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function optimization and engineering design problems

Dongge Lei, Lulu Cai and Fei Wu
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ABSTRACT
Imperialist competitive algorithm (ICA) is an efficientmeta-heuristic algorithm by simulating the
competitive behaviour among imperialist countries. However, it still suffers from slow conver-
gence and deficiency in exploration. To address these issues, an improved ICA is proposed by
combining ICA with a quasi-opposition-based learning (QOBL) strategy, which is named QOBL-
ICA. The improvements include two aspects. First, the QOBL strategy is adopted to generate a
population of fitter individuals. Second, a QOBL-assisted assimilation strategy is proposed to
enhance the exploration ability of ICA. As a result, the proposed QOBL-ICA has more powerful
exploration ability than ICA as well as faster convergence speed. The effectiveness of the pro-
posed QOBL-ICA is verified by testing on 20 benchmark functions and 3 engineering design
problems. Experimental results show that the performance of QOBL-ICA is superior to most
state-of-the-artmeta-heuristic algorithms in terms of global optimum reached and convergence
speed.
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1. Introduction

1.1. Background

Many problems in engineering practice can finally be
formulated as optimization problems. To obtain the
ideal solution to these problems, high-performance
optimal algorithms are very in demand. Compared
to classical derivation-based optimization algorithms,
meta-heuristic algorithms are intrinsically global search-
ing, have less computational burden and fewer require-
ments on objective functions. Due to these advantages,
meta-heuristic algorithms have received considerable
attention from researchers, and a great number ofmeta-
heuristic algorithms have been developed. For example,
prairie dog optimization (PDO) [1], crayfish optimiza-
tion algorithm (COA) [2,3], hunger games search opti-
mization algorithm (HGSOA) [4], mountain gazelle
optimizer (MGO) [5], ship rescue optimization (SRO)
[6], artificial rabbits algorithm (ARA) [7], arithmetic
optimization algorithm (AOA) [8], marine predators
algorithm (MPA) [9], cheetah optimization algorithm
(COA) [10], to name but a few.

In addition, meta-heuristic algorithms had also
been applied to solve various engineering problems.
For example, the flight control tuning [11], feature
selection [12], structure performance enhancement of
engineering components [13], reliability analysis [14],
design optimization [15], conceptual design of fixed
wing unmanned aerial vehicle [10], PID controller

tuning [16], training of artificial neural networks [17],
data transmission optimization [18], search engine
[19], etc.

In [20], motivated by the imperialistic competi-
tive phenomenon between countries, Atashpaz-Gargari
and Lucas proposed another meta-heuristic algorithm
named the ICA. In ICA, each country is an individual.
They are divided into imperialists and colonies. Those
powerful countries are classified as imperialists while
those weaker countries are colonies. Each imperialist
along with a certain number of colonies makes up an
empire. In the first evolutionary stage, the colonies in
an empire are assimilated by the imperialists, and as a
result, their power is strengthened. In the second phase,
the imperialistic competition between empires occurs.
In this phase, the stronger empires try to occupy the
colonies of weaker empires. The direct consequence is
that the weaker empire becomes weaker and weaker
due to gradual losing its colonies, while the stronger
empire becomes stronger and stronger. From its intrin-
sical evolutionary mechanism, ICA can be regarded as
a multi-swarm based evolution algorithm. Due to this
characteristic, ICA exhibits competitive performance
in solving different engineering problems, for example,
job shop scheduling problems [21], multi-layer percep-
tron training [22], node placement problems in wire-
less sensor networks [23], fuzzy controller coefficient
optimization [24], parameter tuning of controllers for
automatic generation control (AGC) systems [25,26],
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data clustering [27] and so on. In addition, ICA is
also combined with other soft computing techniques
to solve different engineering problems. For instance,
in [28], ICA is combined with the XGBoost model to
perform the prediction of the compressive strength of
recycled aggregate concrete. In [29], ICA is combined
with the adaptive neuro-fuzzy inference system poly-
nomial neural network (ANFIS-PNN) model to pre-
dict tunnel boring machine(TBM) performance and in
[21], ICA is combined with an artificial neural net-
work to model the deflection of reinforced concrete
beams.

1.2. Literature review

After ICA had been proposed, researchers proposed
various improved schemes to further enhance the per-
formance of ICA. In the earlier time, researchers tried to
design various coefficients changing schemes for ICA.
In [30], to make a better trade-off between diversity
and convergence, a new assimilation coefficient adjust-
ing scheme was proposed according to the attraction
and repulsion principle. A new assimilation coefficient
adjusting scheme was proposed based on an inter-
val type-2 fuzzy system (T2FS) in [31]. The input of
T2FS is the current iteration number and the output is
the assimilation coefficient. Except for the assimilation
coefficient, several authors also proposed to adaptively
adjust the deviation angle. In [32], the colonies’ devia-
tion angle dynamically shrinks or expands according to
the countries’ probability, which is modelled by a Gaus-
sian model. In [33], the authors proposed using a fuzzy
inference system (FIS) to infer an appropriate deviation
angle.

As well as changing ICA’s coefficients, researchers
also have made a lot of efforts to change the assimila-
tion scheme. In [34,35], the authors borrowed the idea
from particle swarm optimization (PSO) and designed
an assimilation scheme for colonies. In the designed
assimilation scheme, the colonies approach the impe-
rialist using the position update formula in PSO. In
[36], the moving formula in the firefly algorithm was
utilized by ICA as the assimilation strategy. In [37],
the Gaussian sampling-based bare-bone assimilation
strategy was proposed for ICA.

Except for the above-mentioned ICA variants, peo-
ple seek to mix ICA with other meta-heuristic algo-
rithms. In [38], the simplex method is hybrid with ICA
and severed as a local searcher. In [39], ICA and sim-
ulating annealing (SA) are hybridized together. In the
hybrid algorithm, when ICA accomplishes its assimi-
lation process, SA starts to perform further searching
processes. This idea can also be seen in [40]. In [41],
a hybrid of ICA, GA and PSO was proposed. In the
hybrid algorithms, GA is responsible for generating
high-quality initial countries and PSO is adopted to
improve certain imperialist, which is randomly selected

from all the imperialist. Another hybrid scheme, such
as ICA hybrid with pattern search (PS) [42], and vari-
able neighbourhood search (VNS) [43] has also been
proposed.

1.3. Research gap andmotivation

The above-mentioned ICA variants indeed outperform
the basic ICA to some extent, however, they perform
searching or exploration randomly. One distinct short-
coming of random search is that it may visit or revisit
unproductive regions of the search space. This inef-
fective exploration not only leads to a slower conver-
gence rate but also hinders the algorithm to explore
more productive regions where more optimal solutions
stay. Fortunately, related research results reveal that the
position generated by opposition-based learning (OBL)
may be closer to the optimal solution than that by a ran-
dom manner [44]. Due to this appealing fact, the OBL
[45] strategy has been adopted by many researchers
to improve the optimization ability of meta-heuristic
algorithms. In [46], the OBL was incorporated into
arithmetic optimization algorithm (AOA) to improve
its global search ability. The resulted algorithm is called
OBL-AOA. Then the proposed OBL-AOA was applied
to obtain appropriate parameters for density-based spa-
tial clustering of applications with noise algorithm
(DBSCAN) [47]. In [48], a novel hybrid optimizer was
proposed to solve the mechanical engineering opti-
mization problem by combining the flow direction
optimization (FDO) with dynamic opposition-based
learning (DOBL). In [49], the authors integrated the
elite opposition-based learning into the generalized
normal distribution algorithm (GNDA) and applied the
improved algorithm to the engineering design prob-
lem. In [50], the performance of Fick’s law optimiza-
tion algorithm (FLA) was enhanced by incorporating
QOBL techniques. In [51], differential evolution with
OBL (OBLDE) algorithm was adopted to optimally
design of bumper beam and energy absorber design for
a passenger car.

Motivated by the above facts, we proposed an
improved ICA. The proposed algorithm is called
QOBL-ICA.The improvements of the proposedQOBL-
ICA consist of two aspects. First, a swarm of N indi-
viduals, called countries, are randomly produced in the
admitted search range, and then, N quasi-oppositional
counterparts are generated. N countries with the best
fitness are picked out from the 2N countries to make
up the final initial population. Second, the quasi-
oppositional learning strategy helps ICA explore the
best solution in the assimilation step. Specifically, when
a colony moves to a new position, a quasi-oppositional
position corresponding to the new position is gener-
ated. The position with better fitness was adopted as the
newposition of the colony. The performance of the pro-
posed QOBL-ICA was examined through optimizing
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benchmark functions and several engineering design
problems.

1.4. Paper organization

In the following, the rest part of this paper is arranged.
The research significance is presented in Section 2. The
basic of ICA is shortly reviewed in Section 3. The pro-
posed QOBL-ICA is illustrated in detail in Section 4.
In Section 5, the experimental results and comparative
analysis are given. Finally, the conclusive remarks are
presented in Section 6.

2. Research significance

As a promising meta-heuristic algorithm, ICA has
exhibited great competitive performance in solving var-
ious complex optimization problems. Nevertheless, due
to its inherent randomness, ICA suffers from certain
drawbacks such as singleness of searching way, pre-
mature convergence and low ability of local search.
Though a multitude of improving schemes mentioned
in the Introduction have been proposed for ICA, most
of these schemes are still random. Relevant research
reveals that the QOBL strategy has a larger chance to
approach the optimal solution than random searching
for the reason that it hunts for the optimal solution in
the opposite direction of the current position. QOBL
belongs to a deterministic learning scheme. Observing
this fact, we proposed an improved scheme for ICA,
which incorporates QOBL into the initial and assimila-
tion stages of ICA. The main contributions or novelties
of this paper are summarized as follows.

(1) A new initial population generation scheme for
ICA is proposed based on QOBL strategy. Specif-
ically, a group of N countries is first generated in
a random way, and then the quasi-opposite coun-
tries are produced according to the concept of
quasi-opposite number. The fitter ones among the
countries and their quasi-opposite countries are
selected to comprise the initial population.

(2) A new assimilation strategy that incorporates the
QOBL strategy is proposed for ICA. After a colony
moves to a new position, the quasi-opposite posi-
tion is generated. By comparing the fitness of the
new position and its quasi-opposite position, the
position with better fitness is determined as the
final position of the colony. In thisway, the colonies
can find better candidate solution by exploring
informative regions in the searching space.

(3) The incorporation of the QOBL strategy into ICA
not only speeds up the convergence of ICA but
also enhances the exploration ability, making it
effectively avoid falling into local optimum.

