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ABSTRACT
Medical Thermography image is used for the detection of breast cancer at an earlier stage. Ther-
mography image shows the temperature change in the body due to cells. The metabolic rate of
cancer cells is high compared to normal cells. A high metabolic rate increases the blood flow in
cancer cells. High blood leads to changes in body temperature. The change in body temperature
is used for cancer cell detection at an earlier stage. However, T1-stage cancer cells are smaller and
have small temperaturedifferencesundetectedwith thermography. In this paper, a T1-stage can-
cer cell is heated by an external source; then, thermal images are acquired for earlier detection of
small-size cancer cells. External heat source amplifies T1 stage cancer cell temperature. Amplified
cancer cell images are analyzed using the proposedMultiwavelet-Deep Denoised Convolutional
Neural Network (MWTDnCNN) algorithm for T1 cancer cell detection. Amplified T1 stage cancer
cell has higher thermal conductivity (k) and heat capacity (Cp), which helps to detect T1 cancer
cell tissuedue to theenhancedpixel feature. TheproposedMWTDnCNNalgorithmhas a T1-stage
cancer cell detection accuracy of about 98%comparedwith traditional algorithms. Theproposed
MWTDnCNN algorithm detects T1-stage cancer of size 1.29 mm.
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1. Introduction

Cancer cells grow due to gene mutations in the breast
tissues. Breast cancer develops in the lymph nodes.
Breast cancer survival rates vary by cancer cell stages
such as T1, T2, T3 and T4. Breast cancer detected
at the early stage, i.e. T1 stage patients’ survival rate
is about 98–100%. T2-stage patients’ survival rate is
about 90–99%. T3-stage patients’ survival rate is about
66–98% [1]. Breast cancer needs to be detected at an
early stage to increase the patient’s survival rates. Breast
cancer is detected using various imaging modalities
such as CT and MRI. CT and MRI image-based detec-
tion of T2 and T3 stages are more accurate. T2 stage
detection has high false negatives when using CT and
MRI images. Breast cancer cell stages are based on the
cell count or size of the cancer cell. Cancer cell stage
classification is performed using clinical and pathology
methods. The clinical staging method is done before
surgery. Pathologic staging is done after surgery. In
2018, the American Cancer Society defined the staging
system. The breast cancer staging system is known as
the TNM system, whereas T stands for tumour size, N
for lymph nodes andM formetastasis (spread to distant
sites). The T categories of breast cancer are determined
based on tumour size. T followed by a number repre-
sents tumour size that has spread to the skin or chest
wall or behind the breast. Big-size tumours or extensive

spread are indicated through higher T values. TX indi-
cates primary tumour, T0-No is the evidence of primary
tumour, this is for the Carcinoma in situ (DCIS or
Paget’s disease of the breast without associated tumour
mass), and T1 has substages such as T1a, T1b and T1c.
The tumour is 2 cm (3/4 inch) or less in diameter. T2:
Tumour is more than 2 cm, not more than 5 cm (2 in.)
in diameter. T3: The tumour ismore than 5 cm in diam-
eter. T4: Any size tumour that extends into the skin or
chest wall and has sub-stages such as T4a, T4b, T4c and
T4d, including breast inflammation.

Breast cancers are detected using physical breast can-
cer screening, sonography, mammography and MRI.
A physical Breast cancer screening test is a self-
examination method. Breast examination at the clinic
is performed using various imaging modalities such as
sonography, mammography and MRI. Clinical breast
examination (CBE) is the primary method for identi-
fying cystic breast lesions [2]. CBE has low sensitiv-
ity and is unreliable in the detection of malignancy.
Biopsy is done after medical image analysis [3]. Mam-
mography uses X-rays for breast abnormality diagno-
sis. A mammogram is a quick and common means
of detecting breast cancer. However, mammography
has low spatial resolution and requires significant stor-
age space. Breast MRI [4] is recommended by the
American Cancer Society for women at high risk of
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cancer; MRI scanning cost is high, the machine is non-
portable, images with low specificity, and consumes
more time. Sonography [5], or breast ultrasound, gen-
erates sound waves, passes through the organs with the
help of a transducer, and provides low-resolution and
low-contrast images. Positron emission tomography
(PET) [6], single-photon emission computed tomogra-
phy (SPECT), and mammography are nuclear imaging
modalities. In a PET scan, fluorodeoxyglucose (FDG)
is used as a radioactive tracer, which is injected into an
arm vein and targets the malignant tissue. PET imag-
ing is independent of breast density, prior surgery or
radiation therapy. PET images have limited resolution
and imaging capabilities. Breast thermogram images
are used to prevent the spread of cancer. Detection
of breast tumours in women with dense breasts is a
challenging task.

