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ABSTRACT
The rise of cyber threats, particularly URL-based phishing attacks, has tarnished the digital age
despite its unparalleled access to information. These attacks often deceive users into disclos-
ing confidential information by redirecting them to fraudulent websites. Existing browser-based
methods, predominantly relying on blacklist approaches, have failed to effectively detect phish-
ing attacks. To counteract this issue, we propose a novel system that integrates a deep learning
model with a user-centric Chrome browser extension to detect and alert users about potential
phishing URLs instantly. Our approach introduces a Knowledge Distilled ELECTRAmodel for URL
detection and achieves remarkable performance metrics of 99.74% accuracy and a 99.43% F1-
score on a diverse dataset of 450,176 URLs. Coupled with the browser extension, our system
provides real-time feedback, empowering users to make informed decisions about the websites
they visit. Additionally, we incorporate a user feedback loop for continuous model enhance-
ment. Thiswork sets a precedent by offering a seamless, robust, and efficient solution tomitigate
phishing threats for internet users.
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1. Introduction

In today’s digitally connected world, where the inter-
net underpins essential activities from social interac-
tions to financial transactions, cyber security threats
have become more pervasive than ever. Among these
threats, phishing attacks stand out as particularly
insidious, exploiting both technological vulnerabilities
and human psychology to deceive unsuspecting users.
Despite concerted efforts to combat these threats, the
landscape of cyber crime continues to evolve rapidly,
with phishing attacks reaching unprecedented lev-
els of sophistication and prevalence. The year 2023
marked a grim milestone in the battle against phish-
ing, as evidenced by the alarming statistics revealed
in the Anti-Phishing Working Group (APWG) report,
which documented nearly five million reported phish-
ing attacks over the year, surpassing the previous record
set in 2022. The APWG report for 2023 reveals the
monthly count of unique phishing websites, as illus-
trated in Figure 1. Notably concerning is the peak value
of 619,060 recorded in March, while even the low-
est count, observed in June, remained above 300,000,
specifically at 306,847. It is evident that traditional
approaches to prevention and detection are falling short
in the face of this escalating threat.

Despite ongoing advancements in cybersecurity,
existing phishing mitigation strategies face critical lim-
itations that leave users vulnerable to increasingly

sophisticated attacks. User awareness campaigns, while
essential, often fall short due to the constantly evolv-
ing tactics of cybercriminals. Similarly, traditional
software-based detection systems, reliant on static
blacklists and heuristic algorithms, struggle to keep
pace with the dynamic and adaptive nature of phish-
ing attacks. These gaps underscore the urgent need
for more sophisticated, real-time detection solutions
that can adapt to emerging threats. This is where the
intersection of machine learning and cyber security
holds tremendous promise. By harnessing the power of
advanced machine learning techniques, such as deep
learning, it becomes possible to develop dynamic and
adaptive systems capable of identifying phishing URLs
with unprecedented accuracy and speed [1].

Addressing these critical gaps, our research intro-
duces a novel phishingURLdetection system that lever-
ages advanced deep learning methodologies integrated
with user-friendly browser extensions. This approach
not only enhances the accuracy of phishing detection
but also adapts in real-time to new and evolving threats.
By empowering users with an intuitive, proactive tool,
our solution has the potential to significantly reduce the
incidence of phishing attacks, thereby contributing to a
safer online environment for individuals and organiza-
tions alike. The practical implications of our proposed
model are far-reaching. In practice, this system can
be seamlessly integrated into existing web browsers,
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Figure 1. Number of unique phishing web sites detected in 2023.

offering real-time protection against phishing attacks to
millions of users worldwide. Moreover, its adaptability
ensures that it can be effectively deployed across criti-
cal sectors such as finance, healthcare, and e-commerce,
where the stakes of phishing attacks are particularly
high. The system’s ability to learn from new phishing
attempts in real-time ensures that it remains effective
even as cyber threats continue to evolve.

At the heart of our method lies the Knowledge
Distilled ELECTRA model, meticulously crafted and
optimized for the task of URL classification. By lever-
aging the latest advancements in machine learning, we
aim to revolutionize real-time phishing URL detection,
empowering users to navigate the complexities of the
online world with confidence and security. The contri-
butions of this work are significant, revolutionizing the
landscape of cybersecurity by:

• Introducing a pioneering method that merges deep
learning with browser extensions to detect phishing
URLs in real-time, marking a fundamental shift in
prevention techniques.

• Leveraging the Knowledge Distilled ELECTRA
model, meticulously crafted for URL classification,
significantly enhances detection accuracy.

• Providing user-friendly browser extensions, our
solution empowers individuals to make informed
decisions and reduce the risk of falling prey to phish-
ing attacks.

• Offering a comprehensive examination of our app-
roach, including methodologies, empirical evalua-
tions, and implications for cyber security research
and practice, this paper advances knowledge in the
field.

The paper unfolds as a comprehensive explo-
ration of our groundbreaking approach, structured

to provide readers with a deep understanding of the
challenges, methodologies, results, and implications of
our research. Section 2 delves into current phishing
detection methodologies, highlighting their limitations
and the necessity for novel solutions. Section 3 unveils
the architecture of the Knowledge Distilled ELECTRA
model and its integration with browser extensions.
Section 4 presents empirical evaluations, showcasing
system performance across diverse phishing URLs and
examines the implications of the findings for cyber
security research and practice. Finally, Section 5 con-
cludes with reflections on the significance of our con-
tributions and future directions for real-time phishing
URL detection.

2. Related works

In phishing URL detection employing machine learn-
ing, a rich body of literature encompasses tradi-
tional and contemporary methodologies, addressing
the evolving landscape of cyber threats [2]. This
section overviews fundamental studies, categorizing
them into Machine Learning-Based Techniques, Deep
Learning-Based Techniques, and Web Browser Exten-
sion Approaches.