(4) The effectiveness of QOBL-ICA is proved by
extensive testing on 20 well-known benchmark

functions and 3 engineering design problems. The
comparison with other state-of-the-art algorithms
demonstrates the superiority of QOBL-ICA.

3. A brief review of ICA

Like other evolutionary algorithms (EAs), ICA gradu-
ally improves its solution quality via evolutionary oper-
ations. In ICA, themain evolutionary operators include
assimilation, revolution and imperialistic competition.
Before the evolutionary process began, the individu-
als or countries of ICA were classified into a couple
of empires. In each empire, the best country is clas-
sified as imperialist and the rest as colonies. In the
first evolutionary phase, the colonies moved toward
the imperialist to improve their power. This step is
called assimilation. After assimilation, the power of the
empire will be strengthened. The second evolutionary
operation is imperialist competition. The direct conse-
quence of this is that the weakest empire will lose its
the weakest colony. The lost colony will be possessed
by other stronger empires. In this stage, if a certain
weaker empire loses all colonies, the empire collapses.
In the end, only the strongest empire survives and the
algorithm converges. The whole process will be stated
in detail as follows.

3.1. Initialization

Suppose we find the minimum of a d-dimensional
optimization problem in a given search range. The d
variables are written as a vector x = [x1, x2, . . . , xd]
and each variable has an admitted range, i.e. lj ≤ xj ≤
uj, j = 1, 2, . . . , d. In ICA, each country represents a
candidate solution for an optimization problem to be
solved. The objective function value c = f (x) is called
the country’s cost or power. Before the evolution oper-
ation starts, an population with N countries is initially
produced. Each country is generated according to the
following formula:

xij = lj + (uj − lj) × r,

j = 1, 2, . . . , d; i = 1, 2, . . . ,N, (1)

where xij is the jth component of the ith individual xi,
r is a random number lies in [0, 1]. After generating
N initial countries, one calculates its cost or power as
ci = f (xi). Then the N countries are sorted in ascend-
ing order.Nimp countries with the best cost are classified
as imperialist, the other Ncol = N − Nimp are colones.
Each imperialist possesses one or more colonies. The
number of colonies that the nth imperialist can possess
is related to its normalized powerCn.Cn is calculated as

Cn = cn − max
i

{ci}, i = 1, 2, . . . ,Nimp, (2)

where cn and Cn are the power and normalized power
of the nth imperialist. The larger the normalized power
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Figure 1. Assimilation process.

is the more colonies it can possess. The number of
colonies that the nth imperialist can possess is com-
puted as

NCn = round{pn · Ncol}, n = 1, 2, . . . ,Nimp, (3)

where

pn =
∣∣∣∣∣ Cn∑Nimp

i=1 Ci

∣∣∣∣∣ . (4)

After assigning colonies to each imperialist, Nimp
empires are initially formed colonies.

3.2. Assimilation

After initially generating Nimp empires, assimilation
begins. In assimilation, each colony moved toward the
imperialist to improve its power and thus strengthen
the whole power of the empire. Figure 1 illustrates the
assimilation process, where a colony moves a distance
�xi from the current position, each component of �xi
is a random number that lies in [0,β × L], that is

�xij ∼ U(0,β × L), (5)

where the assimilation coefficient β is a positive real
number greater than 1 called the assimilation coeffi-
cient and L is the distance between the colony and
the imperialist. To find a better solution, as well as
explore along the direction pointing to the imperialist,
the colony also performs searching around the cur-
rent position with a deviation angle θ . The value of
θ is randomly selected from a given interval [−γ , γ ].
Mathematically,

θ ∼ U(−γ , γ ). (6)

In [20], the authors suggest γ to be π/4.
After assimilating, the colony locates in a new posi-

tion. At this moment, if the colony’s cost is superior
to that of the imperialist, then the colony will become
imperialist.

3.3. Imperialistic competition

The imperialistic competition process begins after
assimilation. The core of imperialistic competition is

Figure 2. Imperialist competition of ICA.

that the stronger empires become stronger by annexing
the colonies of weaker empires. To this end, the weakest
colony in the weakest empire is picked up and reas-
signed to other stronger empires. If an empire is more
powerful, then it is more likely to occupy the colony.
The power of the nth empire is computed as

TCn = cn + ξ

∑NCn
i=1 ci
NCn

, (7)

and the normalized cost is computed as follows:

NTCn = TCn − max
i

{TCi}, (8)

where ξ is a positive number less than 1, called the cost
ratio coefficient, cn is the cost of the nth empire and ci
the ith colony in the empire. In the population, each
empire is possible to occupy the lost colony, which is
determined by a probability pn as

pn =
∣∣∣∣∣∣

NTCn∑Nimp
j=1 NTCj

∣∣∣∣∣∣ , n = 1, 2, . . . ,Nimp, (9)

Denotes

p = [p1, p2, . . . , pNimp] (10)

be the probability vector. Another random vector r is
generated as

r = [r1, r2, . . . , rNimp]. (11)

Each component ri of r is a random number in [0, 1].
The difference between p and r is

m = [p1 − r1, p2 − r2, . . . , pNimp − rNimp]. (12)

The index corresponding to the maximum value of m
is denoted as ν, then the νth empire will occupy the lost
colony. Figure 2 gives an explanation of imperialistic
competition.
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3.4. Elimination and convergence

As the assimilation and imperialistic competition go
on, the colonies in the weaker empire will gradually be
seized by another empire. As a result, all its colonies will
be occupied and thus, the empire will become empty.
In this station, the empire will be eliminated from the
empire list.When all but one empire exits, the evolution
process terminates and the algorithm converges.

4. The proposed QOBL-ICA

Here, the proposed QOBL-ICA is fully illustrated.
For the sake of convenience, several concepts related
to opposition-based learning and quasi-learning are
explained. Then the main procedure of QOBL-ICA is
given.

4.1. QOBL

In general, most evolutionary algorithms start to find
the optimal solution from an initial group of individ-
uals. The initial individuals are randomly generated
in the admitted search space. The individuals try to
improve themselves via various evolutionary opera-
tors. These operators also work randomly. The initial
or current population can be regarded as a guess of
the optimal solution. It is proven that, in general, the
opposite guess has a larger chance to approach the
optimal solution than the random guess. Observing
this fact, Tizhoosh proposed the OBL method in [45].
Since OBL has great potential for discovering more
optimal solutions, it has attracted increasing interest
of researchers to improve the performance of differ-
ent learning tasks such as reinforcement learning, and
back-propagation learning in neural networks, speed-
ing up the convergence rate of different evolutionary
algorithms [44,52,53]. In the following, several con-
cepts related to OBL are introduced.

4.1.1. Opposite number
Given a real number x in [a, b], its opposite number is
defined as

x̆ = a + b − x. (13)

4.1.2. Opposite point
For D-dimensional Euclid space, a point is denoted as
x = [x1, x2, . . . , xd]. It’s opposite point is denoted as
x̆ = [x̆1, x̆2, . . . , x̆d], where

x̆i = ai + bi − xi. (14)

In Ref. [54], Tizhoosh further proposed the concept
of quasi-oppositional based learning (QOBL). Simi-
larly, QOBL is also based on the concept of quasi-
oppositional numbers and points. Their definitions are
given as follows.

4.1.3. Quasi-opposite number
Let x be a number in [a, b], it’s quasi-oppositional num-
ber is defined as

x̄ =

⎧⎪⎪⎨
⎪⎪⎩
a + b
2

+ r
(
x̆ − a + b

2

)
, x̆ <

a + b
2

;

x̆ +
(
a + b
2

− x̆
)
, x̆ ≥ a + b

2
.

(15)

4.1.4. Quasi-opposite point
Let x = [x1, x2, . . . , xd] be a point in Rd Euclid space.
It’s quasi-oppositional point x̄ = [x̄1, x̄2, . . . , x̄d] is
defined as

x̄i =

⎧⎪⎪⎨
⎪⎪⎩
a + b
2

+ r
(
x̆i − a + b

2

)
, x̆i <

a + b
2

;

x̆i +
(
a + b
2

− x̆i
)
, x̆i ≥ a + b

2
.
(16)

4.1.5. Opposition or quasi-opposition-based
optimization
Considering a minimization problem with objec-
tive function f (x). Let the current point is x =
[x1, x2, . . . , xd], its oppositional and quasi-oppositional
point are denoted as x̆ and x̄, respectively. If f (x̆) < f (x)
or f (x̄) < f (x), then replace x with x̆ or x̄; otherwise, x
is reserved.

4.2. QOBL-ICA

QOBL-ICA also includes initialization, assimilation,
and imperialist competition three steps. Different from
ICA,QOBL strategy is embedded into initialization and
assimilation to increase the quality of initial population
and enhance the exploration ability.

4.2.1. The QOBL-based population initialization
The initialization of QOBL-ICA includes the following
steps.

(a) Randomly generates an initial population X0
(b) Generates a quasi-oppositional population QX0

from X0
(c) Calculates the cost of each individual in X0 and

QX0, which are denoted as F0 and QF0
(d) Sort the cost of in F0

⋃
QF0 in ascending order.

Correspondingly, the individuals in X0
⋃

QX0 are
also sorted according to the order as in F0

⋃
QF0.

(e) Select the firstN individuals fromX0
⋃

QX0 as the
initial population of QOBL-ICA. At the same time,
the first N costs from F0

⋃
QF0 are the cost of the

initial population.

4.2.2. QOBL-based assimilation
In the assimilation stage, QOBL is also used to help the
algorithm find better potential solutions. Let xi denote
the current position of the ith colony. The colony
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Algorithm 1 QOBL-ICA algorithm
1: Define the object function f (x) and determine related parameters of the objective function.
2: Determine the algorithm’s parameter, such as the maximum number of iterations Tmax, the number of empires

Nimp.
3: Generate an initial population according to QOBL-based population initialization method.
4: Sorting the initial countries according to their power.
5: Generate initial empires according to method described in Section 3.1.
6: for t = 1 : Tmax do
7: for n = 1 : Nimp do
8: QOBL based Assimilation: change the position of colonies in each empire according to the method

described in Section 4.2.1.
9: Comparing the cost of each colony with that of the imperialist, if the cost of a certain colony is lower than

that of the imperialist, then the colony is selected as the new imperialist.
10: Imperialist competition. Calculating the total power and normalized power of the nth empire according

to formulas (7) and (8).
11: Assigning the weakest colonies in the weakest empire to the empire that wins the competition according

to (9)–(12).
12: end for
13: Recording the country’s position with the smallest cost.
14: end for
15: Return the final country’s position with the smallest cost.

updates its position according to the way described
in Equation (5). The new position is denoted as x′

i.
Then the quasi-oppositional point of x′

i is generated
and is represented by qx′

i. If f (qx
′
i) < f (x′

i), then qx′
i is

adopted as the final position of the colony, otherwise, x′
i

is used as the final position.
For the sake of completeness, the flowchart of pro-

posed QOBL-ICA is given in Algorithm 1.