Infrared (IR) cameras are used in thermography to
acquire temperature profiles of the breast. The temper-
ature distribution on the breast surface is used for the
detection of cancer. The IR image distinguishes normal
and uncontrolled cancer cell growth through temper-
ature variations. Cancer cells have a higher metabolic
rate and greater blood flow in the surrounding tissue. A
higher metabolic rate increases the heat in the breast’s
cancer tissue regions. The breast heat patterns are used
for the diagnosis of breast cancer. Thermal image pro-
cessing is a non-invasive method for detecting small
breast tumours due to its non-ionizing nature and abil-
ity to distinguish benign frommalignant lesions. It pro-
vides physiological information about vascularity and
metabolism, effectively detecting cancer inwomenwith
dense breast tissue. Thermal image-based techniques
must be improved due to the early detection rates, i.e.
the T1 stage. Breast thermography is used to detect
breast cancer in its initial stages. Breast thermography
is a painless, non-invasive procedure.

When thermography produces heat and cold in the
affected area, cancer cells are identified using infrared
imaging technology. The cancer area becomes warmer
than other areas because the growth of cancer cells
requires higher blood flow. The development of cancer

cells can be detected in a thermogram after two years,
whereas mammography can only do so after eight years
[7]. Thermal imaging detected the cancer cells at an
early stage. In thermography, red and yellow repre-
sent warmer colours, whereas green and blue represent
cooler colours. Thermal breast cancer images are of low
resolution. Due to low resolution, researchers apply dif-
ferent and transfer learning models for the detection of
cancer cells. Instead, they require an infrared camera
with high resolution. A multiresolution convolutional
neural network is required to detect cancer cells from
thermal images.

1.1. Research gap

Figure 1 shows the research gap in breast cancer detec-
tion. Breast cancer cells are detected through mammo-
grams after 4–10 years. However, Thermal imaging can
detect cancer cells from the second year onwards.

Mammography, ultrasound and MRI scans can
detect breast cancer in the 5th year. The above imag-
ing methods have certain drawbacks, such as not being
recommended for lactating or pregnant women and
never being advisable for women in all age groups.
However, thermography is a non-invasive, economi-
cal and radiation-free method. Thermography is use-
ful for detecting breast cancer at earlier stages [9].
Breast cancer is detected through five different views
of breast images using a convolutional neural net-
work [10]. Breast cancer is detected through static and
dynamic infrared thermography with machine learn-
ing techniques such as support vector machine and
k-star algorithm [11]. This paper proposes cancer cell
detection below two years, i.e. T1 stage using thermal
imaging using hybrid algorithms such as wavelet and
convolution neural networks.

1.2. Contributions

This paper proposes a multiwavelet deep denoised
convolutional neural network (MWTDnCNN) for
detecting breast cancer cells below 2 years using

Figure 1. Research Gap in identification of breast cancer cells [8].
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heat-amplified cancer cell thermal images. This is
achieved through external heat source amplification of
T1 stage cancer cells in the breast region and obtained
the thermal images for detection of cancer cells below 2
years.

1. To enhance the boundary and edges of cancer
cells in thermal images, hybrid of Haar wavelet
transform and symmetric wavelet basis function
is proposed. The perspective projection property
of symmetric wavelet basis function enhances the
region of cancer cell in the heat amplified cancer
cell thermal images.

2. To differentiate cancer cells in the thermal image,
Kullback–Leibler is proposed, which effectively
differentiates cancer and normal cells based on
probability variation, and then filtered through the
proposed MWTDnCNN algorithm.

3. To classify cancer cell growth patterns from nor-
mal cells, the breast cancer image is segmented
through adaptive binary thresholding image seg-
mentation, and region properties are extracted and
locate the cancer cells in the heat amplified cancer
cell thermal images.

Section 2 of this research describes state-of-the-
art technology, and Section 3 describes the proposed
methodology for finding breast tumours. Stages T0,
T1 and T2 results and discussions are presented in
Section 4. Conclusion and future work are covered in
Section 5.

2. Literature survey

Several studies have explored the application of image
processing methods for breast cancer detection using
thermal imaging. A multi-input convolutional neu-
ral network (CNN) was used in [12] to categorize
breast images into healthy and diseased categories
based on various lateral angles. CNNs automatically
extract features from breast thermal images. In another
study [13], a non-invasive method for breast can-
cer detection, which is radiation-free, was used. The
Levenberg–Marquardt algorithm is used for breast
tumour detection. Still, efficiency should be improved
by automating the breast geometry determination pro-
cedure. In [14], healthy and unhealthy breast cancer
were classified using the Shannon entropy, a measure
of uncertainty in a dataset, in the left and right breast
images. This method has low sensitivity to thermal
images and needs enhancement algorithms for early
detection of breast cancer.