2.1. Machine learning-based techniques

A diverse array of studies has contributed to the
dynamic landscape of phishing detectionusingmachine
learning techniques. Odeh et al. [3] explored machine
learning techniques for detecting phishing domains by
applying CatBoost, XGBoost, and LightGBM models.
Their analysis, based on the UCI phishing domains
dataset, revealed that the CatBoost model outper-
formed the others and exceeded the performance
of earlier methods, utilizing 18 extracted features.
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Qasem et al. [4] implemented ShallowNeural Networks
(SNNs) and Decision Trees (DT) in their phishing URL
detection system. They used two datasets consisting of
58,645 and 88,647 URLs, containing a total of 111 fea-
tures. In another work, Qasem et al. [5] introduced a
two-layer machine learning system to detect malicious
URLs, first classifying them as benign or malicious,
and then further categorizing them into five classes.
The system, tested on the ISCX-URL2016 dataset,
employed four ensemble methods: bagging trees, k-
nearest neighbour, boosted decision trees, and subspace
discriminator. Sheikhi et al. [6] proposed a model that
extracts features and selects relevant ones using a firefly
algorithm. This model then detects malicious websites
by employing XG Boost, which has been optimized
using Particle Swarm Optimization.

Hannousse and Yahiouche [7] adopted a holistic
approach, integrating machine learning, visual similar-
ity, and heuristics, achieving optimal accuracy. Rashid
et al. [8] explored phishing detection using Support
Vector Machine, achieving commendable accuracy.
Basit et al. [9] employed various machine learning
algorithms, detecting phishing attacks with 97.33%
accuracy. Stobbs et al. [10] combined machine learn-
ing, heuristics, and list-based approaches, demonstrat-
ing optimum results with Random Forest. Abedin
et al. [11], Alam et al. [12], Sindhu et al. [13],
Kasim [14], and others [15–19] each brought distinc-
tive approaches, achieving high accuracies but facing
challenges such as limited datasets and algorithmic
dependencies.

2.2. Deep learning-based techniques

In the pursuit of effective phishing website detection,
recent research has explored innovative approaches,
particularly leveraging the capabilities of deep learning
techniques. Several studies have demonstrated promis-
ing results in this domain. Wang et al. [20] created a
malicious URL detection model with a dynamic con-
volutional neural network (DCNN) that incorporates a
new folding layer and k-max-pooling instead of tradi-
tional pooling. The model adjusts feature mapping and
pooling parameters according to URL length and con-
volution depth to improve feature extraction. Manika
and Shivani [21] developed the BiLSTM-GHA-CNN
for phishingURL detection. The BiLSTM captures con-
text, the CNN extracts key features, and the highway
network enhances feature extraction and convergence
speed. A gating mechanism balances the outputs from
both the CNN and BiLSTM. Saad et al. [22] introduced
a phishing detection model called PDGAN that relied
solely on a website’s URL. The model used a GAN
with an LSTM as the generator and a CNN as the dis-
criminator. Zaimi et al. [23] suggested a method that
uses permutation importance to pick out important fea-
tures and the SMOTE-Tomek link method to deal with

imbalanced datasets. The system also uses the XGBoost
classifier and four deep learning models to categorise
URLs. Alshingiti et al. [24] proposed a method that uti-
lizes LSTM, CNN, and a hybrid model (LSTM–CNN).
They applied a SelectKBest feature selection model to
select 30 features from an initial set of 80. Sahingoz
et al. [25] implemented five deep learning-based meth-
ods and presented their results to showcase the impact
of deep learning on phishing URL classification. All
the models outperformed traditional machine learn-
ing models. Barath et al. [26] proposed a CNN-based
phishing URL detection system called BaitNet, which
achieved high accuracy when trained on a dataset of
100,000+URLs. However, implementing this system as
a real-time website for detecting phishing URLs is not
feasible because it would require users to check each
website through a separate platform, which is impracti-
cal and inefficient.

Bu and Cho [27] employed a recurrent neural
network (RNN) in a heuristic framework, achieving
enhanced sensitivity but acknowledging a focus on
character-level features, suggesting potential improve-
ments with a broader consideration of web address
structure. Korkmaz et al. [28] utilized a convolutional
neural network (CNN) for detecting phishing URLs,
reporting an 88.90% accuracy rate. Feng and Yue [29]
showcased the effectiveness of RNN models, achiev-
ing a detection accuracy of 99.50%, albeit with a lim-
ited exploration of algorithms and features. Meanwhile,
Sirigineedi et al. [30] employed a combination of neu-
ral network models and machine learning classifiers,
achieving a commendable accuracy of 96.60% but faced
challenges with the utilization of external URL fea-
tures. Anil Kumar Yamarthy and Ch Koteswararao [31]
have proposed a highly accurate phishing attack detec-
tion model. They balance data using Adv-SyN, extract
features with DSelSa, optimize feature selection using
OpGoA, and employ classification via MDepthNet.
Additionally, recent studies [29,32–45] have collectively
underscored the ongoing advancements in employ-
ing deep learning for robust phishing detection. These
endeavors highlight the potential of deep learning
models to improve sensitivity and accuracy in detect-
ing phishing attacks. However, they also reveal areas
for further exploration and refinement in address-
ing real-time analysis, adapting to emerging threats,
and improving model generalization to novel attack
patterns.

2.3. Web browser extension approaches

In the domain of web browser extension-based solu-
tions for phishing detection, innovative studies
have emerged to enhance real-time protection.
Atimorathanna et al. [46] presented an extensive anti-
phishing protection system, integrating a browser
extension, an email detection plug-in, and a machine
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Table 1. Summary of recent phishing detection methods from
2019 to 2024.

Authors Used Algorithm
Challenges/
Limitations

Odeh et al. [3] CatBoost, XGBoost, and
LightGBM

Bias can occur in
manual feature
selection.

Qasem et al. [4] SNN, DT Extracting 111 features
from a real-time URL
is not feasible.

Qasem et al. [5] Bagging trees, KNN,
Boosted decision
trees, subspace
discriminator

Used 59 features from
a URL

Sheikhi
et al. [6]

PSO-XG Boost Only 36000 Urls used

Hannousse
et al. [7]

SVM, DT, LR, RF, Naive
Bayes

Manual feature
selection used

Rashid et al. [8] SVM Small dataset used
Basit et al. [9] RF, K-NN, DT, and ANN Used an open source

dataset
Stobbs
et al. [10]

Bu and
Cho [27]

CNN Used Character level
features

Korkmaz
et al. [28]

CNN Low Accuracy

Feng and
Yue [29]

RNN They used 17 features
for classification

Sirigineedi
et al. [30]

Neural Networks and M
L algorithms

Third party URL
features used.

