines the
model’s efficiency in predicting malicious attacks in
the charging infrastructure. These above-stated tech-
niques earned the precision of 96.89%, 95.81%, 95.07%,
91.45%, 95.2%, 94.11%, 97.5%, 96.25%, 95.0% and
93.56%, respectively. However, the developed strategy
obtained a greater precision value of 98.92%. This illus-
trates that the proposed strategy accurately classifies
the different attack instances compared to the existing
models. This manifests its potential as an advanced and
reliable solution for threat detection in the real-world
EV and UAV charging infrastructure.

The recall metric measures the model’s effectiveness
in identifying all relevant instances related to the IDS
in EV and UAV charging environments. Figure 8(c)
presents the comparative assessment of recall. The
existing models, including RF, DT, LR, LDA, LSTM,
DNN, CWT-CN, RA-CAD, SAID and EDID, obtained
an average recall rate of 97.30%, 95.97%, 94.89%,
92.45%, 95.12%, 94.45%, 97.19%, 96.70%, 95.35% and
93.44%, respectively. On the other hand, the devel-
oped methodology obtained an improved recall rate
of 99.32%. This improvement in the recall manifests
the model’s efficiency and reliability in identifying all
relevant instances associated with intrusion detection
in the EV and UAV charging infrastructure. Moreover,
this greater recall rate ensures that the proposed model
identifies the maximum number of attack cases cor-
rectly, reducing the risk of potential security threats in
the EV and UAV charging infrastructure.

Simultaneously, the f-measure performance was
evaluated and compared with the existing method-
ologies to validate how the developed algorithm bal-
ances the prediction of positive and negative instances.
Figure 8(d) depicts the comparison of f-measure. These
existing algorithms attained f-measure of 97.12%,
95.88%, 94.92%, 91.80%, 95.17%, 94.27%, 97.26%,
96.55%, 95.16% and 93.48%, respectively, while the pro-
posed algorithms earned higher f-measure of 99.11%.
This increased f-measure demonstrates the proposed
model’s efficiency in balancing the prediction and
classification of both normal and malicious instances.
Also, the increased f-measure manifests that the pro-
posed strategy reduces the false positives and nega-
tives, enabling secure charging infrastructure for EV
and UAV users.

The intrusion detection overhead measures the time
the proposed strategy takes to respond to normal and
malicious traffic. Figure 9(a) depicts the comparison of
intrusion detection overhead. The existing techniques,
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Figure 8. Comparison of intrusion detection performances: (a) accuracy, (b) precision, (c) recall and (d) f-measure.

including RF, DT, LR, LDA, LSTM, DNN, CWT-CN,
RA-CAD, SAID and EDID, obtained an average detec-
tion overhead of 1.2s, 2.5s, 1.9s, 2.1s, 3.4s, 2.9s, 1.6s,
2.2s, 1.3s and 1.9s, respectively. However, the proposed
algorithm achieved a minimum detection overhead
of 0.5s, highlighting the model’s efficiency in quickly
responding to the intrusion in the charging infrastruc-
ture.

Cost efficiency determines how effectively the pro-
posed strategy reduces the cost of charging and is mea-
sured in percentages. Figure 9(b) presents the compar-
ison of cost efficiency. The existing models like RF, DT,
LR, LDA, LSTM,DNN, CWT-CN, RA-CAD, SAID and
EDID earned cost efficiency of 95.82%, 92.70%, 89.56%,
90.43%, 93.68%, 95.75%, 96.83%, 95.29%, 94.91% and
92.80%. The proposed algorithm obtained a cost effi-
ciency of 98.56%, demonstrating that the proposed
strategy delivers high-quality charging services at a
lower cost than existing methods. This also ensures
that the squirrel search algorithm optimizes resource

allocation, ensuring that energy and charging sta-
tions are used more effectively, which helps reduce
costs.

Consequently, the data confidential rate was deter-
mined to assess the security level provided by the pro-
posed technique in the EV and UAV charging envi-
ronments. This metric determines how effectively the
proposed algorithm protects the user information from
unauthorized access or attackers. These methodologies
achieved a data confidential rate of 97.11%, 96.54%,
95.53%, 91.98%, 95.67%, 94.32%, 97.24%, 96.00%,
95.43% and 93.47%, respectively. However, the devel-
oped algorithm achieved an improved data confidential
rate of 98.56%, which illustrates its efficiency in ensur-
ing the security and privacy of user information in the
charging environments.