5. Experiments and discussion

To examine its effectiveness QOBL-ICA, a set of
benchmark functions and three engineering design
problems are solved using QOBL-ICA. Several ICA
variants including Gaussian Bare-bone imperialist
competition algorithm (GBB-ICA), AR-ICA, ICA-
PSO, opposition-based learning imperialist competi-
tion algorithm (OBL-ICA), and four well-developed
meta-heuristic algorithms including dragonfly algorithm
(DA) [55], gravitational search algorithm (GSA) [56],
performance guided JAYA (PGJAYA) [57], marine
predators algorithm (MPA) [58] are selected as the
compared algorithms. For those ICA variants, their
parameters are set to the same values for fair com-
parison. Specifically, the population size, i.e. the num-
ber of countries is set to 20. The initial number
of imperialists is set to 8, assimilation coefficient
β = 2, cost ratio coefficient ξ = 0.02. For ICA-PSO,
c1 = c2 = 2,w = rand, and AR-ICA, ddiv = 0.8,βdiv =
3. The parameters of DA, GAS, PGJAYA and MPA
are set to the suggested values as the cited ref-
erence. All the referenced algorithms are indepen-
dently executed 30 times to eliminate the effect of
randomness.

5.1. Effect of QOBL based initialization

In the proposed QOBL-ICA, QOBL is adopted to
generate a better initial population nearing the opti-
mal solution. In such a way, the convergence speed
of the algorithm can be accelerated. To justify this,
an ICA variant that combines chaos initialization
and QOBL-based assimilation is implemented, which
is named Chaos-QOBL-ICA. The QOBL-ICA and
Chaos-QOBL-ICA are tested using theGoldstein–Price
function, which is defined as

f (x) = [
1 + (x1 + x2 + 1)2(19 − 14x1 + 3x21

−14x2 + 6x1x2 + 3x22
]

× [
30 + (2x1 − 3x2)2(18 − 32x1 + 12x21

+ 48x2 − 36x1x2 + 27x22
]
.

The global minimum of Goldstein–Price function
locates at (0,−2), which corresponds to the optimal
function value 3. QOBL-ICA and Chaos-QOBL-ICA
independently run 30 times. The convergence speed as
well as the optimal solution obtained by QOBL-ICA
and Chaos-QOBL-ICA are compared.

Table 1 lists the statistical results of the optimal
solution in terms of the best, the worst, the mean
and std. It can be seen that QOBL-ICA and Chaos-
QOBL-ICA all can find the global solution of the Gold-
stein–Price function during the 30 runs. This phe-
nomenon explains that QOBL-ICA and Chaos-QOBL-
ICA exhibit superior performance. In addition, the std
obtained by QOBL-ICA is smaller than that obtained
by Chaos-QOBL-ICA, which show that QOBL-ICA is
more stable than Chaos-QOBL-ICA.
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Table 1. The optimization results of Goldstein–Price function
obtained by QOBL-ICA and Chaos-QOBL-ICA.

QOBL-ICA Chaos-QOBL-ICA

Best 3 3
Worst 3 3
Mean 3 3
Std 4.53559E-15 3.62754E-15

Figure 3. The convergence curve of QOBL-ICA and Chaos-
QOBL-ICA on Goldstein–Price function (The first 100 iterations).

Table 2. The fitness value of the first 10 iteration.

Iterations QOBL-ICA Chaos-QOBL-ICA

1 18.27278844 23.86540146
2 17.46847934 23.86540146
3 14.20523906 23.86540146
4 4.947204244 23.86540146
5 3.764411689 6.29339613
6 3.727923439 6.29339613
7 3.057786821 4.614080497
8 3.041663013 4.20736139
9 3.006362829 4.20736139
10 3.006362829 4.20736139

To check if QOBL accelerates the convergence speed,
Table 2 lists the fitness values in the first 10 iterations.
It can be seen that in the first 4 iterations, the fitness
obtained by QOBL-ICA is greatly smaller than those by
Chaos-QOBL-ICA. This illustrates that QOBL-based
initialization can indeed generate better individuals
nearer to the optimal solution. To more intuitively see
this fact, Figure 3 shows the convergence curve of
QOBL-ICA and Chaos-QOBL-ICA in the first 100 iter-
ations. One can easily see that the convergence speed
of QOBL-ICA is significantly faster than that of Chaos-
QOBL-ICA. In summary, the QOBL-based initializa-
tion can bring an increase in convergence speed for
ICA.

5.2. Description of benchmark functions

First, the experiment on benchmark functions is car-
ried out. Here, 20 benchmark functions are adopted.
Table 3 lists the function name, mathematical expres-
sion, search range and the global minimum of those
adopted benchmark function. In Table 1, functions
F01–F08 are unimodal and F09–F20 are multimodal.
Compared with unimodal functions, the multimodal

functions are more difficult to optimize because they
have many local optimums. Many algorithms are easy
to trap into local optimum. Though F08 is unimodal, it
usually is treated as multimodal function because it has
a narrow valley from the achieved local optima to the
global minimum, which makes it hard to find its global
minimum.

5.3. Optimization results for 10-D benchmark
functions

Tables 4 and 5 show the experimental results on 10-D
benchmark functions in terms of the best, the worst, the
mean and the std in 30 runs of each algorithm. From
Tables 4 and 5, one can see from the whole that our
proposed QOBL-ICA exhibits better than other refer-
enced algorithms no matter unimodal or multi-modal
functions.

As far as the unimodal functions F01–F07 are con-
cerned, the best, worst, mean and std obtained by
the proposed QOBL-ICA algorithm are all equal to
0, which indicates that QOBL-ICA finds their global
optimum value in each run. As for OBL-ICA, ICA,
GBB-ICA, ICA-PSO, DA, GSA, PGJAYA and MPA,
they all cannot get the global optimum value in the
given iterations. Relatively speaking, MPA performs
better among these algorithms except for the pro-
posed QOBL-ICA on F01–F07. For the Rosenbrock
function F08, QOBL-ICA does not show superior-
ity compared to other compared algorithms. Among
all the referenced algorithms, PGJAYA gives the
best function value, 8.584e-07, which is better than
2.7553E-06 found by ICA-PSO and 9.0226E-05 by
MPA.

As far as multimodal functions are concerned, from
Tables 4 and 5, one can see that the proposed QOBL-
ICA demonstrates absolute superiority. For functions
F09–F11, F13–F19, QOBL-ICA has found their global
optimum. Most importantly, for functions F09–F11,
F13–F16 and F19, the worst, mean and std obtained
by QOBL-ICA are all equal to 0. This implies that
QOBL-ICA can reach the global optimum every time
in the 30 runs. For function F12, i.e. Ackley function,
the proposed QOBL-ICA, MPA and ICA-PSO all find
the global optimum, however, the mean, worst and std
obtained by QOBL-ICA andMPA are equal to 0, which
implies they are more reliable than ICA-PSO. For func-
tions F17 and F20, though the global minimum has
not been arrived at, QOBL-ICA still outperforms other
algorithms.

5.4. Optimization results for 30-D benchmark
functions

Here, we increase the dimension of benchmark func-
tions to 30. As the benchmark function dimension
increases, the complexity of optimization problem also
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Figure 4. Boxplot of the benchmark functions for 10-D case (F01–F10).
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Figure 5. Boxplot of the benchmark functions for 10-D case (F11–F20).
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Figure 6. Boxplot of the benchmark functions for 30-D case (F01–F10).
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Table 3. Benchmark functions.

Number Name Expression Range Global Min

F01 Sphere f1(x) = ∑D
i=1 x

2
i [–5.12, 5.12] 0

F02 Sum square f2(x) = ∑D
i=1 ix

2
i [–5.12, 5.12] 0

F03 Ellipsoid f3(x) = ∑D
i=1

∑i
j=1 x

2
j [–65.536, 65.536] 0

F04 Sum Power f4(x) = ∑D
i=1 |xi|i+1 [–1, 1] 0

F05 Schwefel 2.21 f5(x) = max{|xi|} [–100, 100] 0

F06 Schwefel 2.22 f6(x) = ∑D
i=1 |xi| + ∏D

i=1 |xi| [–10, 10] 0

F07 Elliptic f7(x) = ∑D
i=1(10

6)
i−1
D−1 x2i [–100, 100] 0

F08 Ronsenbrock f8(x) = ∑D−1
i=1 [100(xi+1 − x2i )

2 + (1 − xi)2] [–2.048, 2.048] 0

F09 Rastrigin f9(x) = 10D + ∑D
i=1(x

2
i − 10 cos(2πxi)) [–5.12, 5.12] 0

F10 Schwefel1.02 f10(x) = ∑D
i=1

(∑i
j=1 xj

)2
[–100, 100] 0

F11 Griewangk f11(x) = ∑D
i=1

x2i
4000 − ∏D

i=1 cos
(

xi√
i

)
+ 1 [–600, 600] 0

F12 Ackley f12(x) = −20 exp
(

−0.2
√ ∑D

i=1 x
2
i

D

)
− exp

( ∑D
i=1 cos(2π ·xi)

D

)
+ 20 + e [–32,32] 0

F13 Exponential f13(x) = − exp
(
−0.5

∑D
i=1 x

2
i

)
[–1, 1] 0

F14 Quartic f14(x) = ∑D
i=1 ix

4 + rand() [–1.28, 1.28] 0

F15 Bent Cigar f15(x) = x21 + 106
∑D

i=2 x
2
i [–10,10] 0

F16 Alpine f16(x) = ∑D
i=1 |xi sin(xi) + 0.1xi| [–10,10] 0

F17 Salomon f17(x) = 1 − cos
(
2π

∑D
i=1 xi

)
+ 0.1

∑D
i=1 x

2
i [–100, 100] 0

F18 Pathologic f18(x) = ∑D−1
i=1

(
0.5 + sin2(

√
100x2i +x2i+1)−0.5

1+0.001(x2i −2xixi+1+x2i+1)

)2

[–100,100] 0

F19 NonconRastrigin f19(x) = ∑D
i=1[y

2
i − 10 cos(2πyi) + 10], yi =

{
xi ,|xi |<1/2;

round(2xi)/2,|xi |≥1/2. [–5.12, 5.12] 0

F20 Schaffer F7 f20(x) =
[

1
D−1

∑D−1
i=1 [(x

2
i + x2i+1)

0.25 + (x2i + x2i+1)
0.25 sin(50(x2i + x2i+1)

0.1)]
]2

[–100, 100] 0

increases. Thus it would be more effective to examine
the performance of the proposed algorithm.