Anil Kumar
et al. [31]

Multi Head Depth wise
Tern integrated-LSTM

Lacks dataset
adaptability

Wang et al. [20] DCNN In real-time, detection
can impact network
performance

Manika and
Shivani [21]

BiLSTM-GHA-CNN Heavy approach

Saad [22] GAN-LSTM-CNN Not Suitable for
real-time detection

Zaimi et al. [23] XG Boost, LSTM, CNN Maximum accuracy is
97.82%

Alshingiti
et al. [24]

LSTM, CNN Used small dataset

Sahingoz
et al. [25]

ANN, CNN, RNN and
attention networks

Barath
et al. [26]

CNN real-time website for
detecting phishing
URLs is not feasible

learning-based phishing detection server. Maurya et al.
[47] introduced a real-time browser plugin, combin-
ing whitelist matching, blacklist filtering, and machine
learning-based prediction. Shah et al. [48] developed
a Chrome extension utilizing machine learning to
identify phishing URLs, achieving an accuracy rate
of 89.6%. Sundaram et al. [49], Abiodun et al. [50],
Gowda et al. [51], Lizhen [52] and others explored
browser extensions, each contributing unique features
to enhance user security.

These studies collectively contribute to the ongo-
ing discourse surrounding phishing detection, offering
diverse methodologies, insights, and potential avenues
for future research in the field. While each approach
has demonstrated efficacy, challenges persist, such as
dataset limitations, algorithmic dependencies, and the
need for continuous adaptation to evolving phish-
ing techniques (Table 1). The proposed system in
this work builds upon these foundations, integrat-
ing advanced machine learning techniques with a

user-centric browser extension, setting a precedent for
seamless and efficient phishing threat mitigation in the
digital landscape.

3. Proposedmethodlology

The crux of our methodology lies in the sophistication
of our deep learning classifier model. Its effectiveness
and adaptability are pivotal in safeguarding users from
phishing threats. This model introduces a novel predic-
tionmodule, KnowledgeDistilled ELECTRA for Phish-
ing URL Detection, which employs advanced knowl-
edge distillation techniques to boost the effectiveness of
ELECTRA.

3.1. Knowledge distilled ELECTRA for phishing
URL detection

The main goal is to develop a more streamlined
and resource-efficient iteration of ELECTRA tailored
specifically for the task of detecting phishing URLs.
Figure 2 shows the knowledge distillation frame-
work that was used on the ELECTRA model. The
goal was to take knowledge from a more compli-
cated teacher model and put it into a small, effec-
tive student model that could find phishing URLs.
For our knowledge distillation framework, we opt for
the ELECTRA (Efficiently Learning an Encoder that
Classifies Token Replacements Accurately) model as
the primary architecture (Figure 3). It has proven to
be a state-of-the-art transformer-based model with
exceptional capabilities in various natural language
processing tasks. ELECTRA’s self-attention mecha-
nisms and transformer architecture let it understand
long-distance dependencies and semantic relationships
within sequences. This makes it a great choice for diffi-
cult tasks like finding phishing URLs.

3.1.1. Tokenization and input encoding
The initial phase of Knowledge Distilled ELECTA’s
phishingURL classification pipeline hinges on the intri-
cate process of tokenization. This critical step dissects
input URLs into individual units, such as words or
subwords, creating a granular representation for the
model. ELECTRA leverages its own tokenizer, specif-
ically tailored for this transformer-based architecture,
ensuring optimal vocabulary handling. This specialized
tokenizer adeptly addresses the presence of rare words
and subwords, ensuring they are accurately captured for
subsequent processing [53].

Following tokenization, special tokens are added to
the beginning and end of the sequence, playing crucial
roles in the model’s understanding of the input. These
include:

• Classification token (CLS): TheClassification token
serves as a starting point for the model, allowing it
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Figure 2. Knowledge distillation framework used on the ELECTRA model.

Figure 3. ELECTRA architecture.

to focus on the overall classification task rather than
individual tokens.

• Separator token (SEP): The Separator tokendenotes
the end of one URL and the beginning of another,
facilitating the model’s processing of multiple URLs
during batch training.

Subsequent to tokenization and special token inser-
tion, the sequence undergoes a transformation known
as input encoding. This process aims to convert the
fragmented URLs into a format compatible with the
neural network’s inner workings. Two key outputs are
produced during this step:

• Input ids: These represent numerical identifiers
assigned to each individual token, enabling the
model to efficiently decipher the sequence. Each
token is represented by a unique index in the
vocabulary. Let ti be the ith token in the URL. The
input ID for ti is the index of ti in the vocabulary:

Input ID(ti) = Index(ti) (1)

• Attention mask: This binary mask serves a critical
role in directing the model’s focus. It assigns a value
of 1 to tokens deemed relevant for analysis and 0
to those deemed irrelevant. This ensures the model
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Figure 4. Tokenization and input encoding.

Figure 5. Embedding process.

allocates its computational resources efficiently by
prioritizing key tokens for processing.

These meticulously encoded inputs, along with the
strategically placed special tokens, form the bedrock
upon which the subsequent prediction phase is built.
The carefully crafted tokenization, special token inser-
tion, and input encoding processes provide ELECTRA
with the necessary foundation to perform its crucial
task of phishing URL classification. The tokenization
process is illustrated in Figure 4 through a comprehen-
sive block diagram. For each token ti in the URL, we
represent it as a one-hot vector:

Token One-Hot Encoding(ti) = [0, 0, . . . , 1, . . . , 0]
(2)

where the ith position is 1, indicating the position of the
token in the vocabulary.

• Embedding Process: The embedding process
involves representing each token with a continuous
vector through the embedding matrix. The embed-
ding matrix E is a trainable parameter in the model.
It has dimensions (V , d), where V is the vocabulary
size, and d is the dimensionality of the embedding
vectors (Figure 5). The embedding process involves
multiplying the one-hot encoded token vector with
the embedding matrix. The embedding Embed(ti)
for a token ti is given by:

Embed(ti) = Token One-Hot Encoding(ti) × E
(3)

This operation results in the continuous vector rep-
resentation for the token ti.

During training, the parameters of the embed-
ding matrix E are updated using backpropagation and
optimization algorithms to minimize a certain loss



AUTOMATIKA 1627

function. The loss function involves the discrepancy
between the predicted embeddings and the target
embeddings, contributing to the learning of semantic
representations. The obtained embeddings serve as the
input to the subsequent Transformer Encoder Layers.

3.1.2. Transformer encoder layer withmultihead
attention, FFN, and layer normalization
Central to Distilled ELECTRA’s prowess lies the Trans-
former Encoder Layer (Figure 3). This intricate struc-
ture orchestrates key operations, including Multihead
Attention, Feedforward Neural Network (FFN), and
Layer Normalization with Residual Connection. These
mechanisms work in concert, enabling the Encoder
Layer to capture and comprehend nuanced patterns
within sequential data, serving as a vital cog in Distilled
ELECTRA’s representation learning engine.