In [15], feature aggregation strategies were utilized
to overcome the problem of identical images in trans-
fer learning deep models for breast cancer classifica-
tion. However, the potential of additional investiga-
tion to address class inequalities within the dataset is

promising. Despite the drawbacks of a small dataset,
[16] used machine learning methods and categorized
the breast tumour images such as normal, benign
and cancerous images. Similarly, [17] used dynamic
infrared thermography for discrimination of benign
and malignant tumours through combining CNN and
Bayes algorithm. In [18], researchers investigated the
predictive potential of biomarkers, including hypergly-
caemia, resisting and BMI for breast cancer. Authors
used SVM, RF and decision tree models for detection
of the breast cancer. On the other hand, adding more
biomarker data improves prediction accuracy.

The use of a 3D printer in [19] for the assessment
of tumour depth, ranging in size from 5 to 25 mm,
and considering tissue mechanical qualities, presents a
promising future for accurate diagnosis and treatment
planning. The statistical analysis of tumour breadth and
volume is crucial. Dey et al. [20] attempted to dis-
tinguish between malignant and healthy breast images
using a pre-trained Dense Net 121 model. The issues
of class imbalance with minority cancer classes are the
major problem. Macedo et al. [21] concentrated on
classifying cysts, benign and malignant breast lesions
through shape information, which is extracted using
Zernike and Haralick texture moments. This method is
suitable for small datasets.

Thermal sensitivity camera images were used [22]
for the identification of breast cancer using deep learn-
ing models, a promising avenue for future research.
Ghayoumi Zadeh et al. [23] Multilayer perceptron for
classification, self-organizing maps for clustering suits
for small databases. In [24], pre-processing, segmen-
tation, feature selection and extraction were used for
categorization of thermos vascular breast stages. How-
ever, there were differences in the outcomes between
cases of right and left breast cancer. Malignant tumour
images were segmented using an ROI image segmenta-
tion technique in [25], and additional statistical means-
based tumour width analysis was performed. In [26],
breast geometry from 3D scanner used for the quan-
tification of the thermal properties of triple negative
breast cancer. For breast cancer detection, vasculature
and blood flow in the breast are analyzed. In [27], the
World Cup optimization technique and neural network
modelwere used for breast cancer detection. In [28], the
GreyWolf Optimisation (GWO)method optimizes the
multilayer perceptron neural network and improves the
prediction accuracy. In [29], convolutional neural net-
work and the satin power bird optimizer (SBO) improve
the convergence rate during breast cancer prediction.

3. Methodology

Multiwavelet deep denoised convolutional neural net-
work (MWTDnCNN) is used to detect T1 stage
breast cancer cells from heat-amplified cancer cell
thermal images. The amplified T1 stage cancer cell
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thermal images of breast region process with Haar
and symmetric basis for removing artifact in the
boundary regions. Next, Kullback Leibler divergence is
used for the differentiation of cancer and non-cancer
cells. Then, applied with the proposed MWTDnCNN
algorithm for denoising the thermal image, adaptive
binary thresholding image segmentation is performed
for the classification of stages of cancer in the heat-
amplified cancer cell thermal images.

Figure 2 shows the proposed methodology to detect
the cancer cells in a breast thermogram image. Initially,
the image is converted into aYCbCr colour image. Then
Haar wavelet transform with symmetric basis function

is applied to each decomposed image and removes the
boundary artefacts. Then, the Kullback–Leibler diver-
gence algorithm is used to improve the perspective
projection of cancer and non-cancer cells through the
probability of pixel variation. The proposed MWTD-
nCNN algorithm denoises the heat-amplified cancer
cell thermal images. Next, an adaptive binary image
segmentation algorithm is used for the classification
of the T1 cancer cell. Then, the region properties are
extracted from the segmented breast image, and the
accumulation of T1 cancer cells is located. Figure 3
shows the flow diagram and pseudocode of a proposed
approach.

Figure 2. Proposed MWTDnCNN Algorithm to detect Breast Cancer at Early Stage.