This framework improves data protection and
enhances the environment’s privacy by accurately
detecting and mitigating cyber threats. Figure 9(c)
presents the comparison of cost efficiency.
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Figure 9. Comparison assessment: (a) intrusion detection overhead, (b) cost efficiency, (c) data confidential rate and (d) computa-
tional time.

Finally, the computational time was measured for
all the techniques, and the validation of computational
time is presented in Figure 9(d). This metric measures
the time the techniques consume for all tasks, from
data pre-processing to cost optimization. The existing
models earned computational time of 3.4s, 5.1s, 4.9s,
3.8s, 6.3s, 5.9s, 3.6s, 4.5s, 4.1s and 4.8s, respectively,
while the proposed technique earned computational
time of 2.7s. The lower computational time earned
by the developed method illustrates that it performs
the above-stated tasks quickly. Reducing computational
time emphasizes that the developed methodology pro-
cesses the data quickly, illustrating its responsiveness
in real-world applications. In addition, it demonstrates
that the designed strategy identifies the attacks quickly,
thereby reducing the adverse influence of malicious
data in the charging infrastructure. Table 4 tabulates
the overall comparative analysis. From the compre-
hensive comparative assessment, it is evident that the
proposed strategy achieved superior performances in

terms of accuracy, precision, recall, f-measure and data
confidential rate.

Furthermore, to assess the efficiency of the pro-
posed strategy, the model’s performances are tested by
launching different attacks like ransomware, Spoofing
attacks, Denial of Service (DoS) attacks and distributed
denial of service attacks (DDoS) in the EV charging
ecosystem through data packets. Then the performance
of the system was determined under these attack cases.
Figure 10 and Table 5 depict the performances of the
developed methodology under different attack cases.
From the analysis, the proposed strategy accurately
identifies and classifies above attacks with greater accu-
racy. These results substantiate the role of this proposed
system as a solution to the case studies discussed in
Section 1.1.

These improved performances manifest that the
developed SS-ADRNN strategy accurately detects and
classifies the intrusion in the EV and UAV charg-
ing infrastructure compared to other models. Also the
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Table 4. Comparative analysis of the proposed model’s performances with existing works.

Techniques
Accuracy

(%)
Precision

(%) Recall (%)
F-measure

(%)
Computational

time (s)
Detection
overhead (s)

Cost
efficiency (%)

Data confidential
rate (%)

RF 97.12 96.89 97.30 97.12 3.4 1.2 95.82 97.11
DT 96.78 95.81 95.97 95.88 5.1 2.5 92.70 96.54
LR 95.34 95.07 94.89 94.92 4.9 1.9 89.56 95.53
LDA 92.9 91.45 92.45 91.80 3.8 2.1 90.43 91.98
LSTM 95.35 95.2 95.12 95.17 6.3 3.4 93.68 95.67
DNN 94.23 94.11 94.45 94.27 5.9 2.9 95.75 94.32
CWT-CN 97.34 97.5 97.19 97.26 3.6 1.6 96.83 97.24
RA-CAD 96.5 96.25 96.70 96.55 4.5 2.2 95.29 96.00
SAID 95.2 95.0 95.35 95.16 4.1 1.3 94.91 95.43
EDID 93.67 93.56 93.44 93.48 4.8 1.9 92.80 93.47
Proposed (SS-ADRNN) 99.23 98.92 99.32 99.11 2.7 0.5 98.56 98.56

Figure 10. SS-ADRNN performance under different attack cases.

Table 5. Performances of the proposed strategy across differ-
ent attack cases.

Attacks
Accuracy

(%)
Precision

(%)
Recall
(%)

F-Measure
(%)

Ransomeware 99.09 98.96 99.10 99.03
Spoofing attack 99.23 99.05 98.94 98.99
DoS 99.27 99.15 99.17 99.16
DDoS 99.11 99.06 99.32 99.32

improved cost efficiency manifests the model’s effi-
ciency in reducing the charging cost of the vehicles
compared to the existing methods. On the other hand,
the metrics like computational time, and intrusion
detection overhead are reduced in the developed
algorithm, which demonstrates its effectiveness and
robustness in minimizing the time consumption in
detecting, and classifying the attacks. This extensive
assessment with the currently existing methodologies
highlights that the proposed strategy is highly reli-
able in intrusion detection and cost optimization than
others.