(1) Multihead Attention Mechanism
The Transformer Block begins its operations with
the Multihead Attention Mechanism. Given the
input sequenceXi, themechanism computes atten-
tion weights for each head (h) and forms a
weighted sum of input vectors. The result, denoted
as Multihead(Xi), is a concatenation of outputs
from all heads, linearly transformed to produce the
final output [54].

Multihead(Xi) = Concat(head1, head2, . . . , headH) · WO
(4)

Here, For each head h, the input sequence Xi
undergoes linear transformations to create three
sets of vectors: Qh (Query), Kh (Key), and Vh
(Value).

Qh = Xi · WQh, Kh = Xi · WKh,

Vh = Xi · WVh
(5)

Where headh is computed as:

headh = Attention(Xi · WQi,Xi · WKi,Xi · WVi)

(6)

Attention(Qh,Kh,Vh) = softmax

(
Qh · KT

h√
dh

)
· Vh

(7)

Here, dh is the dimensionality of the Key vec-
tors in head h, and softmax applies the softmax
function element-wise. WQi, WKi, and WVi are
learnable linear transformations for query, key,
and value projections, respectively. WO is another
learnable linear transformation for the output. The
Attention function computes attention weights
and the weighted sum.

(2) Layer Normalization and Residual Connection
(First Pass)

Following the Multihead Attention Mechanism,
the input sequence undergoes a process of Layer
Normalization and Residual Connection. The ini-
tial normalization (LayerNorm1) involves adding
the original input to the output of the Multi-
head Attention Mechanism. This is followed by
another layer of normalization (LayerNorm2), fur-
ther enhancing the model’s ability to capture com-
plex dependencies.

LayerNorm1(Xi) = Xi + Multihead(Xi) (8)

X′
i = LayerNorm2(LayerNorm1(Xi) + Xi) (9)

(4) Feedforward Neural Network (FFN)
The output (X′

i) from the Layer Normalization
and Residual Connection stage is then subjected
to a Feedforward Neural Network (FFN). The
FFN introduces non-linearity through the Recti-
fied Linear Unit (ReLU) activation function. This
stage involves two linear transformations and bias
additions (Equation (10)), enhancing the model’s
capacity to extract hierarchical features.

X′′
i = ReLU(X′

i · W1i + b1i) · W2i + b2i (10)

Here, W1i, b1i, W2i, and b2i are learnable parame-
ters specific to block i.

(5) Layer Normalization and Residual Connection
(Second Pass)
Post-FFN, another round of Layer Normalization
andResidualConnection is applied (LayerNorm3).
Similar to the first pass, the output is enriched by
the addition of the initial input sequence, forming
the final output of the Transformer Block.

LayerNorm3(X
′′′
i) = X′′′

i + X′′
i (11)

Outputi = LayerNorm3(X
′′′
i) + X′′

i (12)

This orchestrated sequence of operations, involv-
ing Multihead Attention, FFN, and Layer Normaliza-
tion with Residual Connection, is repeated across mul-
tiple Transformer Blocks in the model architecture.
The layer-wise application of these operations enables
the model to efficiently capture intricate patterns and
dependencies within sequential data, forming the basis
for its powerful representational learning capabilities.
These outputs encapsulate contextualized representa-
tions of individual tokens within the input sequence.
LetH be the matrix representation of these contextual-
ized embeddings, where H ∈ R

L×D, with L represent-
ing the sequence length and D denoting the hidden
size.

Sequence embedding = 1
L

L∑
i=1

Hi (13)

This operation computes the average of the embed-
dings along the sequence length dimension, resulting
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in a condensed, fixed-size vector. Each Hi signifies the
contextualized embedding of the ith token, capturing
its significance within the broader sequence context.

This sequence embedding effectively captures essen-
tial information from the entire sequence, providing a
contextually rich representation. This vector, derived
from mean pooling, serves as a compact input for sub-
sequent layers, including the sequence classification
head.

3.1.3. Discriminator head
The Discriminator Head operates by transforming the
high-dimensional Sequence embedding representation
using a linear layer. This transformation involves learn-
ing a set of weights and biases that map the pooled
output to a one-dimensional vector. Let SE denote the
Sequence embedding, and let W and b represent the
weights and biases of the linear layer, respectively. The
operation of the Sequence Classification Head can be
expressed as follows:

Logits(z) = SE · WT + b (14)

Here, W is the weight matrix of dimensions (D, 1),
transposed for the matrix multiplication and, b is a bias
term, a scalar. The output, denoted as Logits, repre-
sents the model’s raw predictions before applying any
activation function. After applying the sigmoid activa-
tion function to the raw predictions (Logits), the output
can be denoted as Probabilities. Mathematically, this
transformation is expressed as:

Probabilities = σ(Logits) (15)

The resulting Probabilities vector represents the likeli-
hood of the corresponding input sequence belonging to
the positive class. The sigmoid function squashes the
raw scores into the range [0, 1], providing a probability
distribution.

3.1.4. Knowledge distillation
Knowledge distillation is a machine learning technique
that involves transferring knowledge from amore com-
plex teacher model to a simpler student model. This
process leverages soft labels, which are probability dis-
tributions over classes provided by the teacher model,
in addition to traditional hard labels. The smoothness
of these distributions is controlled by a temperature
parameter, allowing for more nuanced learning for the
student. The training objective combines a standard
classification loss with a distillation loss, where the lat-
ter measures the divergence between the student’s pre-
dictions and the softened predictions of the teacher.
The distillation loss in knowledge distillation is calcu-
lated using Kullback–Leibler (KL) divergence between
the softmax distributions of the student and teacher
logits. The overall loss is a weighted sum of these com-
ponents, with the weighting factor (λdistill) determin-
ing the trade-off between classification and distillation

objectives. The equation for the Total loss is as follows:

Classification Loss(Lcls) = CrossEntropy(zs, labels)

(16)

Distillation Loss(Ldist)

= KL
(
logsoftmax

(zs
T

)
, softmax

(zt
T

))
(17)

Ltotal = Lcls + λdistill × Ldist (18)

Here, zs represents the logits from the student model, zt
represents the logits from the teachermodel, andT rep-
resents the temperature parameter. The KL divergence
measures the information lost when the student’s pre-
dictions are compared to those of the teacher, encourag-
ing the student to mimic the softer knowledge encoded
in the teacher’s logits.