Figure 3. Flow diagram and Pseudocode of proposed MWTDnCNN Algorithm.
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3.1. Experimental setup

The experimental setup for the thermography of a
breast image is shown in Figure 4. The MCP electric
heat belt holds the patient is back together. The heat
is dynamically generated through the belt and trans-
ferred to the breast region. The image is captured over
90 days using a thermal camera at various temperatures
with heat-amplified cancer regions. The amplification
is performed using the MCP electric heat belt. Utiliz-
ing ultra-heat technology, the pad reaches the maxi-
mum temperature. Thermal imaging of breast cancer
cells shows temperature variations above room tem-
perature. Temperature changes depending on tumour
size, metabolic activity and physiological variations.
The temperature of malignant tissue in the breast is
a few tenths of a degree Celsius higher than the sur-
rounding healthy tissue. We have set the temperature
between 38.2 and 42.5°C, which is higher than the
typical room temperature, i.e. 33°C [3031]. Then, heat-
amplified cancer tissue regions are acquired with the
thermal camera for image analysis using the proposed
MWTDnCNNalgorithm.

3.2. Convert RGB to YCbCr image

The YCbCr model is called the YUV model. YCbCr
has advantages over RGB thermal image processing,
such as (i). Separation of luminance and Chrominance
(ii). Reduced in size. (iii). Improved Compression. (iv).
Increased Dynamic Range. (v). Reduced noise. In the
YCbCr model, the Y component represents an 8-bit
greyscale image with the values 0 (black) to 255 (white)
and represents the luminance and brightness of an

image. Cb and Cr are used as representations for the
8-bit colour difference signals. Equations (1)–(3) show
the conversion of an image. Figure 5 shows the original
RGB thermal image and YCbCr thermal image.

Y = 0.299R + 0.587G + 0.114B (1)

Cb = −0.169R − 0.331G + 0.5B + 128 (2)

Cr = 0.5R − 0.419G − 0.081B + 128 (3)

3.3. Multiscale wavelet transform

Multiscale wavelets are transformed to analyse the
image in a multiscale frequency domain and decom-
pose an image into different frequency bands, each
band containing information of different scales. Multi-
scale wavelet transform is used for denoising, compre-
ssion and feature extraction. Multiscale wavelet trans-
forms consist of a 4-level decomposition of the Haar
wavelet transform and symmetric basis function to dif-
ferentiate small changes in amplified cancer cell breast
thermal image due to orthogonal property. To improve
breast cancer detection accuracy, perspective projec-
tion of T1-stage cancer cells is performed using the
Haar multiresolution transform, which extracts coarse-
and fine-scale cancer cells that are small in count.

The multiscale wavelet transform is applied to two-
dimensional heat-amplified cancer cell thermal images.
The decomposition is performed independently in each
dimension, resulting in four frequency sub bands at
each level such as LL (low-low), LH (low-high), HL
(high-low) and HH (high-high). The image is I(x, y),
where x and y represent the spatial coordinates. The
wavelet decomposition is performed through applying

Figure 4. Experimental Set up for heat amplified cancer cell using heating pad and thermal image acquisition.
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Figure 5. (a) Original RGB thermal image. (b) YCbCr thermal Image.

2D separable convolution, which consists of a pair of fil-
ters h and g, in both horizontal and vertical directions.
The filters h and g are called the scaling and wavelet
filters, respectively.

The multiscale wavelet transform is as in
equation (4).

Ij = I ∗ ∅j + Wj (4)

where Ij represents the image at scale j, ∅j represents
the low-pass filter heat amplified cancer cell thermal
images at scale j,Wj represents the high-pass filter heat
amplified cancer cell thermal images at scale j,∗denotes
convolution and the subscript j denotes the level of
decomposition.

The low-pass filtered image ∅j is obtained through
convolution of input image I with 2D separable filter h
at scale j, then performed the subsampling through the
factor 2↑j in both horizontal and vertical directions in
the heat amplified cancer cell thermal image. The low
pass filtered heat amplified cancer cell thermal images
is represented in equation (5)

∅j(x, y) = (h ∗ I)(2 ↑ jx, 2 ↑ jy) (5)

The high-pass filtered imageWj is obtained the con-
volution of the input thermal image I with a 2D sepa-
rable filter g at scale j, then performed the subsampling
through the factor of 2↑j in both horizontal and verti-
cal directions heat amplified cancer cell thermal images.
The high pass filtered heat amplified cancer cell thermal
images is represented in equation (6).

Wj(x, y) = (g ∗ I)(2 ↓ jx, 2 ↓ jy) (6)

Wavelet decomposition is represented as a tree struc-
ture, where top of the tree is the input image I, and each
level of the tree corresponds to different scale of wavelet
decomposition.