The optimization results are statistically listed in
Tables 6 and 7 in terms of the best, worst, mean and std.
Comparing Tables 4–7, one can find that, except for the
proposed QOBL-ICA, as the dimension increases, the
solution quality of all referenced algorithms remark-
ably decreases. It is surprising that the performance of
the proposed QOBL-ICA is still well-preserved. More
specifically, for unimodal functions F01–F07, the pro-
posed QOBL-ICA finds the global minimum of all the
functions each time among the 30 runs, which shows
similar behaviour as the 10-D case. Unfortunately, the
other algorithms cannot give satisfactory optimization
results and even exhibit failure in finding the opti-
mal solution, for example, ICA, OBL-ICA and DA for
F01, F02, F03, and OBL-ICA, ICA, GBB-ICA, AR-ICA,
and DA for F05, F06, F07 are failed cases. For Rosen-
brock function F08, all the reference algorithms fail to
obtain the ideal optimal solution. Asmulti-modal func-
tions are concerned, the proposed QOBL-ICA success-
fully finds the global minimum of functions F09–F11,
F13–F17 and F19–F20. It should be noted that for func-
tions F09–F11, F13–F16 and F19, the mean, worst and
std obtained by QOBL-ICA are equal to 0. From this,
one can conclude that QOBL-ICA is more reliable than

other algorithms on these benchmark functions. Over-
all, for 30-D case, MPA shows better performance than
other algorithms. It finds the global minimum of func-
tions F09, F11, F13, F19.

To exhibit the optimization results more intuitively,
the distribution of the optimal values found by each
algorithm among the 30 runs for each function are
shown in Figures 4–7 for 10-D and 30-D cases, respec-
tively, via box-and-whisker plots. From Figures 4–7, we
can see that the optimal value distribution obtained
by QOBL-ICA among 30 runs is more concentrated
than other algorithms. This indicates that QOBL-ICA
is more reliable than other algorithms.

5.5. Convergence analysis

To further evaluate the performance of QOBL-ICA,
Figures 8–11 show the convergence curve of differ-
ent algorithms when solving 10-D and 30-D bench-
mark functions, respectively. From Figure 8, we can
see that except for function F08, QOBL-ICA con-
verges more rapidly than the other algorithms. More-
over, QOBL-ICA converges closer to the global mini-
mum than other reference algorithms. That is to say,
for most of the benchmark functions, there is no dis-
tinct stagnation that occurs in the searching procedure
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Table 4. Statistical results for 10-D benchmark function (F01-F10).

Function Indices QOBL-ICA OBL-ICA ICA GBB-ICA AR-ICA ICA-PSO DA GSA PGJAYA MPA

F01 Best 0.0000E+00 2.2261E-13 3.3483E-13 1.6893E-41 5.8910E-47 8.3221E-45 4.0144E-02 7.6832E-18 3.2113E-11 2.1988E-68
Worst 0.0000E+00 4.2299E-08 4.6868E-08 9.2285E-24 7.8503E-26 5.9367E-21 2.7771E+00 6.1971E-17 1.8320E-08 6.4283E-64
Mean 0.0000E+00 2.6791E-09 4.2274E-09 3.1759E-25 2.6176E-27 3.3716E-22 6.0576E-01 2.4372E-17 1.7908E-09 4.8076E-65
Std 0.0000E+00 8.3302E-09 9.7473E-09 1.6839E-24 1.4332E-26 1.3012E-21 5.7056E-01 1.2449E-17 3.6949E-09 1.3642E-64

F02 Best 0.0000E+00 3.4569E-13 2.4843E-11 7.8458E-39 2.3665E-47 4.4929E-36 1.2186E-01 2.9899E-17 1.5763E-10 4.6845E-69
Worst 0.0000E+00 8.8913E-07 5.2429E+01 9.3089E-25 5.2429E+01 1.1127E-19 1.0477E+01 1.8933E-16 2.7670E-08 8.5772E-63
Mean 0.0000E+00 3.6093E-08 3.4953E+00 3.4771E-26 2.6214E+00 4.1187E-21 2.8982E+00 9.4044E-17 5.5336E-09 5.0626E-64
Std 0.0000E+00 1.6278E-07 1.1382E+01 1.7028E-25 1.0553E+01 2.0276E-20 2.7602E+00 3.8016E-17 7.3825E-09 1.6555E-63

F03 Best 0.0000E+00 1.7590E-11 3.9391E-09 7.1974E-36 1.9156E-45 4.3585E-39 2.0766E+01 3.5485E-17 7.3475E-11 6.4971E-66
Worst 0.0000E+00 4.5554E-05 4.2950E+03 1.4422E-20 4.2950E+03 1.9356E-12 9.6565E+02 4.9266E-16 5.0901E-08 5.6963E-61
Mean 0.0000E+00 2.4130E-06 1.4317E+02 4.8081E-22 1.4317E+02 6.4521E-14 3.7816E+02 1.0537E-16 9.5560E-09 4.2350E-62
Std 0.0000E+00 8.3652E-06 7.8415E+02 2.6331E-21 7.8415E+02 3.5340E-13 2.3929E+02 8.0263E-17 1.2280E-08 1.1180E-61

F04 Best 0.0000E+00 5.5232E-23 1.0722E-27 2.9886E-83 1.9353E-103 9.3787E-58 6.4424E-06 7.3942E-15 2.7352E-24 1.0621E-126
Worst 0.0000E+00 1.4172E-13 2.1607E-20 1.6087E-54 1.4762E-75 1.5520E-29 1.2792E-03 6.9750E-01 9.2432E-17 3.9711E-116
Mean 0.0000E+00 5.2422E-15 1.2742E-21 5.3627E-56 8.5884E-77 5.6688E-31 1.4969E-04 4.4287E-02 5.5439E-18 3.4759E-117
Std 0.0000E+00 2.5907E-14 4.1872E-21 2.9371E-55 3.3051E-76 2.8345E-30 2.3573E-04 1.4874E-01 1.9448E-17 9.9866E-117

F05 Best 0.0000E+00 7.6828E-02 2.9252E-02 1.1758E-06 2.5351E-08 1.2542E-14 4.1172E+00 2.2502E-09 4.9839E-05 3.1655E-27
Worst 0.0000E+00 7.2976E+00 1.7386E+00 3.1782E-02 9.9919E+00 5.7821E-01 2.7519E+01 4.8969E-09 7.6606E-04 8.7295E-25
Mean 0.0000E+00 1.1873E+00 3.9650E-01 2.3018E-03 5.7990E-01 1.2035E-01 1.5978E+01 3.5734E-09 2.3862E-04 1.3513E-25
Std 0.0000E+00 1.3271E+00 3.2695E-01 5.8660E-03 1.9399E+00 1.4049E-01 6.5145E+00 6.0319E-10 1.6577E-04 2.3441E-25

F06 Best 0.0000E+00 4.3518E-11 2.9406E-06 9.3988E-21 4.8283E-17 5.3445E-21 9.6930E-01 6.3027E-09 5.7538E-06 1.0658E-37
Worst 0.0000E+00 2.7229E-06 2.0000E+01 1.1187E-07 2.0001E+01 4.9346E-11 9.4627E+00 2.1004E-08 1.8294E-04 9.9918E-34
Mean 0.0000E+00 2.5400E-07 2.6667E+00 4.0204E-09 2.3334E+00 2.1915E-12 4.9882E+00 1.3690E-08 3.3984E-05 1.8115E-34
Std 0.0000E+00 6.0197E-07 5.8329E+00 2.0428E-08 5.0401E+00 9.3055E-12 1.9815E+00 3.4806E-09 3.6229E-05 2.7113E-34

F07 Best 0.0000E+00 8.1595E-09 1.0000E+04 2.9055E-34 1.0636E-32 1.8493E-29 1.2806E+05 5.2348E+03 1.6775E-07 4.1799E-62
Worst 0.0000E+00 1.1488E-03 2.7458E+07 1.0000E+06 2.2760E+07 6.6789E-08 1.4561E+07 9.4486E+04 2.4405E-04 1.8975E-58
Mean 0.0000E+00 8.3893E-05 2.1153E+06 4.0189E+04 2.0601E+06 3.1448E-09 4.3828E+06 3.3266E+04 3.0988E-05 2.1691E-59
Std 0.0000E+00 2.5651E-04 5.0472E+06 1.8198E+05 4.4002E+06 1.3029E-08 3.3009E+06 2.3210E+04 6.0405E-05 3.9462E-59

F08 Best 4.7872E+00 9.7744E-02 1.2667E-01 2.7143E-02 1.7126E-02 2.7554E-06 9.4170E+00 5.3682E+00 8.5824E-07 9.0226E-05
Worst 6.0600E+00 7.6003E+00 6.9428E+00 8.7685E+00 6.1374E+00 6.6917E+00 7.5388E+01 2.0751E+03 4.8885E+00 9.5703E-01
Mean 5.5780E+00 5.1344E+00 4.1737E+00 4.0492E+00 2.9475E+00 2.8696E+00 2.5814E+01 1.0624E+02 8.9755E-01 2.9261E-01
Std 3.3064E-01 2.6167E+00 2.5833E+00 2.2959E+00 1.5808E+00 1.8269E+00 1.6189E+01 3.7666E+02 1.8093E+00 2.5562E-01

F09 Best 0.0000E+00 6.0002E-09 2.7320E-06 5.9697E+00 3.9798E+00 0.0000E+00 2.4000E+01 3.9798E+00 2.9849E+00 0.0000E+00
Worst 0.0000E+00 3.9812E+00 5.7849E+01 4.2783E+01 6.6804E+01 9.9496E-01 7.1881E+01 1.4924E+01 4.5768E+01 0.0000E+00
Mean 0.0000E+00 5.1391E-01 1.3328E+01 1.4593E+01 2.0870E+01 1.9228E-01 4.4740E+01 8.6561E+00 1.0646E+01 0.0000E+00
Std 0.0000E+00 1.0453E+00 1.6001E+01 8.6869E+00 1.3993E+01 3.9262E-01 1.3003E+01 3.2441E+00 8.1006E+00 0.0000E+00

F10 Best 0.0000E+00 1.1837E+00 6.1775E-03 6.3297E-07 2.7240E-10 3.0630E-27 1.8303E+02 1.5593E-17 9.4793E-07 3.2517E-41
Worst 0.0000E+00 5.9238E+02 1.0000E+04 1.3623E+00 4.6694E+01 1.0427E-01 3.6527E+03 2.0793E-01 7.9649E-04 8.6704E-29
Mean 0.0000E+00 1.5010E+02 8.3358E+02 5.2827E-02 1.9537E+00 3.5064E-03 1.3720E+03 8.5492E-03 4.3266E-05 4.5733E-30
Std 0.0000E+00 1.4235E+02 2.3056E+03 2.4821E-01 8.5660E+00 1.9032E-02 9.6908E+02 3.8357E-02 1.4506E-04 1.5991E-29
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Table 5. Statistical results for 10-D benchmark function (F11-F20).