After calculating the total loss, the next steps
involve backpropagation and optimization. Gradients
are computed to understand parameter influences,
and the AdamW optimization algorithm iteratively
adjusts student model parameters to minimize the total
loss. This process is repeated over multiple epochs,
refining the student model to capture both ground
truth labels and knowledge from the teacher model.
Algorithm 1 describes the knowledge distillation pro-
cess used to train a student model based on a teacher
model.

3.2. Systemmodel

The proposed model is a multifaceted approach that
encompasses various components, each meticulously
designed to ensure the robustness and effectiveness of
our AI-powered web browser extension for real-time
phishing URL detection. The workflow, illustrated in
Figure 6, smoothly progresses through a succinct series
of steps meticulously explained.

(1) User Installs and Activates Chrome Extension:
Users install and activate the Chrome extension,
integrating it into their browser for real-time
phishing detection.

(2) URL Monitoring by the Extension: The exten-
sion actively monitors URLs accessed by the user
during their browsing sessions, capturing real-
time data.

(3) URL Preprocessing (Client Side): Before send-
ing a URL to the server, the client-side pre-
processing module cleans the URL. This step
optimizes data transfer and reduces server
load.

(4) Secure Data Transmission (Client Side): The
pre-processed URL features are securely trans-
mitted to the server for analysis. Encrypted com-
munication, such as HTTPS, is employed to
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Figure 6. Architecture of the deep learning-based browser extension for real-time phishing URL detection.

Algorithm 1 Knowledge Distillation process of ELEC-
TRA
Require: Teacher model with logits zt , Student model

with logits zs, Temperature parameter T, Distilla-
tion loss weighting factor λdistill, etc.

Ensure: Trained student model parameters �S
1: Training Process:
2: Initialize student model parameters �S
3: for each epoch t do
4: Set teacher model to evaluation mode
5: Set student model to training mode
6: for each batch Bi in training data do
7: zt = Teacher(xi)
8: zs = Student(xi)
9: Lcls = CrossEntropy(zs, labels)
10: Ldist = KL(log_softmax( zsT ), softmax( ztT ))

11: Ltotal = Lcls + λdistill × Ldist
12: Backpropagate gradients: ∇�SLtotal
13: Update student model parameters using

optimizer
14: end for
15: Compute average training loss for epoch
16: end for
17: Evaluation:
18: Evaluate student model on validation/test data
19: Calculate evaluation metrics: accuracy, F1-score,

precision, recall, FPR, FNR
20: Repeat:
21: while not converged do
22: Continue training for next epoch
23: end while

preserve user privacy during data transmission.
The server-side API endpoint receives the pre-
processed URL features from the client, acting as
the central hub for communication.

(5) Knowledge Distilled ELECTRA Model Predic-
tion (Server Side): The Distilled ELECTRA-
based prediction module processes the received
URL and classifies the URL as safe or suspicious
based on learned patterns.

(6) Results Sent Back to Chrome Extension: The
prediction results are sent back to the Chrome
extension through the API endpoint, providing
real-time feedback on the safety status of the
accessed URL

(7) User Notifications (Client Side): The Chrome
extension displays real-time notifications to the
user based on the prediction results, indicating
whether the accessed URL is Safe, Suspicious, or
Dangerous.

(8) User Feedback Loop (Client Side): The exten-
sion provides a user interface allowing users to
report false positives/negatives, actively involving
users in improving the system’s accuracy.

(9) Continuous Learning and Model Update
(Server Side): The server-side continuous
learning system periodically re-trains the KD-
ELECTRA model using new data, incorporating
user feedback into the training dataset for ongo-
ing improvement.

(10) Continuous Learning from Updated Dataset:
The server periodically acquires an updated
dataset that combines new labelled data with
existing information.This dataset includes the lat-
est insights into evolving phishing patterns, user
behaviour, and feedback. The KD-ELECTRA
model undergoes a retraining process using this
updated dataset, enhancing its ability to adapt to
emerging threats.

(11) Saving the New Model to Model Database:
After completion of the retraining process, the
newly updated KD ELECTRA model is saved
in the model database.This database serves as a
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repository for storing different versions of the
model, allowing the system to maintain a history
of improvements and changes over time. Each
model version is timestamped or versioned to
track the evolution of the model.

(12) Loading the Updated Model to the Prediction
Module: The server ensures a seamless transi-
tion by loading the newly updated KD ELEC-
TRAmodel into the predictionmodule. This step
involves replacing the previous model with the
most recent version, enabling the system to make
predictions based on the latest knowledge.

(13) Update and Feedback Processing (Server Side):
The update and feedback processor regularly
checks the feedback database for new entries,
using insights from user feedback to update the
list of known phishing URLs and patterns in the
update database.

4. Result and analysis

Evaluating the Knowledge-Distilled ELECTRA model
has yielded insightful results, providing a compre-
hensive understanding of its effectiveness in detecting
phishing attacks.

4.1. Experimental setup

The knowledge distillation experiments for training
the ELECTRA model were conducted on a high-
performance computing system. The system was
equipped with an Intel Xeon w5-2465X processor run-
ning at 3.10 GHz, providing substantial computational
power. The operating system utilized for the experi-
ments was Microsoft Windows 11, ensuring a user-
friendly environment for seamless execution. Accel-
erating the training process, an NVIDIA RTX A6000
graphics card was employed, leveraging GPU par-
allelism. The system boasted a remarkable 512 GB
of installed RAM, facilitating the handling of large
datasets and complex model architectures. This pow-
erful hardware and software configuration created an
optimal environment for efficient and effective model
training.

4.1.1. Dataset collection & data cleaning
During the data collection phase, we acquired Several
distinct datasets from Kaggle and PhishStorm. Upon
acquisition of the dataset, a comprehensive data cleans-
ing process was executed, encompassing several stages:

(1) Elimination of Duplicates: Systematic scanning
and removal of duplicate URLs were performed to
ensure the uniqueness of each entry and prevent
redundancy.

(2) Addressing Missing Values: The dataset under-
went meticulous examination for instances of

Table 2. Dataset details.

Dataset Sources Count URLs

A Kaggle 11430 Phishing: 5717
Legitimate: 5713

B Phishstorm [55] 95913 Phishing: 47904
Legitimate: 48009

C Kaggle, Phish Tank, and
Majestic million

450176 Phishing: 104438
Legitimate: 345738

missing or null values. Depending on the extent
of missing data, rows with such values were either
purged or methods like mean imputation or inter-
polation were applied.