The wavelet reconstruction is represented in
equation (7)

I =
∑
j
Ij (7)

where Ij represents the heat amplified cancer cell ther-
mal images at scale j, and the reconstruction involves
adding up the high-pass filtered heat amplified can-
cer cell thermal images and the low-pass filtered heat
amplified cancer cell thermal images at the highest level
of decomposition. The reconstruction process involves
up sampling the high-pass filtered heat amplified cancer
cell thermal images by a factor of 2 in both horizontal
and vertical directions, and convolute with the corre-
sponding wavelet filters and reconstruct the thermal
image I. The low-pass filtered heat amplified cancer cell
thermal images at the highest level of decomposition is
up sampled and convolute with corresponding scaling
filter, and obtain the reconstructed thermal image. To
eliminate the boundary effects in thermal breast can-
cer image, symmetric basis function decomposes the
breast cancer image and accurately analyse the local
features, without artificial discontinuities at the bound-
aries. This method provides smooth variation at the
edges and boundaries in heat amplified cancer cell ther-
mal images.

3.4. Kullback Leibler Divergence (KLD) for best
approximation of heat enhanced thermal images

By computing KLD in each subband, then apply Kull-
back–Leibeler [32] divergence, and determine the opti-
mal approximation level for the heat amplified cancer
cell thermal image. The best approximation is selected
based on maximum KLD value. Hence, KLD, is known
as relative entropy, which is a metric for comparing two
probability distributions. KL divergence is defined as
given two discrete probability distributions such as P(x)
and Q(x) over the same sample space x in equation (8).

KL(P||Q) =
∑

xP(x)log
(
P(x)
Q(x)

(8)

where log is the natural logarithm. KL divergence is a
non-negative quantity that is equal to zero, if and only
if P and Q are identical, undefined if P(x) is zero for
some x, where Q(x) is nonzero. Intuitively, KL diver-
gence measures the amount of information lost using
Q to approximate P. KL is interpreted as the average
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amount of extra bits required to encode samples using
P, code optimized for Q, instead of a code optimized
for P. The KL divergence is not symmetric, i.e. KL(P
|| Q) is not necessarily equal to KL(Q || P). In gen-
eral, KL (P || Q) measures the difference between the
“true” distribution P and the “approximating” distri-
bution Q, whereas KL(Q || P) measures the difference
between the “approximating” distribution Q and the
“true” distribution P.

3.5. Deep denoised convolution neural network
(DnCNN) for heat amplified thermal images

Heat amplified cancer cell thermal images has tem-
perature variations, sensor noise, ambient conditions,
and the sensitivity of objects, which are the causes of
noise in thermal images. A low-sensitivity object has
more noise in thermal image and will reflect more heat.
Parameter optimization in denoising technique is diffi-
cult and more time consuming. Hence, the parameters
of denoising models are manually selected. The deep
denoised convolution neural network (DnCNN) [33]
enhances heat amplified cancer cell thermal images.
DnCNNmodel is represented as in equation (9) and x is
an image, y is a noisy imagewith additivewhite gaussian
noise “v”

y = x + v(Additive White Gaussian noise) (9)

Receptive field of DnCNN with (3× 3 Conv Network)
with depth d is (2d+ 1) x(2d+ 1)

F(y) = x (10)

In equation (10) F(y) is a clean latent image

R(y) � v (11)

Equation (10) and (11) represents residual mapping
of clean and noisy image.

x = y − R(y) (12)

DnCNN consist of four types of layers convolution
with Relu Layer 3× 3with 64 featuremaps designed for
gray scale image. The four layers are Conv layer, Batch
Normalization Layer, and Relu Layer and last layer is
regression layer, which is used for reconstruction of the
output image. Figure 6 shows DnCNN layers and its
operations.

3.6. Adaptive binary threshold

Adaptive Binary thresholding separates pixels in an
image into two categories: foreground and background.
Foreground and background separation is performed
through the threshold value of pixel intensity, and any
pixel above the threshold is considered the foreground.
In contrast, any pixel below the threshold value is con-
sidered as the background of an image. In adaptive
binary thresholding, the threshold value is not fixed;
however, it is adjusted dynamically based on the local
characteristics of the image. This is done through the
threshold value calculation for each pixel based on the
intensity values of its neighbouring pixels. The thresh-
old value is usually set to be the average intensity value
of the neighbouring pixels.

Let f(x, y) be the intensity value of a pixel at position
(x, y) in the input image. Calculate the threshold value
T(x, y) for each pixel using the local meanmethod as in
equation (13)

T(x, y) = mean(f (x − k, y − k)

. . . ..f (x + k, y + k))

T(x, y) = mean(f (x − k, y − k), . . . ,

f (x + k, y + k)) (13)

where k is the half-size of the local window used for cal-
culating the mean, and f(x-k, y-k), . . . , f(x+ k, y+ k)
are the intensity values of the pixels within the local
window centred at (x, y).