Function Indices QOBL-ICA OBL-ICA ICA GBB-ICA AR-ICA ICA-PSO DA GSA PGJAYA MPA

F11 Best 0.0000E+00 8.8673E-02 1.0623E-02 2.2141E-02 1.6653E-15 2.4127E-03 1.2117E+00 0.0000E+00 8.6100E-02 0.0000E+00
Worst 0.0000E+00 3.7279E-01 1.8471E-01 6.2925E-01 4.8962E-01 4.3689E-01 7.2668E+00 1.3589E+00 1.3683E+00 2.8766E-05
Mean 0.0000E+00 1.9614E-01 7.8923E-02 1.9413E-01 1.7926E-01 1.5540E-01 3.2197E+00 1.6910E-01 4.2508E-01 9.5886E-07
Std 0.0000E+00 7.3946E-02 4.3889E-02 1.5306E-01 1.4204E-01 1.1733E-01 1.5850E+00 3.2230E-01 3.6038E-01 5.2519E-06

F12 Best 4.4409E-16 6.3339E-07 5.7267E-06 2.5313E-14 2.1760E-14 4.4409E-16 1.1913E+00 3.6549E-09 1.2320E-06 4.4409E-16
Worst 4.4409E-16 6.7950E-04 1.3950E-03 2.3168E+00 3.5740E+00 2.3168E+00 1.5242E+01 1.0514E-08 1.1551E+00 4.4409E-16
Mean 4.4409E-16 1.3114E-04 3.9250E-04 6.9635E-01 1.2719E+00 1.5446E-01 7.6816E+00 6.5711E-09 3.8518E-02 4.4409E-16
Std 0.0000E+00 1.5949E-04 3.7838E-04 8.1105E-01 9.4747E-01 5.8780E-01 2.8069E+00 1.8231E-09 2.1090E-01 0.0000E+00

F13 Best −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 -9.9855E-01 −1.0000E+00 −1.0000E+00 −1.0000E+00
Worst −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 -9.6504E-01 −4.0082E-01 −1.0000E+00 −1.0000E+00
Mean −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 -9.8814E-01 −9.5380E-01 −1.0000E+00 −1.0000E+00
Std 0.0000E+00 2.0407E-10 2.7584E-10 1.4625E-11 9.0920E-15 2.0616E-17 7.6233E-03 1.4439E-01 0.0000E+00 0.0000E+00

F14 Best 0.0000E+00 1.0542E-21 5.1754E-20 3.7773E-72 4.2075E-92 8.0564E-65 6.3049E-06 2.1170E-35 6.9366E-21 7.9243E-131
Worst 0.0000E+00 2.4442E-10 5.0750E-15 4.0353E-52 5.0717E-68 2.9426E-38 3.5095E-02 7.2386E+00 1.6406E-15 4.4430E-118
Mean 0.0000E+00 9.7076E-12 2.6819E-16 1.4614E-53 1.9506E-69 9.8132E-40 4.2406E-03 3.6207E-01 2.1295E-16 1.4865E-119
Std 0.0000E+00 4.4902E-11 9.5292E-16 7.3602E-53 9.3194E-69 5.3723E-39 7.2971E-03 1.4574E+00 3.9214E-16 8.1108E-119

F15 Best 0.0000E+00 8.4168E-10 1.0000E+02 3.5680E-31 4.4333E-37 3.0487E-26 2.1401E+05 2.8821E+00 1.1949E-05 9.6079E-62
Worst 0.0000E+00 3.2431E-03 1.0000E+02 1.0000E+02 1.0000E+02 3.0336E-14 2.9631E+06 9.9510E+01 1.2458E-02 6.0660E-58
Mean 0.0000E+00 2.3660E-04 1.0000E+02 5.0000E+01 7.6667E+01 1.1659E-15 1.0666E+06 3.5487E+01 2.0966E-03 3.7162E-59
Std 0.0000E+00 7.7747E-04 8.7553E-04 5.0855E+01 4.3018E+01 5.5732E-15 8.0608E+05 2.7661E+01 2.9005E-03 1.1388E-58

F16 Best 0.0000E+00 4.4835E-06 5.9343E-07 5.7229E-15 2.4515E-14 1.6395E-17 1.5040E+00 8.0697E-10 1.0553E-05 3.3848E-37
Worst 0.0000E+00 4.4402E+00 4.4402E+00 9.0746E-05 4.4402E+00 1.8174E-01 7.4807E+00 1.9974E-09 5.2764E-03 5.3914E-32
Mean 0.0000E+00 4.4798E-01 4.4404E-01 4.1883E-06 1.4802E-01 1.2148E-02 4.0550E+00 1.3305E-09 7.9022E-04 2.4837E-33
Std 0.0000E+00 1.3536E+00 1.3548E+00 1.7353E-05 8.1066E-01 3.8391E-02 1.6027E+00 3.3646E-10 1.4052E-03 1.0097E-32

F17 Best 0.0000E+00 1.9988E-01 1.9987E-01 2.9987E-01 2.9987E-01 9.9873E-02 9.9987E-01 1.5176E-01 9.9873E-02 9.9873E-02
Worst 9.9873E-02 7.3187E-01 1.4999E+00 1.3999E+00 1.6999E+00 2.1127E+00 3.0999E+00 7.0725E-01 1.3999E+00 9.9873E-02
Mean 9.9873E-03 3.6868E-01 4.9654E-01 8.7321E-01 1.0532E+00 3.3929E-01 2.0265E+00 4.2705E-01 3.0987E-01 9.9873E-02
Std 3.0474E-02 1.4892E-01 2.4280E-01 3.3930E-01 3.2772E-01 3.6105E-01 7.0999E-01 1.0811E-01 2.7836E-01 3.9421E-17

F18 Best 0.0000E+00 4.3780E-05 3.8916E-05 3.8916E-05 3.8916E-05 1.0886E-01 3.8916E-05 1.8622E-01 3.8916E-05 0.0000E+00
Worst 7.1405E-01 4.7605E-01 7.1405E-01 9.3675E-01 7.1405E-01 4.5993E-01 1.2140E+00 9.4181E-01 4.7604E-01 2.7142E-03
Mean 1.9796E-01 1.5871E-01 2.6184E-01 4.8079E-01 2.3800E-01 2.8483E-01 7.8627E-01 5.7577E-01 1.1082E-01 1.1038E-04
Std 2.1722E-01 1.3011E-01 2.1057E-01 2.7909E-01 2.2534E-01 8.8824E-02 2.6842E-01 1.9377E-01 1.7358E-01 5.0026E-04

F19 Best 0.0000E+00 1.2273E-07 2.8683E-07 1.0000E+00 2.0000E+00 0.0000E+00 1.4032E+01 3.0000E+00 1.0000E+00 0.0000E+00
Worst 0.0000E+00 6.5240E-02 5.0000E+01 2.8000E+01 4.1000E+01 3.5516E-01 5.6257E+01 5.8000E+01 2.1000E+01 1.0003E+00
Mean 0.0000E+00 6.0528E-03 1.3336E+01 7.5333E+00 2.0933E+01 1.5322E-02 3.4535E+01 1.9966E+01 6.2079E+00 3.3342E-02
Std 0.0000E+00 1.3913E-02 1.5718E+01 7.4405E+00 1.3028E+01 6.5421E-02 1.1050E+01 1.3161E+01 4.8788E+00 1.8262E-01

F20 Best 7.5201E-24 0.0000E+00 4.1662E-13 4.5683E-15 4.7748E-25 2.3318E-02 5.4347E-03 4.6603E-34 2.1316E-20 5.5956E-19
Worst 4.1619E-08 9.2507E-02 2.1126E-01 4.0794E-02 6.3335E-02 2.3383E+00 2.4643E+00 8.2235E-04 4.8933E-01 5.7914E-05
Mean 1.5916E-09 1.0565E-02 9.8538E-03 2.0178E-03 2.6944E-03 6.0667E-01 7.0696E-01 8.7808E-05 2.8588E-02 4.5183E-06
Std 7.5933E-09 2.3039E-02 3.8442E-02 8.0847E-03 1.1613E-02 6.5974E-01 6.8898E-01 2.0620E-04 1.0264E-01 1.3484E-05
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Table 6. Statistical results of 30-D benchmark function (F01-F10).

Function Indices QOBL-ICA OBL-ICA ICA GBB-ICA AR-ICA ICA-PSO DA GSA PGJAYA MPA

F01 Best 0.0000E+00 1.3422E+00 2.2616E-01 2.8956E-06 2.3355E-05 6.8311E-25 3.0935E+00 3.2393E-16 5.1587E-04 2.7924E-56
Worst 0.0000E+00 1.4101E+01 5.2723E+01 7.5304E-01 5.2430E+01 4.0163E-01 3.7722E+01 2.4558E+01 4.9500E-03 1.3742E-51
Mean 0.0000E+00 4.3862E+00 1.0118E+01 4.7658E-02 8.8940E+00 1.8953E-02 1.1695E+01 8.1860E-01 2.2593E-03 8.2673E-53
Std 0.0000E+00 2.7363E+00 1.4445E+01 1.4299E-01 1.4268E+01 7.3027E-02 7.3774E+00 4.4837E+00 1.0765E-03 2.5463E-52

F02 Best 0.0000E+00 2.6717E+01 4.2476E+00 6.0610E-04 3.8628E-02 1.2769E-26 2.3291E+01 3.3480E-15 9.3653E-03 6.2611E-56
Worst 0.0000E+00 4.3705E+02 8.6536E+02 1.6117E+02 9.9615E+02 6.4790E+00 2.5136E+02 1.5601E+02 1.1163E-01 1.9333E-50
Mean 0.0000E+00 1.5720E+02 3.8085E+02 3.3099E+01 1.6663E+02 4.9758E-01 1.2600E+02 6.8055E+00 4.4067E-02 1.1475E-51
Std 0.0000E+00 8.2153E+01 2.3376E+02 4.6675E+01 2.0711E+02 1.4596E+00 6.3630E+01 2.8838E+01 2.3395E-02 3.5372E-51