(3) Exclusion of Irrelevant Columns: Columns
deemed irrelevant for analysis, such as timestamps
or extraneousmetadata, were excised to streamline
the dataset.

(4) Ensuring Label Cohesion: Rigorous validation
was conducted to ensure the consistency and accu-
racy of labels denoting whether each URL indi-
cated phishing or legitimate activity. This valida-
tion process involved cross-referencing the labels
with the URLs themselves to affirm correctness.

(5) Dataset Segmentation: Subsequently, the cleansed
dataset was partitioned into distinct subsets for
training, validation, and testing purposes, facilitat-
ing subsequent tasks such as model training and
performance evaluation.

Through these meticulous procedures, the dataset
was thoroughly cleansed and primed for subsequent
analysis and modelling endeavors, adhering to prin-
ciples of academic integrity and originality. Specific
details of the dataset can be found in the accompanying
Table 2. The dataset comprises two columns, namely
“url” and “type,” where the “type” column encompasses
two categories: “legitimate” and “phishing”.

4.1.2. Hyper parameter details
The training of the Knowledge distilled Electra model
involves key hyperparameters, summarized in Table 3.
The number of epochs is set to 10, with a distilla-
tion weight of 0.5. The AdamW optimizer is employed
with a learning rate of 0.000005. The model architec-
ture comprises a teacher model (“google/electra-base-
discriminator”) and a student model (“google/electra-
small-discriminator”). Tokenization parameters include
a maximum sequence length of 512, with padding and
truncation. The dataset is split into training (80%), val-
idation (10%), and test (10%) sets. A batch size of 16
is used during training and evaluation. These hyper-
parameters collectively define the training configura-
tion, influencing themodel’s performance in classifying
URLs.
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Table 3. Hyperparameter details for electra model training.

Category Hyperparameter Description Values or Setting

Training Parameters num_epochs Number of training epochs 10
lambda_distill Weight assigned to the distillation loss 0.5

Optimizer Learning Rate Learning rate for the AdamW optimizer 5 × 10−5

Data Processing max_length Maximum length of input sequences during
tokenization

512

padding Padding applied during tokenization Applied
truncation Sequences longer than max_length truncated Applied

Data Split Training Set Ratio Percentage of the dataset used for training 80%
Validation Set Ratio Percentage of the dataset used for validation 10%
Test Set Ratio Percentage of the dataset used for testing 10%

Data Loader batch_size Number of samples in each batch during
training/evaluation

16

4.1.3. Evaluationmetrics
In the context of phishing URL classification, the per-
formance of the model can be evaluated using sev-
eral metrics. These metrics provide insights into how
well the model is performing in distinguishing between
phishing and legitimate URLs.

• Accuracy: Accuracy is a metric that evaluates the
overall correctness of the model’s predictions by
determining the proportion of accurately classified
URLs, encompassing both phishing and legitimate,
relative to the total number of URLs assessed.

Accuracy = Pc + Lc
Pc + Lc + Pinc + Linc

(19)

Where:
(1) Pc is the number of phishing URLs correctly

classified as phishing.
(2) Lc is the number of legitimate URLs correctly

classified as legitimate.
(3) Pinc is the number of legitimate URLs incor-

rectly classified as phishing.
(4) Linc is the number of phishing URLs incorrectly

classified as legitimate.
• Precision: Precision assesses the accuracy of pos-

itive predictions generated by the model. Specifi-
cally in the domain of phishing URL classification, it
gauges the proportion of accurately classified phish-
ing URLs among all URLs that were predicted as
phishing. Mathematically, precision is computed as
the ratio of the number of phishing URLs correctly
identified as phishing (Pc) to the sum of Pc and the
number of legitimate URLs mistakenly classified as
phishing (Pinc).

Precision = Pc
Pc + Pinc

(20)

• Recall (Sensitivity): Recall, also known as sensitiv-
ity, assesses the model’s ability to capture all positive
instances. It measures the proportion of correctly
classified phishing URLs among all actual phishing
URLs.

Recall = Pc
Pc + Linc

(21)

• False Positive Rate (FPR): The False Positive Rate
(FPR) measures the proportion of legitimate URLs
that are incorrectly classified as phishing among all
actual legitimate URLs.

FPR = Pinc
Pinc + Lc

(22)

• False Negative Rate (FNR): The False Negative Rate
(FNR) measures the proportion of phishing URLs
that are incorrectly classified as legitimate among all
actual phishing URLs.

FNR = Linc
Pc + Linc

(23)

• F1-score: The F1-score is the harmonic mean of
precision and recall, providing a balanced measure
of the model’s performance. It considers both false
positives and false negatives.

F1-score = 2 × Precision × Recall
Precision + Recall

(24)

The layout of the confusion matrix is depicted in
Figure 7.These metrics collectively provide a com-
prehensive evaluation of the model’s performance in
phishing URL classification.

4.2. Evaluation of KD-ELECTRAwith different
datasets

The performance of KD-ELECTRA was thoroughly
evaluated across three distinct datasets (A, B, and C)
using various essential evaluation metrics over differ-
ent training epochs. The results are presented inTable 4,
offering a comprehensive overview of KD-ELECTRA’s
behaviour across diverse datasets and training itera-
tions. Each dataset is examined at different training
epochs, showcasing key metrics such as Accuracy, F1
Score, Precision, Recall, False Positive Rate (FPR), and
False Negative Rate (FNR). These metrics allow for
a detailed analysis of the model’s performance under
varying conditions.

Among the three datasets, KD-ELECTRA exhibits
the most remarkable performance on Dataset C, where
it achieves exceptional accuracy and precision. This
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Table 4. Performance metrics for different epochs on each dataset.