Figure 6. Denoised[Q9] image for heat amplified thermal image.
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Once the threshold value T(x, y) is computed for
each pixel, generates the binary image g(x, y) in
equation (14)

g(x, y) =
{
1, f (x, y) ≥ T(x, y)
0, f (x, y) < T(x, y) (14)

where g(x, y) is the binary image, with white pixels rep-
resents the foreground and black pixels represents the
background.

3.7. Statistical properties of connected
components of segmented heat amplified thermal
image

Connected components are represented mathemati-
cally using binary images, where pixels inside the com-
ponent are assigned a value as 1 and pixels outside the
component are assigned a value as 0. From this binary
image, various region properties of the connected com-
ponents are computed. The area of the connected com-
ponent is calculated as the sum of all the pixels in the
binary image, which is given in equation (15):

Area =
∑

g(x, y) (15)

where
∑

denotes the sum over all pixels (x, y) in the
binary image.

The bounding box of the connected component
is the smallest rectangle that encloses all the pixels
in the component. Compute the bounding box as in
equation (16).

Let (x1, y1) be the top-left corner of the bounding
box, and (x2, y2) be the bottom-right corner of the
bounding box. Then, calculate

x1 = min{x|g(x, y) = 1}
y1 = min{y|g(x, y) = 1}
x2 = max{x|g(x, y) = 1}
y2 = max{y|g(x, y) = 1} (16)

In other words, smallest and largest x and y coordi-
nates of the pixels in the binary image that have a value
of 1.

The centroid of the connected component represents
the average position of all the pixels in the component
and calculated the centroid as below:

Let (cx, cy) be the centroid of the connected compo-
nent shown in equation (17)

cx =
(
1
A

)
∗

∑
x ∗ g(x, y),

cy =
(
1
A

)
∗

∑
y ∗ g(x, y) (17)

where
∑

x and
∑

y denotes the sum over all x and y
coordinates of the pixels in the binary image with value
of 1. The centroid (cx, cy) represents the centre of the
connected component.

4. Results and discussions

Temperature fluctuations in the skin region are easily
detected using thermal imaging. Thermal imaging is
effective in breast cancer detection at the early stage
when compared to other imaging modalities. Figure 7
shows the thermography of a 37-year-old patient; ther-
mography images were obtained every 3 months. It
indicates a temperature change in a woman’s upper
right breast in the image’s baseline. Hence, the screen-
ing was carried out every 90 days. After a year, the
patient’s mammogram revealed a 1 mm T1 cancer cell
and a biopsy was performed.

Figure 7 shows the 37-year-old patient heat ampli-
fied cancer cell thermal images (a). Baseline – slight
increase in temperature in upper right breast (b). 3
months-increase temperature (e). 12 months 1 mm
breast cancer identified. Figure 8 shows the results of
the Heat amplified cancer cell thermal breast image
after denoising. Figure 8 shows the pixel differences
magnified.

4.1. KL divergence

KL divergence estimates the best approximated image
and denoise the Heat amplified cancer cell ther-
mal images image through maximum pixel variation.
Figure 9 shows the best approximated heat amplified

Figure 7. Breast thermogram.
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Figure 8. Results obtained through MWTDnCNN.

Figure 9. Best approximation based on KL Divergence of heat amplified thermal image. (a) Base(R = 4.9,G = 42.5,B = 48.5). (b) 3
Months(R = 4.5,G = 4.9,B = 38.5).

Table 1. Best Optimized Parameter of heat amplified thermal
Images.

Wavelet Type
Decomposition

level
Threshold
Value

PSNR Value
(decibel)

Haar Level 1 1 20.53
Haar Level 2 5 25.56

Haar Level 3 10 45.87
Haar Level 4 15 42.86

cancer cell thermal images, and Table 1 shows the dif-
ferent levels of approximation and their peak signal-to-
noise ratio (PSNR) values.

The optimal set of parameter values is level 3 decom-
position, with a threshold value of 10 and PSNR value
is high among the original and approximated image.
Hence, a level 3 approximated image is selected and
detected the T1 stage cancer cells.

Table 2 shows the heat capacity and thermal con-
ductivity of R,G,B pixel values based on the following
equations (18)–(21).