F03 Best 0.0000E+00 7.6007E+03 2.7409E+03 2.3028E-03 1.2294E+02 8.5140E-22 2.6801E+03 2.4698E-15 5.3139E-02 1.2502E-51
Worst 0.0000E+00 7.7754E+04 1.2497E+05 9.0195E+04 1.4178E+05 3.7154E+02 6.8821E+04 3.6220E-13 3.5820E-01 4.5634E-48
Mean 0.0000E+00 2.8058E+04 4.5402E+04 1.2768E+04 4.6429E+04 3.7035E+01 2.2942E+04 2.2685E-14 1.6699E-01 3.1382E-49
Std 0.0000E+00 1.4686E+04 3.2917E+04 1.9506E+04 3.7286E+04 7.0666E+01 1.5287E+04 6.4581E-14 8.6557E-02 9.6588E-49

F04 Best 0.0000E+00 4.6021E-10 7.2202E-12 9.9833E-23 4.0709E-26 5.3608E-39 1.1854E-05 4.4846E-16 1.5274E-12 9.6035E-125
Worst 0.0000E+00 1.8895E-05 2.7234E-08 3.7280E-10 9.5159E-08 4.1729E-16 4.2563E-03 6.4755E-11 3.9746E-08 4.8413E-115
Mean 0.0000E+00 9.3670E-07 3.4929E-09 1.2428E-11 3.1724E-09 1.6191E-17 2.9135E-04 3.5914E-12 3.6700E-09 1.8073E-116
Std 0.0000E+00 3.4677E-06 6.3724E-09 6.8063E-11 1.7374E-08 7.6605E-17 7.6358E-04 1.2047E-11 8.7033E-09 8.8188E-116

F05 Best 0.0000E+00 4.5083E+01 2.1361E+01 1.8760E+01 4.6448E+01 1.3439E+01 1.9575E+01 7.1648E-01 2.8929E-01 2.7524E-20
Worst 1.3046E-307 7.4678E+01 4.6984E+01 4.4481E+01 6.9584E+01 3.3731E+01 5.1802E+01 1.1490E+01 1.9346E+00 7.9258E-19
Mean 0.0000E+00 5.8976E+01 3.7002E+01 3.1979E+01 5.7996E+01 2.1462E+01 3.6389E+01 5.5239E+00 7.3624E-01 1.8564E-19
Std 0.0000E+00 8.1302E+00 6.4821E+00 6.8174E+00 6.1532E+00 5.0085E+00 7.5991E+00 2.7948E+00 4.0781E-01 1.9293E-19

F06 Best 0.0000E+00 5.3708E+00 1.4895E+01 1.4004E+00 3.3498E-01 1.0004E-14 9.1693E+00 7.2653E-08 7.1734E-02 3.1432E-31
Worst 0.0000E+00 2.2241E+01 8.0369E+01 6.0006E+01 6.7725E+01 6.6406E-02 7.8516E+01 5.5309E+00 2.7240E-01 5.5042E-27
Mean 0.0000E+00 1.1609E+01 4.6205E+01 2.3419E+01 2.8297E+01 2.7130E-03 2.6398E+01 3.5245E-01 1.3527E-01 4.8092E-28
Std 0.0000E+00 4.4555E+00 1.6142E+01 1.5645E+01 1.6349E+01 1.2184E-02 1.1676E+01 1.1205E+00 4.8802E-02 1.1108E-27

F07 Best 0.0000E+00 3.7158E+06 3.3279E+07 1.0987E+06 3.8594E+07 1.0833E-27 1.2166E+07 1.7292E+04 4.2171E+02 5.7841E-51
Worst 0.0000E+00 1.3886E+07 8.3976E+08 3.6454E+07 5.7514E+08 1.3651E+06 2.4970E+08 2.7269E+05 7.4565E+03 1.1289E-45
Mean 0.0000E+00 6.7146E+06 2.1357E+08 1.3744E+07 1.4811E+08 3.3564E+05 7.1377E+07 1.1608E+05 2.3385E+03 2.0042E-46
Std 0.0000E+00 2.8511E+06 1.9794E+08 9.7094E+06 1.3625E+08 3.6392E+05 4.9215E+07 6.9633E+04 1.7310E+03 3.0097E-46

F08 Best 2.6009E+01 1.1548E+02 9.0886E+01 3.1314E+01 2.7598E+01 2.1959E+01 1.7769E+02 2.6194E+01 1.7243E+00 2.3628E+01
Worst 2.8839E+01 3.1379E+03 2.9696E+03 2.1717E+02 2.5772E+03 8.1780E+01 5.7493E+02 7.6127E+03 7.8968E+01 2.6250E+01
Mean 2.7327E+01 5.4124E+02 7.9020E+02 9.7115E+01 4.2191E+02 3.3420E+01 3.7104E+02 1.5948E+03 2.9264E+01 2.4358E+01
Std 9.7618E-01 9.2082E+02 1.0370E+03 4.1989E+01 7.8562E+02 1.4411E+01 1.1436E+02 1.8428E+03 1.7117E+01 6.0448E-01

F09 Best 0.0000E+00 8.2664E+01 8.2424E+01 8.6642E+01 8.3807E+01 0.0000E+00 1.4411E+02 3.8803E+01 3.6958E+01 0.0000E+00
Worst 0.0000E+00 2.2511E+02 2.0939E+02 2.2998E+02 2.4806E+02 2.6331E+01 2.6526E+02 1.7127E+02 1.6691E+02 0.0000E+00
Mean 0.0000E+00 1.6060E+02 1.5242E+02 1.5177E+02 1.8426E+02 1.1476E+01 2.0086E+02 9.6315E+01 8.4663E+01 0.0000E+00
Std 0.0000E+00 3.9808E+01 2.9919E+01 3.9829E+01 4.1613E+01 6.5713E+00 3.2020E+01 3.2077E+01 3.0636E+01 0.0000E+00

F10 Best 0.0000E+00 2.6270E+04 4.6671E+03 3.7444E+03 7.9300E+03 1.1823E-24 6.8923E+03 3.1407E+02 1.1838E+02 5.9118E-17
Worst 0.0000E+00 5.5660E+04 4.5145E+04 2.5175E+04 6.1306E+04 6.9997E+02 4.0110E+04 1.0333E+03 1.1134E+03 6.2728E-09
Mean 0.0000E+00 4.0287E+04 2.3611E+04 1.2122E+04 2.6934E+04 2.6668E+02 1.9715E+04 7.2896E+02 5.3203E+02 2.1440E-10
Std 0.0000E+00 8.0053E+03 8.9867E+03 5.4026E+03 1.3059E+04 2.4213E+02 9.3182E+03 2.0340E+02 2.7425E+02 1.1443E-09
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Table 7. Statistical results of 30-D benchmark function (F11-F20).

Function Indices QOBL-ICA OBL-ICA ICA GBB-ICA AR-ICA ICA-PSO DA GSA PGJAYA MPA

F11 Best 0.0000E+00 7.5173E+00 1.3624E+00 4.3141E-02 2.9813E+00 0.0000E+00 1.1064E+01 4.3961E+00 1.4378E-04 0.0000E+00
Worst 0.0000E+00 8.9285E+01 1.8156E+02 9.1231E+01 1.8209E+02 1.8397E+00 6.8770E+01 2.7170E+01 1.2462E-01 0.0000E+00
Mean 0.0000E+00 1.4790E+01 5.0078E+01 3.6898E+00 6.1492E+01 3.1470E-01 3.7897E+01 1.4415E+01 3.8283E-02 0.0000E+00
Std 0.0000E+00 1.4700E+01 5.1305E+01 1.6543E+01 4.7144E+01 4.0271E-01 1.3644E+01 6.3121E+00 3.9304E-02 0.0000E+00

F12 Best 4.4409E-16 1.1630E+01 2.6644E+00 2.0069E+00 1.1213E+01 4.4409E-16 6.6913E+00 1.4338E-08 2.1071E-02 4.4409E-16
Worst 4.4409E-16 1.9963E+01 1.9963E+01 1.9879E+01 1.9963E+01 1.3992E+01 1.5913E+01 3.9379E-08 1.3641E+00 3.9968E-15
Mean 4.4409E-16 1.9509E+01 1.7691E+01 1.2746E+01 1.8233E+01 5.2479E+00 1.2682E+01 2.1485E-08 5.1710E-01 3.4047E-15
Std 0.0000E+00 1.7592E+00 5.3518E+00 6.3962E+00 2.2594E+00 4.7197E+00 2.1615E+00 6.1567E-09 5.2631E-01 1.3467E-15

F13 Best −1.0000E+00 −9.7283E-01 −9.9861E-01 −1.0000E+00 −1.0000E+00 −1.0000E+00 −9.4050E-01 −3.6788E-01 −1.0000E+00 −1.0000E+00
Worst −1.0000E+00 −7.2095E-01 −3.4789E-01 −6.0653E-01 −2.2313E-01 −9.8368E-01 −6.5046E-01 −2.2771E-02 −1.0000E+00 −1.0000E+00
Mean −1.0000E+00 −9.1404E-01 −7.6104E-01 −9.8654E-01 −8.3495E-01 −9.9929E-01 −7.9621E-01 −8.1898E-02 −1.0000E+00 −1.0000E+00
Std 0.0000E+00 5.5214E-02 2.3166E-01 7.1777E-02 2.3336E-01 3.0423E-03 7.2706E-02 7.2336E-02 2.5799E-10 0.0000E+00

F14 Best 0.0000E+00 5.4167E-02 3.6951E-04 9.1095E-11 1.6410E-11 8.7328E-45 9.0759E-02 9.1598E-32 3.2317E-06 1.4153E-102
Worst 0.0000E+00 1.7600E+01 3.2222E+01 7.3512E-04 3.2212E+01 2.7319E-03 4.2462E+00 3.7581E+01 2.8350E-04 4.3851E-96
Mean 0.0000E+00 3.7598E+00 8.4240E+00 4.3403E-05 5.9056E+00 1.9664E-04 1.0584E+00 5.4370E+00 3.7693E-05 1.5952E-97
Std 0.0000E+00 4.4268E+00 9.9328E+00 1.4220E-04 8.6740E+00 6.2227E-04 9.7479E-01 1.0592E+01 5.4589E-05 7.9843E-97