Dataset Epochs Accuracy F1 Score Precision Recall FPR FNR

5 0.9466 0.9461 0.9657 0.9272 0.0336 0.0728
A 20 0.9545 0.9534 0.9744 0.9333 0.0244 0.0667

50 0.9414 0.9403 0.9514 0.9296 0.0470 0.0704
75 0.9379 0.9352 0.9715 0.9014 0.0261 0.0986

5 0.9853 0.9855 0.9799 0.9911 0.0089 0.0205
B 20 0.9868 0.9866 0.9915 0.9817 0.0083 0.0183

50 0.9732 0.9730 0.9760 0.9700 0.0235 0.0299
100 0.9704 0.9702 0.9720 0.9684 0.0315 0.0315

5 0.9974 0.9943 0.9962 0.9925 0.0012 0.0075
C 10 0.9966 0.9926 0.9997 0.9855 0.0001 0.0145

15 0.9960 0.9960 0.9983 0.9938 0.0017 0.0062
20 0.9955 0.9956 0.9979 0.9933 0.0021 0.0067

Figure 7. Layout of a confusion matrix.

dataset showcases the model’s capability to deliver
highly precise results, making it particularly well-suited
for tasks where precision is of utmost importance. Fol-
lowing closely behind, Dataset B demonstrates strong
performance metrics, especially in terms of F1 Score
and Precision, indicating its reliability for various clas-
sification tasks. On the other hand, Dataset A, while
still showing commendable performance, exhibits a
slight decrease in its metrics compared to the other
two datasets, particularly as the number of training
epochs increases. In summary, KD-ELECTRA displays
promising and robust performance across all datasets,
with its standout performance on Dataset C, closely
trailed by Dataset B. These insights offer valuable
guidance for further optimizing and employing KD-
ELECTRA in specific tasks, considering the desired
balance between accuracy, precision, and recall require-
ments.

The Figure 8 depicts the False Positive Rate (FPR)
and False Negative Rate (FNR) across three datasets
(A, B, and C). It reveals a clear distinction in per-
formance between Dataset C and Datasets A and B.
While both FPR and FNR forDataset C are significantly

lower, hovering around 0.0012 and 0.0075 respectively,
Datasets A and B show higher error rates.

The Figure 9 depicts the performance metrics across
three datasets (A, B, and C). It reveals a significant
improvement in performance in Dataset C. Dataset
C achieves the highest values in all metrics, reaching
near-perfect performance with an Accuracy of 0.9974,
F1 Score of 0.9943, Precision of 0.9962, and Recall
of 0.9925. Conversely, Dataset A exhibits the low-
est performance, particularly in Recall (0.9333) which
indicates a higher chance of missing true positive
cases. Dataset B falls between the two, demonstrating
a moderate improvement over Dataset A in all met-
rics. The Figure 10 provides a visual representation
illustrating the F1-Recall comparison of KD-ELECTRA
across three datasets, namely A, B, and C. Finally,
Figure 11 presents the confusion matrix for the test
dataset.

4.3. Prototype implementation

The system architecture of the phishing detection pro-
totype is meticulously designed to seamlessly inte-
grate the Google Chrome extension with a Flask-based
server. This client-server model ensures efficient com-
munication and real-time processing of URLs. Our
implementation leverages a carefully selected set of
technologies to ensure the robustness and efficiency of
the phishing detection system. JavaScript, as the pri-
mary scripting language, enables dynamic user interac-
tion and real-timeURLmonitoring. Chrome Extension
APIs provide access to essential browser features for
smooth integration. HTML and CSS are employed to
structure and style the user interface, offering a visually
appealing and user-friendly extension. On the server
side, Flask serves as the backend framework, efficiently
handling API requests. The KD ELECTRA model acts
as the prediction module. An SQLite database stores
critical information, including the latest model version,
user feedback, and the existing URL database. A ded-
icated processor component is included for user feed-
back integration. Security measures include HTTPS
for encrypted communication andURL anonymization
to preserve user privacy. Figure 12 illustrates how the
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Figure 8. The FPR and FNR values of the KD ELECTRA model using different datasets.

Figure 9. The best performance metrics of the KD ELECTRA model using different datasets.

extension displays a legitimate URL, while Figure 13
demonstrates its representation of a phishing URL.

4.4. Comparisonwith baselinemodels

We compare the performance of our proposed KD-
ELECTRA model with the baseline models across

all datasets. Table 5 presents the performance met-
rics of different models on each dataset. For Dataset
A, KD-ELECTRA achieves an accuracy of 95.45%,
surpassing all other models including LSTM, GRU,
CNN, and Distil-BERT. Additionally, KD-ELECTRA
demonstrates high precision and recall values, indicat-
ing its effectiveness in accurately detecting phishing
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Figure 10. The F1-Recall comparison of the KD ELECTRA model using different datasets.

Figure 11. Confusion matrix of KD-ELECTRA on Dataset C.

Figure 12. Model detecting legitimate URL.

Figure 13. Model detecting phishing URL URL.

URLs. In Dataset B, KD-ELECTRA continues to out-
perform the baseline models with an accuracy of
98.68%. This superior performance is evident across all
metrics, highlighting the robustness of KD-ELECTRA
in phishing detection tasks. For Dataset C, KD-
ELECTRA achieves exceptional performance with an
accuracy of 99.74%. Notably, KD-ELECTRA exhibits
the lowest false positive rate (FPR) and false nega-
tive rate (FNR) among all models, underscoring its
reliability in distinguishing phishing URLs from legit-
imate ones. Furthermore, Figure 14 displays a col-
umn diagram showing accuracy, F-score, recall, and
precision metrics across various models. Figure 15
presents the recall-F1 graph, revealing the balance
between recall and F1 score. Additionally, Figure 16
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Figure 14. Comparison of baseline models with KD ELECTRA.

Figure 15. Comparison of baseline model’s F1 score and recall
with KD ELECTRA.

Figure 16. Comparison of baseline model’s FNR and FPR with
KD ELECTRA.

shows the FNR-FPR graph, illustrating the relationship
between false negative rate (FNR) and false positive rate
(FPR) across models. These visualizations offer valu-
able insights for comprehensive analysis and compar-
ison of model performance. Overall, these comparison
results demonstrate the superior performance of KD-
ELECTRA compared to the baseline models, reaffirm-
ing its potential for real-world applications in phishing
detection.

Table 6 present a comparison of proposed KD-
ELECTRApowered browser extensionwith other base-
linemodels. Ourmodel achieves a remarkable accuracy
of 99.74%, surpassing the accuracies reported by the
models referenced in [51] (94.63%) and [47] (98.10%).
Notably, while the baseline models rely on traditional

machine learning algorithms such as Random Forest
(RF), Support Vector Machine (SVM), and Logistic
Regression (LR), our approach leverages the advanced
capabilities of KD-ELECTRA. One key advantage of
our model is its support for real-time phishing detec-
tion, aligning with the needs of browser extensions
where timely identification of phishing URLs is essen-
tial. Furthermore, our browser extension incorporates
user feedback, a feature absent in the baseline mod-
els, which enhances its adaptability to evolving phish-
ing tactics. Additionally, the continuous update mech-
anism embedded in our model ensures its effectiveness
against emerging threats, a crucial aspect for maintain-
ing security in dynamic online environments. Overall,
our KD-ELECTRA powered browser extension stands
out as a robust solution for real-time phishing detec-
tion, offering superior accuracy and advanced features
to safeguard users against cyber threats.