5.4. Discussion

In this study, we developed an innovative algorithm
for securing the charging station from the mali-
cious activities. The developed study was implemented
in Python for publicly available EV and UAV net-
work communication databases. The implementation

outcomesmanifest that the developed strategy obtained
99.23% accuracy, 98.92% precision, 99.32% recall and
99.11% f-measure in predictingmalicious data. In addi-
tion, the developed algorithm obtained improved data
confidential rate and cost efficiency of 98.56% and
98.56%, respectively.

The proposed work consumed a very low process-
ing time and intrusion detection overhead of 2.7 s
and 0.5 s, highlighting its responsiveness in real-world
threat detection. Furthermore, we performed a com-
parative analysiswith the existingmodels to validate the
effectiveness of the proposed algorithm.

The comparison with current models like RF, DT,
LR, LDA, LSTM,DNN, CWT-CN, RA-CAD, SAID and
EDID demonstrates the superiority of the proposed
technique in intrusion detection and cost minimiza-
tion in charging infrastructure. It also demonstrates
that parameters like accuracy, recall, f-measure, pre-
cision, data confidential rate, and cost efficiency are
enhanced in the proposed strategy by 1.89%, 2.03%,
2.02%, 1.85%, 1.32% and 1.73% respectively, demon-
strating its effectiveness over the current approaches.
These greater performances incurred by the proposed
algorithm make it more effective and robust for detect-
ing the security threats in charging stations, thereby
offering a reliable solution for securing the EV andUAV
charging stations. Also, it highlights the model’s capac-
ity in reducing the charging cost and computational
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overhead. These superior performances achieved by
the proposed algorithm illustrate its ability in detect-
ing intrusions and minimizing charging cost in the
charging infrastructure.

Nevertheless, the following shortcomings of the pro-
posed system are to be explored:

• The physical EVCS as well as UAV charging infras-
tructure has not been installed due to the high cost
of implementation. Hence the training and testing
algorithms were carried out in offline manner. To
make a thorough understanding of the working of
the algorithm, it is crucial to analyse the working in
real-time traffic.

• The proposed system is implemented solely taking
CICEV2023 dataset, but for an intrinsic evaluation
comparison can be made across diverse and larger
datasets.

6. Conclusion and future scope

This study proposed a distinct strategy named SS-
ADRNN for predicting the malicious activities in the
EV andUAV charging infrastructure. The primary con-
cern of the developed strategy is to predict the attacks
and optimize the charging cost in the EV and UAV
charging stations. The proposed mechanism combines
the benefits of the SSA and ADRNN for attack pre-
diction and cost optimization. The developed study
was validated with the publicly available EV and UAV
datasets. The implementation results manifest that the
proposed framework earned 99.23% accuracy in pre-
dicting the malicious data entry. Also this approach
consumed minimum computational time of 2.7 s for
performing attack prediction and cost optimization.
Furthermore, we made a comparative study with con-
ventional algorithms such as RF, DT, LR, LDA, LSTM,
DNN, CWT-CN, RA-CAD, SAID and EDID to vali-
date the effectiveness of the developed framework. The
comparative assessment shows that accuracy, precision,
recall, f-measure, data confidential rate and cost effi-
ciency performances are enhanced by 1.89%, 2.03%,
2.02%, 1.85%, 1.32% and 1.73% respectively.

The proposed system can be used to safeguard any
critical Industrial Control System such as SCADA by
the identification of the malicious traffic in prior to the
attack. Although the proposed SS-ADRNN approach
obtained impressive outcomes in predicting the mali-
cious activities and optimizing charging costs in the
EV and UAV charging infrastructure, it has certain
limitations. First, the efficiency of the developed strat-
egy depends on the dataset used, illustrating that the
system’s generalization is limited to dataset-specific
characteristics. Second, the developed methodology
is not tested on larger and diverse databases, which
lacks the system’s scalability and robustness across
real-time scenarios. Hence, to resolve these issues, the

future study should focus on exploring different dimen-
sions related to the EV and UAV charging infrastruc-
ture by integrating continuous learning algorithms.
Future studies should explore different dimensions,
including dynamic resource allocation and demand-
response strategies related to the EV and UAV charging
infrastructure, by integrating continuous learning and
multi-objective optimization algorithms.
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