F15 Best 0.0000E+00 5.8350E+06 3.5961E+05 6.5794E+01 6.1744E+02 1.5508E-21 1.0294E+07 4.3525E-02 8.9078E+02 3.4786E-48
Worst 0.0000E+00 2.3064E+07 3.0111E+08 3.8193E+05 1.0209E+08 1.6197E+06 1.2362E+08 9.9780E+01 3.7713E+03 2.4481E-45
Mean 0.0000E+00 1.3893E+07 4.5207E+07 4.1020E+04 2.4436E+07 1.4565E+05 3.9538E+07 3.8878E+01 2.1158E+03 2.5447E-46
Std 0.0000E+00 4.8818E+06 6.7907E+07 8.8693E+04 4.2780E+07 3.7346E+05 2.3550E+07 4.0126E+01 7.7438E+02 4.7690E-46

F16 Best 0.0000E+00 2.5795E+00 1.7047E+00 1.5348E-03 7.9873E-01 2.8086E-09 1.0204E+01 6.8944E-09 5.9397E-02 2.5327E-31
Worst 0.0000E+00 2.6735E+01 2.6326E+01 1.5347E+01 2.4206E+01 1.7685E+00 3.6889E+01 2.5004E-03 1.0862E+00 1.5910E-27
Mean 0.0000E+00 1.3694E+01 1.4283E+01 2.6223E+00 1.0055E+01 3.8613E-01 2.3206E+01 2.3237E-04 4.6648E-01 1.2989E-28
Std 0.0000E+00 6.7620E+00 6.5891E+00 4.4578E+00 6.0999E+00 5.7401E-01 6.5032E+00 7.1307E-04 2.7054E-01 3.2043E-28

F17 Best 0.0000E+00 3.2999E+00 1.9999E+00 5.0999E+00 4.8999E+00 3.0341E-03 3.1999E+00 2.3469E+00 8.9987E-01 9.9873E-02
Worst 9.9873E-02 1.5900E+01 1.4500E+01 1.4900E+01 2.1000E+01 9.8132E+00 1.1100E+01 6.6003E+00 3.0999E+00 1.9987E-01
Mean 4.9937E-02 9.6457E+00 5.8325E+00 8.2232E+00 1.2260E+01 6.6452E+00 7.0399E+00 3.7893E+00 1.6265E+00 1.1654E-01
Std 5.0790E-02 3.7245E+00 3.8587E+00 2.3295E+00 3.7778E+00 2.3430E+00 2.0858E+00 8.9769E-01 4.8419E-01 3.7905E-02

F18 Best 3.5696E-13 7.1414E-01 7.1414E-01 2.4974E+00 4.7614E-01 3.3105E+00 2.3802E+00 3.5344E-01 4.7573E-01 8.8337E-18
Worst 3.0942E+00 2.1422E+00 2.8562E+00 4.3877E+00 2.8562E+00 4.5832E+00 5.2014E+00 1.4932E+00 3.0936E+00 1.3912E+00
Mean 2.1739E+00 1.4599E+00 1.9755E+00 3.5515E+00 1.6697E+00 4.1009E+00 4.5124E+00 9.0021E-01 1.7101E+00 1.7910E-01
Std 6.4270E-01 4.0377E-01 5.1216E-01 4.4035E-01 5.9099E-01 3.1679E-01 7.2056E-01 2.8744E-01 7.5572E-01 3.1021E-01

F19 Best 0.0000E+00 8.4044E+01 6.4110E+01 4.0061E+01 1.3800E+02 0.0000E+00 9.0883E+01 7.2000E+01 2.9498E+01 0.0000E+00
Worst 0.0000E+00 2.4109E+02 2.5903E+02 2.1800E+02 2.6900E+02 2.9113E+01 3.1181E+02 2.8800E+02 1.7500E+02 0.0000E+00
Mean 0.0000E+00 1.5812E+02 1.4020E+02 1.1621E+02 1.9910E+02 1.3113E+01 1.9292E+02 1.5050E+02 9.3801E+01 0.0000E+00
Std 0.0000E+00 3.4988E+01 4.2281E+01 4.2618E+01 3.3099E+01 6.7533E+00 5.2837E+01 4.5552E+01 3.5807E+01 0.0000E+00

F20 Best 0.0000E+00 1.4253E-02 1.3431E-02 2.5130E-04 1.0807E-02 9.2098E-05 4.2885E+00 1.1790E-05 2.5720E-04 4.9866E-11
Worst 1.1613E-05 1.7422E+00 1.1085E+00 9.5342E-01 1.8757E+00 9.2805E+00 1.5695E+01 1.9649E-01 2.0112E+00 3.4356E-03
Mean 4.2000E-07 4.6459E-01 2.3481E-01 2.1768E-01 4.2105E-01 3.4270E+00 8.9710E+00 1.8591E-02 3.8869E-01 2.0868E-04
Std 2.1202E-06 5.2530E-01 2.7254E-01 2.3964E-01 4.6115E-01 2.6779E+00 3.2323E+00 3.7361E-02 5.2564E-01 6.7457E-04
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Figure 7. Boxplot of the benchmark functions for 30-D case (F11–F20).
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for QOBL-ICA. At the same time, one can see from
Figures 8 and 9 that even for multimodal function,
QOBL-ICA also shows faster convergence speed and
convergence characteristics than other referenced algo-
rithms. However, from Figures 8 and 9, one can see
thatmany algorithms trap into local optimal and cannot
escape from it. Thus only local optimal solutions can be
found.

Figures 10 and 11 show the convergence curve of
all algorithms for 30-D benchmark functions. No mat-
ter whether for uni-modal or multimodal functions,
most algorithms exhibit stagnation phenomena and
converge to a local optimum. For example, for uni-
modal functions F01–F07, OBL-ICA, ICA, GBB-ICA,
ICA-AR, ICA-PSO, DA, GSA, PGJAYA and MPA all
exhibit searching stagnation and converge to local opti-
mum. Only our proposed QOBL-ICA possesses excel-
lent local and global searching ability. Not only is the
convergence speed faster but also there is no stagnation
occurs. For multi-modal functions, similar phenom-
ena can be observed in the case of unimodal func-
tions. In a word, the convergence characteristic of the
proposed QOBL-ICA is better than other referenced
algorithms.

5.6. Wilcoxon test

As well as the qualitative analysis presented in Sec-
tions 5.3, 5.4 and 5.5, in this section, aWilcoxon signed
rank sum test is carried out to further objectively eval-
uate the performance of the proposed QOBL-ICA. The
significant level of the test is selected as α = 0.05.
Wilcoxon test compares two group data and determines
which is better by testing a statistical hypothesis. The
hypothesis is:H0: group A has no difference to group B;
H1: group A is better than group B. In our test experi-
ments, the best values obtained by QOBL-ICA among
the 30 runs are pairwise comparisons with those by
other ICAs. Tables 8 and 9 list the test results for 10-
D and 30-D benchmark functions, where h equals 1
means one rejects H0 or accepts H1. That is to say,
h = 1 means QOBL-ICA is superior to the compared
algorithm. From Tables 4 and 5, we can see that our
proposed QOBL-ICA indeed outperforms other algo-
rithms.

5.7. Applications to engineering design problems

Here, our QOBL-ICA is applied to solve several engi-
neering design problems and the obtained optimal
solutions are compared with those presented in the lit-
erature. Since most engineering design problems have
constraints, here, we use the penalty function method
to handle constraints. The penalty function method
augments the original objective function f (x) as theway
shown in (17),

F(x) = f (x) +
m∑
j=1

(P ∗ max{0, g2j (x)}), (17)

where gj(x) is the jth inequality constraint,P is a penalty
factor. In our paper, P = 105.

5.7.1. I-beam design problem
The I-beam design problem (IB-DP) focus on find-
ing the minimum of vertical deflection while satisfies
the cross-sectional area and stress constraints under
given loads. The design variables are the width of flange
b(x1), the height of section h(x2), the thickness of the
web tw(x3) and the thickness of the flange tf (x4). The
maximum vertical deflection of the beam is f (x) =
PL3/48EI when the length of the beam (L) andmodulus
of elasticity (E) is 5200 cm and 523.104 kN/cm2, respec-
tively. The I-beam design problem can be formulated as
an optimization problem as

Consider x = [x1 x2 x3 x4] = [b h tw tf ]

min f (x) = 5000
x3(x2−2x4)3

12 + x1x34
6 + 2x1x4

( x2−x4
2

)2
s.t. g1(x) = 2x1x3 + x3 (x2 − 2x4) ≤ 300

g2(x) = 18x2 × 104

x3 (x2 − 2x4)3

+ 2x1x3
(
4x24 + 3x2 (x2 − 2x4)

)
+ 15x1 × 103

(x2 − 2x4) x23 + 2x3x31
≤ 56

with 10 ≤ x1 ≤ 50

10 ≤ x2 ≤ 80

0.9 ≤ x3, x4 ≤ 5.

In the literature, the cuckoo search algorithm (CSA)
[59], chaos game optimization (CGO) [60], whale opti-
mization algorithm (WOA) [61], etc., had been used to
solve this problem. The optimization results obtained
by QOBL-ICA and other comparing algorithms are
shown in Table 10. From Table 10, one can see that
QOBL-ICA outperforms CS, ARSM, CGO and WOA,
and is almost the same as that byMFO.That is to say, the
QOBL-ICA obtains the state-of-the-art optimization
result for I-Beam design problem.

5.7.2. Speed reducer design problem (SRDP)
SRDP pays attention to find the minimum value of the
total weight of the speed reducer. This problem is more
complex because it involves more design variables,
which can be continuous or discrete. The involved vari-
ables include the face width b(x1), module of teeth
m(x2), number of teeth in the pinion z(x3), length of
the first shaft between bearings l1(x4), length of the
second shaft between bearings l2(x5), diameter of first
shaft d1(x6) and diameter of second shaft d2(x7). The
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Figure 8. Convergent characteristic of benchmark functions for 10-D case (F01–F10).
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Figure 9. Convergent characteristic of benchmark functions for 10-D case (F11–F20).

SRDP can bemathematically expressed as the following
optimization problem:

Consider x = [x1 x2 x3 x4 x5 x6 x7]

= [b m z l1 l2 d1 d2]

min f (x) = 0.7854x1x22(3.3333x
2
3 + 14.9334x3

− 43.0934)

− 1.508x1
(
x26 + x27

) + 7.4777
(
x36 + x37

)

+ 0.7854(x4x26 + x5x27)

s.t. g1(x) = 27
x1x22x3

− 1 ≤ 0

g2(x) = 397.5
x1x22x

2
3

− 1 ≤ 0

g3(x) = 1.93x34
x2x3x46

− 1 ≤ 0
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Figure 10. Convergent characteristic of benchmark functions for 30-D case (F01–F10).
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Figure 11. Convergent characteristic of benchmark functions for 30-D case (F11-F20).
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Table 8. h-value of Wilcoxon signed rank test for 10-D case.