Heat Capacity(Cp) = 3399.3712 + 0.0275 ∗ R

+ 1.0868 ∗ G − 0.1836 ∗ B(Normal Cell) (18)

Heat capacity(Cp) = 2997.9389 + 2.6619 ∗ R

− 0.0866 ∗ G − 0.2158 ∗ B(Cancer Cell) (19)

Thermal Conductivity(k) = 0.031 + 0 ∗ R

+ 0.0001 ∗ G + 0 ∗ B(Normal Cell) (20)

Thermal Conductivity(k) = −0.0238 + 0.0002 ∗ R

+ 0 ∗ G + 0.0001 ∗ B(Cancer Cell) (21)

Table 2 is related to breast cancer cell and the heat
capacity and thermal conductivity of the R,G,B pixels
due to the rapid growth of cancer cells. Breast cancer
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Table 2. Heat capacity and thermal conductivity of real breast image using R,G,B values of Cancer and Non cancer cells.

R-Component of Heat amplified
cancer cell thermal image

G-Component of Heat amplified
cancer cell thermal image

B-Component of Heat amplified
cancer cell thermal image

Heat Capacity
(Cp)

Thermal
Conductivit y(k)

12 Months
230 198 92 3603.991 0.0508
255 193 95 3598.694 0.0503
245 188 75 3596.657 0.0498
249 190 50 3603.531 0.05
246 197 25 3615.646 0.0507
255 167 45 3579.617 0.0477
240 155 56 3564.144 0.0465
245 179 45 3592.384 0.0489
240 150 65 3557.057 0.046

9 Months
245 194 90 3613.882 0.0342
230 182 84 3576.288 0.0306
225 160 82 3565.315 0.0294
210 140 89 3525.608 0.0271
216 182 94 3536.863 0.0288
220 178 96 3547.425 0.0298
227 182 92 3566.575 0.0308
220 186 94 3547.164 0.0296

6 Months
225 192 92 3597.333 0.0502
255 188 90 3594.178 0.0498
240 185 70 3594.177 0.0495
230 186 45 3599.579 0.0496
244 195 20 3614.335 0.0505
250 160 35 3573.708 0.047
245 150 56 3558.847 0.046
235 170 35 3584.164 0.048
230 145 60 3552.266 0.0455

Base Image
127 114 81 3511.887 0.0097
126 115 77 3513.681 0.0091
84 119 91 3514.303 0.0021
109 88 20 3494.335 −1.7E-18
84 40 10 3443.317 −0.006
109 113 29 3519.853 0.0009
124 112 36 3517.893 0.0046
120 102 25 3508.935 0.0027
104 51 57 3447.193 0.0027

3 months
234 182 81 3588.732 0.0311
255 185 88 3591.285 0.036
231 165 67 3572.745 0.0291
220 180 34 3594.803 0.0236
244 190 10 3610.737 0.026
245 150 29 3563.804 0.0281
226 145 38 3556.195 0.0252
227 162 26 3576.902 0.0242
228 164 54 3573.962 0.0272

differs from normal breast tissue. Cancer cells divide
more quickly and have a greater metabolic rate, which
can alter their physical characteristics, such as their
thermal conductivity and heat capacity. According to
the statement, larger pixel values were seen at 3, 6, and
12 months compared to a baseline image, indicating
that the heat capacity and thermal conductivity of the
R, G and B pixels in breast cancer images increased over
a period of time.

Figure 10 shows the region properties of heat ampli-
fied cancer cell thermal images such as boundary, cen-
troid and area of baseline, 3, 6, 9 and 12 months. Breast
cancer is a complex disease that is diagnosed based on
various characteristics of the affected region. A breast
cancer image’s boundary refers to the lesion’s margins
and boundaries. The area of a breast cancer comprises

of the size, shape, position and density of the malignant
tissue. The centroid denotes the geometric centre of the
tumour.

Figures 11 and 12 display the confusionmatrices and
statistical analysis of Heat amplified cancer cell thermal
images, which are summarized in Table 3. The con-
fusion matrix is obtained through comparison of the
predicted tissue with the actual tissue statistical analysis
includes performance metrics such as accuracy, pre-
cision, recall and F-measure. Based on these metrics,
recognition accuracy is detected for the breast cancer
at earlier stage. Traditional techniques for breast can-
cer detection take up to 10 years, however breast cancer
cells multiply rapidly over a 90-day period. Therefore,
thermogram screening of a 37-year-old woman within
one year is analysed for theT1 stage cancer. Similarly, 50
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Figure 10. Region properties of breast cancer heat amplified cancer cell thermal images.

T1 stage cancer patients were analysed and achieved a
recognition accuracy of 98% for T1stage cancer patient.