4.5. Discussion

The proliferation of URL-based phishing attacks has
outpaced the capabilities of traditional detection meth-
ods, particularly those relying on blacklist-based
approaches. These conventional techniques suffer from
a lag in response time and are often incapable of
identifying newly created malicious URLs until they
are reported by users or other sources. Our proposed
system, integrating a Knowledge Distilled ELECTRA
model, aims to overcome these limitations by leverag-
ing deep learning techniques for accurate and timely
phishing detection.

Proposed approach is distinguished by its dual
components: a sophisticated URL classification model
and a user-centric browser extension. The Knowl-
edge Distilled ELECTRA model is particularly effec-
tive due to its ability to understand the semantic
and syntactic patterns in URLs, thus offering a sig-
nificant advancement over traditional heuristic and
signature-based methods. The model’s impressive per-
formance, with a 99.74% accuracy and a 99.43% F1-
score, highlights its potential to significantly reduce
false positives and negatives in phishing detection. Fur-
thermore, the integration of this model into a Chrome
browser extension provides users with instant feed-
back on the legitimacy of URLs, enhancing their ability
to avoid phishing attacks. This real-time alert mecha-
nism is crucial in empowering users to make informed
decisions and reduce the risk of falling victim to
phishing scams.

4.5.1. Real-world application and user experience
The user feedback loop integrated into our system is a
novel feature that allows for continuous improvement
of the model’s accuracy and relevance. By analyzing
the feedback provided by users on false positives and
negatives, the model can be retrained and fine-tuned
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Table 5. Performance metrics of different models on each dataset.

Model Dataset Accuracy F1 Score Precision Recall FPR FNR

A 0.9309 0.9273 0.9692 0.8889 0.0278 0.1111
LSTM B 0.9484 0.9467 0.9704 0.9242 0.0278 0.0758

C 0.9723 0.9731 0.9572 0.9895 0.0455 0.0105
A 0.9370 0.9284 0.9478 0.9380 0.0739 0.0521

GRU B 0.9528 0.9522 0.9556 0.9489 0.0434 0.0511
C 0.9733 0.9731 0.9761 0.9701 0.0236 0.0299
A 0.9283 0.9263 0.9450 0.9083 0.0521 0.0917

CNN B 0.9510 0.9513 0.9399 0.9630 0.0609 0.0370
C 0.9705 0.9703 0.9721 0.9684 0.0275 0.0316
A 0.9326 0.9304 0.9555 0.9067 0.0417 0.0933

Distil-BERT B 0.9414 0.9403 0.9514 0.9296 0.0470 0.0704
C 0.9606 0.9602 0.9645 0.9560 0.0348 0.0440
A 0.9545 0.9534 0.9744 0.9333 0.0244 0.0667

KD-ELECTRA B 0.9868 0.9866 0.9915 0.9817 0.0083 0.0183
C 0.9974 0.9943 0.9962 0.9925 0.0012 0.0075

Table 6. Comparison of proposed model with existing models.

Model Accuracy
Algorithm
Used

Real-
time

User
Feedback

Continuous
Update

[51] 0.9463 RF � × ×
[47] 0.9810 RF,SVM & LR � × ×
Proposed
Model

0.9974 KD-ELECTRA � � �

to adapt to evolving phishing tactics. This iterative
process ensures that the model remains robust and
effective over time, keeping pace with the dynamic
nature of cyber threats. The implementation of our
system as a Chrome browser extension ensures a seam-
less user experience, as it operates unobtrusively in
the background and alerts users only when a poten-
tial threat is detected. This design choice minimizes
user fatigue and enhances the likelihood of users heed-
ing the warnings provided by the system. Compared
to existing solutions in the market, our system offers
several advantages. While many anti-phishing tools
rely on static databases of known malicious URLs,
our system dynamically analyzes URLs in real-time,
providing a proactive defense mechanism. Addition-
ally, the use of deep learning models allows for a
more nuanced understanding of phishing techniques,
which are often designed to evade traditional detection
methods.

Despite the strengths of our proposed system, there
are potential challenges that need to be addressed. One
such challenge is the continuous evolution of phish-
ing techniques, which may involve more sophisticated
obfuscation methods or the use of legitimate-looking
URLs to deceive users. To counter these tactics, future
work will focus on incorporating additional features
and data sources into the model, such as domain age,
hosting information, and content analysis.

4.5.2. Future scope
To build on the findings of this study, future research
could focus on several areas. One potential direction
is the integration of additional features, such as user
behaviour metrics and website content analysis, to

enhance the model’s predictive capabilities. Incorpo-
rating more diverse datasets could also improve the
model’s robustness and ensure its applicability across
various scenarios. Additionally, exploring the applica-
tion of KD-ELECTRA to other cyber security tasks,
such as malware detection and intrusion detection,
could provide valuable insights into its broader utility.
Research could also focus on developing strategies to
mitigate the potential biases introduced during model
training and evaluate the model’s performance in
different real-world environments. Additionally, inves-
tigating and reporting detection overheadwill be essen-
tial for assessing the model’s practical efficiency and
computational impact.

5. Conclusion

In conclusion, our innovative approach to combating
URL-based phishing attacks presents a significant leap
forward in cyber security. By combining a cutting-
edge deep learning model KD-ELECTRA with a
user-friendly Chrome browser extension, we have suc-
cessfully developed a robust system capable of instantly
detecting and alerting users to potential threats with
unparalleled accuracy. Our system’s outstanding per-
formance, boasting a remarkable 99.74% accuracy and
a 99.43%F1-score on a diverse dataset of 450,176URLs,
underscores its efficacy in safeguarding users’ digi-
tal security. Through real-time feedback mechanisms
and continuous model enhancement via user input, we
ensure our solution remains adaptive and responsive to
emerging threats. This work not only sets a new stan-
dard for phishing detection but also empowers users
to navigate the online landscape with confidence and
informed decision-making. By prioritizing user safety
and seamlessly integrating advanced technology, we
pave the way for a more secure digital future.
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