Functions ICA GBB-ICA OBL-ICA AR-ICA ICA-PSO DA GSA PGJAYA MPA

F01 1 1 1 1 1 1 1 1 1
F02 1 1 1 1 1 1 1 1 1
F03 1 1 1 1 1 1 1 1 1
F04 1 1 1 1 1 1 1 1 1
F05 1 1 1 1 1 1 1 1 1
F06 1 1 1 1 1 1 1 1 1
F07 1 1 1 1 1 1 1 1 1
F08 0 0 0 0 0 1 1 0 0
F09 1 1 1 1 1 1 1 1 0
F10 1 1 1 1 1 1 1 1 1
F11 1 1 1 1 1 1 1 1 0
F12 1 1 1 1 1 1 1 1 0
F13 1 1 1 1 0 1 0 0 0
F14 1 1 1 1 1 1 1 1 1
F15 1 1 1 1 1 1 1 1 1
F16 1 1 1 1 1 1 1 1 1
F17 1 1 1 1 1 1 1 1 1
F18 1 1 0 0 1 1 1 0 0
F19 1 1 1 1 1 1 1 1 1
F20 1 1 1 1 1 1 1 1 1

Table 9. h-value of Wilcoxon signed rank test for 30-D case.

Functions ICA GBB-ICA OBL-ICA AR-ICA ICA-PSO DA GSA PGJAYA MPA

F01 1 1 1 1 1 1 1 1 1
F02 1 1 1 1 1 1 1 1 1
F03 1 1 1 1 1 1 1 1 1
F04 1 1 1 1 1 1 1 1 1
F05 1 1 1 1 1 1 1 1 1
F06 1 1 1 1 1 1 1 1 1
F07 1 1 1 1 1 1 1 1 1
F08 1 1 1 1 1 1 1 0 0
F09 1 1 1 1 1 1 1 1 0
F10 1 1 1 1 1 1 1 1 1
F11 1 1 1 1 1 1 1 1 0
F12 1 1 1 1 1 1 1 1 1
F13 1 1 1 1 1 1 1 1 0
F14 1 1 1 1 1 1 1 1 1
F15 1 1 1 1 1 1 1 1 1
F16 1 1 1 1 1 1 1 1 1
F17 1 1 1 1 1 1 1 1 1
F18 0 1 0 0 1 1 0 0 0
F19 1 1 1 1 1 1 1 1 0
F20 1 1 1 1 1 1 1 1 1

Table 10. Best results of I-beam design problem.

Best variable value

Algorithms Best cost b h tw tf

QOBL-ICA 0.0066259 50 80 1.764706 5
CS [59] 0.0130747 20 80 0.9 2.321672
ARSM [59] 0.0157 37.05 80 1.71 2.31
CGO [60] 0.01307412 50 80 0.9 2.321792
MFO [61] 0.0066259 50 80 1.7647 5
WOA [61] 0.00662619 49.99799 80 1.764748 5

g4(x) = 1.93x35
x2x3x47

− 1 ≤ 0

g5(x) =

((
754x4
x2x3

)2 + 16.9 × 106
) 1

2

110x36
− 1

≤ 0

g6(x) =

((
754x5
x2x3

)2 + 157.5 × 106
) 1

2

85x37
− 1

≤ 0

g7(x) = x2x3
40

− 1 ≤ 0

g8(x) = 5x2
x1

− 1 ≤ 0

g9(x) = x1
12x2

− 1 ≤ 0

g10(x) = 1.5x6 + 1.9
x4

− 1 ≤ 0

g11(x) = 1.1x7 + 1.9
x5

− 1 ≤ 0

with 2.6 ≤ x1 ≤ 3.6

0.7 ≤ x2 ≤ 0.8

17 ≤ x3 ≤ 28

7.3 ≤ x4, x5 ≤ 8.3

2.9 ≤ x6 ≤ 3.9

5.0 ≤ x7 ≤ 5.5

Several meta-heuristic algorithms including ASOINU
[62], beetle swarm optimization algorithm (BA) [62],
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Table 11. Best results of speed reducer problem.

Best variable value

Algorithm Best cost x1 x2 x3 x4 x5 x6 x7

QOBL-ICA 2994.3554 3.4980 0.7000 17.0000 7.3000 7.7152 3.3512 5.2867
BA [62] 2994.4671 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2875
NDE [62] 2994.4711 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866
IPSO [62] 2994.4711 3.5000 0.6999 17.0000 7.2999 7.7153 3.3502 5.2866
ASOINU [62] 2996.2448 3.5000 0.7000 17.0000 7.3000 7.8000 3.3502 5.2865
CSA [63] 2994.4710 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2867
EJAYA [64] 2994.4711 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2867

novel differential evolution (NDE) algorithm [62],
interval particle swarm optimization (IPSO) [62],
chameleon swarm algorithm (CAS) [63], Enhanced
jaya algorithm (EJAYA) [64] had been used to solve
SRDP. Table 11 shows the best optimization result
obtained byQOBL-ICA and the comparing algorithms.
It can be seen from Table 11 that the result of our
QOBL-ICA is better than that of other comparing algo-
rithms.

5.7.3. Car side impact design problem (CSIDP)
This problem aims to find the minimum value of the
total weight of the door to avoid side impact. The
involved design variables include the thickness of B-
Pillar inner (x1), the thickness of B-Pillar reinforcement
(x2), the thickness of floor side inner (x3), the thickness
of cross members (x4), the thickness of door beam (x5),
the thickness of door beltline reinforcement (x6), the
thickness of roof rail (x7), materials of B-Pillar inner
(x8), materials of floor side inner (x9), barrier height
(x10) and hitting position (x11). This problem is math-
ematically can be expressed an optimization problem as

Consider x = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11]

min f (x) = 1.98 + 4.90x1 + 6.67x2 + 6.98x3
+ 4.01x4 + 1.78x5 + 2.73x7

s.t g1(x) = 1.16 − 0.3717x2x4 − 0.00931x2x10
− 0.484x3x9 + 0.01343x6x10 − 1 ≤ 0

g2(x) = 0.261 − 0.0159x1x2 − 0.0188x1x8
− 0.0191x2x7 + 0.0144x3x5
+ 0.0008757x5x10
+ 0.08045x6x9 + 0.00139x8x11
+ 0.00001575x10x11 − 0.32 ≤ 0

g3(x) = 0.214 + 0.00817x5 − 0.131x1x8
− 0.0704x1x9 + 0.03099x2x6
− 0.018x2x7 + 0.0208x3x8
+ 0.121x3x9 − 0.00364x5x6
+ 0.0007715x5x10 − 0.0005354x6x10
+ 0.00121x8x11 + 0.00184x9x10

− 0.02x22 ≤ 0.32

g4(x) = 0.74 − 0.61x2 − 0.163x3x8

+ 0.001232x3x10 − 0.166x7x9

+ 0.227x22 − 0.32 ≤ 0

g5(x) = 28.98 + 3.818x3 − 4.2x1x2
+ 0.0207x5x10 + 6.63x6x9
− 7.7x7x8 + 0.32x9x10 ≤ 32

g6(x) = 33.86 + 2.95x3 + 0.1792x3
− 5.057x1x2 − 11.0x2x8
− 0.0215x5x10 − 9.98x7x8
+ 22.0x8x9 − 32 ≤ 0

g7(x) = 46.36 − 9.9x2 − 12.9x1x2
+ 0.1107x3x10 − 32 ≤ 0

g8(x) = 4.72 − 0.5x4 − 0.19x2x3
− 0.0122x4x10 + 0.009325x6x10

+ 0.000191x211 − 4 ≤ 0

g9(x) = 10.58 − 0.674x1x2 − 1.95x2x8
+ 0.02054x3x10 − 0.0198x4x10
+ 0.028x6x10 − 9.9 ≤ 0

g10(x) = 16.45 − 0.489x3x7 − 0.843x5x6
+ 0.0432x9x10 − 0.0556x9x11

− 0.000786x211 − 15.7 ≤ 0

with 0.5 ≤ xi ≤ 1.5, i = 1, 2, 3, 4, 5, 6, 7

xi ∈ {0.192, 0.345}, i = 8, 9

− 30 ≤ xi ≤ 30, i = 10, 11

This problem had also been solved by several algo-
rithms. Table 12 shows the optimization results of
QOBL-ICA and other comparing algorithms includ-
ing PSO, DE, FA, CS [59] and social network search
(SNS) algorithm [65]. One can see from Table 12 that
our QOBL-ICA obtains the minimum cost 21.1935,
which is smaller than the number of 22.84 obtained by
the other comparing algorithms. This implies that our
QOBL-ICA is superior to

6. Conclusion

To alleviate the disadvantage of the original ICA, an
improved ICA is proposed by integrating the QOBL
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Table 12. Best results of Car side impact.

Best variables

Algorithm Best cost x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

QOBL-ICA 21.1935 0.5 0.8724232 0.5 1.296124 0.5 1.5 0.5 1 1 −6.01976688 −0.004596
PSO [59] 22.84474 0.5 1.1167 0.5 1.30208 0.5 1.5 0.5 0.345 0.192 −19.54935 −0.00431
DE [59] 22.84298 0.5 1.1167 0.5 1.30208 0.5 1.5 0.5 0.345 0.192 −19.5494 −0.00431
FA [59] 22.84298 0.5 1.36 0.5 1.202 0.5 1.12 0.5 0.345 0.192 8.87307 −18.99808
CS [59] 22.84294 0.5 1.11643 0.5 1.302 0.5 1.5 0.5 0.345 0.192 −19.54935 −0.00431
SNS [65] 22.8429 0.5 1.1159332 0.5 1.302919 0.5 1.5 0.5 0.345 0.192 −19.6388662 1.49E-06

into ICA, named QOBL-ICA. To be specific, an QOBL-
based population initialization is presented to produce
a group of high-quality initial individuals more near
to the optimal solution. In addition, a QOBL-based
assimilation strategy is proposed to enhance the global
exploration ability of ICA. The introduced QOBL not
only speeds up the convergence of the algorithm but
also increases the chance of jumping out local opti-
mum. The proposed QOBL-ICA shows great superior-
ity to most other advanced meta-heuristic algorithms,
which is verified by extensive comparison in terms of
optimization results and convergence curves.

Since the QOL strategy can provide improved per-
formance for ICA to solve complex optimization prob-
lems, in the future research works, we will attempt to
extend QOBL-ICA to multi-objective case. That is to
say, amulti-object version ofQOBL-ICAwill be studied
to solve multi-object optimization problems.
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