4.2. Size of a breast cancer

Early breast cancer detection is essential for suc-
cessful management and therapy. Physicians utilize
computer-aided detection tools and automaticallymea-
sure the size of the breast cancer in addition to
manual measurements. The proposed MWTDnCNN
method enhances the area with the greatest temper-
ature value of T1 cancer cells. The MWTDnCNN
identifies the cancer location automatically based on
the highest pixel intensity. MWTDnCNN method is
effective for precise cancer size measurements and
shown in Figure 13. Table 4 displays the actual size
and stage of the breast cancer. Table 5 compares
the thermal breast detection using different imaging
modalities.

1. Arrange the Region Properties of an image such
as area, centroid and bounding box in highest to
lowest.

2. Crop the largest bounding box of an image.
3. Then assign the camera calibration factor as 0.025

for each pixel.

4. Calculate size = width∗pixel∗height∗pixel
5. Based on size, analyse the tumour stage

Hence, the estimated size of a tumour is 1.29mmand
it indicates the stage is T1a. But the actual size of the
tumour is 1 mm.

Table 6 shows the comparison of existing and the
proposed methods based on the precision, recall and
accuracy. The proposed MWTDnCNN method tracks
temperature changes over 90-day period in patients
with a history of breast cancer and T1 stages cancer
cells. MWTDnCNN method has greater accuracy and
sensitivity, and detects T1a stage breast cancer cell of
size below 1.29 mm in size.

5. Conclusion

Breast cancer is detected using different methods such
as mammograms, ultrasound imaging and MRI tech-
niques. Thermography is used for the identification
of breast cancer by detecting the highest tempera-
ture variation among the normal and cancer cells of
the breast region. The cancer cell has increased blood
flow in the cancerous regions. Kullback–Leibler diver-
gence eliminates undesired noise in heat-amplified
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Figure 11. ConfusionMatrix of Base, 3Months, 6Months, 9Months, 12Months of Heat amplified cancer cell thermal images Region.

cancer cell thermal images. Then, the Multiwavelet-
based Deep Denoised Convolutional Neural Network
(MWTDnCNN) is applied, enhancing the T1 stage
cancer cell regions. The T1 cancer cell regions were

detected using an adaptive binary threshold, and the
rectangular shape-based regions were marked as the
highest thermal conductivity and heat capacity (Cp)
regions. Compared with traditional algorithms, the
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Figure 12. Breast Cancer Precision, Recall, Accuracy and F1-measure of 90 days Period.

Table 3. Statistical Analysis of base, 3, 6, 9 and 12 Months heat amplified cancer cell.

Image TP TN FP FN Precision Recall Accuracy F-measure TPR FPR

Base 480 491 4 15 0.9917 0.9697 0.98 0.98 0.9697 0.0081
3 Months 490 480 15 5 0.9703 0.9907 0.9798 0.98 0.9899 0.0303
6 Months 492 485 3 10 0.9801 0.9939 0.9869 0.987 0.9939 0.0202
9 Months 485 475 10 20 0.9604 0.9798 0.9697 0.97 0.9798 0.0404
12 Months 492 482 3 13 0.9743 0.99 0.9838 0.9840 0.9939 0.0263

Figure 13. Size of breast cancer.

Table 4. Tumour size and stage.

Stage Size

T1mi 1mm
T1a > 1 mm and < 5 mm
T1b > 5 mm and < 10 mm
T1c > 10 mm and < 20 mm

Table 5. Comparision of differernt imagingmodalities with dif-
ferent patients.

Patient Methodology cancer size detection

Patient 1 [34] Mammography > 20 mm
Patient 2 [34] Mammography 40mm
Patient 3 [35] Magnetic Resonance

Imaging
22.53 mm

Patient 4 [36] Clinical Examination 12.17 mm
Patient 5 [37] PET 20 mm
Patient 6(Proposed
MWTDnCNN)

Thermogram Image 1 mm

proposed method achieves an accuracy of 98%. Fur-
thermore, the method can be extended with magnetic
amplification of cancer cells and detection of T1 cancer
cells.

Table 6. Comparison of breast cancer detection.

Algorithm /methods Accuracy Precision Recall

CNN [33] 0.854 0.842 0.88
Deep CNN [38] 0.958 0.94 0.92
Deep CNN with Attention
Mechanism [39]

0.993 0.96 0.94

VGG 16 [40] 0.83 0.84 0.86
Unet+2 class CNN [41] 0.993 0.98 0.96
HOG [42] 0.958 0.946 0.954
Statistical [43] 0.901 0.90 0.91
Texture [44] 0.795 0.797 0.798
MWTDnCNN (Proposed
method)

0.98 0.99 0.9743
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