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SELECTION METHOD FOR INTERPRETABILITY LOGIC IL
WITH RESPECT TO VERBRUGGE SEMANTICS

Sebastijan Horvat and Tin Perkov

Abstract. Interpretability logic is a modal logic which formalizes
the notion of relative interpretability between first-order arithmetical the-
ories. Veltman semantics is the basic semantics for interpretability logic.
Verbrugge semantics is a generalization of Veltman semantics. Selection
is one of the methods to establish finite model property of a logical sys-
tem, as a step towards showing that the system is decidable. In this paper
we show that selection method can be applied to Verbrugge models, by
adapting techniques used for Kripke models to this more complex setting.

1. Introduction

Finite model property is an important feature of many modal logics, lead-
ing to their decidability, somewhat surprisingly, considering their expressive
power. Finite model property of a logical system means that, for any for-
mula F , if F is satisfiable, then F is satisfied in a finite model. If the system
is sound and complete, decidability is established, roughly, by simultaneous
enumeration of theorems of the system and (up to isomorphism) finite models
and testing in each step whether the current theorem equals F and whether
¬F is satisfied at the current finite model, until one of these two questions is
answered affirmatively. By finite model property, this procedure terminates
in finitely many steps and thus decides if F is valid.

Interpretability logic is a modal logic, which extends provability logic
with a binary modality ▷, used to express relative interpretability between
arithmetical theories. In this paper we focus on interpretability logic as a
system of modal logic, so for details on arithmetical aspects we refer the
reader to e.g. [8]. In modal logic, usual methods to establish finite model
property are filtration and selection, so it is natural to consider these methods
for interpretability logic.
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While filtration achieves finiteness by identifying worlds using some equiv-
alence relation, selection takes finitely many worlds from the starting model,
disregarding others. In both cases some care is needed to define structures on
equivalence classes or selected worlds, respectively, so that F is still satisfied
in the obtained finite structure. This is done arguably more naturally with
selection, in sense that it is intuitively clear why we select worlds which we
select. On the other hand, selection always results in a tree-like structure,
which may be quite different from the starting model, while filtration keeps
some structural resemblance to the starting model, which is sometimes im-
portant, in particular when one needs to establish finite model property w.r.t.
a certain subclass of models. For a detailed presentation of both methods for
basic modal logic see [1].

Filtration of Verbrugge models1 is studied in [7] (cf. also [4]), and used
to prove finite model property and decidability of various systems of inter-
pretability logic in [5] and [6]. In this paper, we study selection of Verbrugge
models. In Section 2, we overview some basic definitions and results. In Sec-
tion 3, we overview basic facts on n-w-bisimulation, an equivalence between
Verbrugge models which is used later to show that selection indeed achieves
finite model property. In Section 4, we describe the first phase of the selection
process: cutting the model to a finite height. In Section 5 we prove the main
result. The proof contains the second phase: selecting finitely many worlds
and proving that the obtained structure has the desired property.

2. Preliminaries

In this section we give an overview of basic notions of Verbrugge seman-
tics, i.e., Verbrugge frames and Verbrugge models. We also introduce various
notions needed in the rest of this paper.

The syntax of interpretability logic IL is given by F ::= p | ⊥ | F1 →
F2 | F1 ▷ F2, where p ranges over a fixed set of propositional variables, gen-
erally assumed to be enumerable, unless explicitly stated otherwise, namely
in results which only hold in the case of a finite alphabet. Other Boolean
connectives can be defined as abbreviations as usual. Also, □ can be defined
as an abbreviation, namely □F ≡ ¬F ▷ ⊥, and then ♢F ≡ ¬□¬F as usual.
We use usual conventions to avoid too many parentheses in longer formulas,
with an additional convention that ▷ binds more strongly than →.

We use the definition of Verbrugge models from [9] (where they are called
generalized Veltman models). In the following, we use notation R[w] := {x :
wRx}, where R is a binary relation.

1Verbrugge models were usually called generalized Veltman models in the literature
until recently. A discussion in interpretability logics community lead to the new terminology,
in honor of Rineke Verbrugge who developed the notion in an unpublished note.
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Definition 2.1. An ordered triple (W,R, {Sw : w ∈ W}) is called a
Verbrugge frame if it satisfies the following conditions:

(i) W is a non-empty set and R is a transitive and reverse well-founded
binary relation on W

(ii) For every w ∈ W , Sw is a subset of R[w] × (P(R[w]) \ {∅})
(iii) The relation Sw is quasi-reflexive for every w ∈ W , i.e., wRu implies

uSw{u}
(iv) The relation Sw is quasi-transitive for every w ∈ W , i.e., if uSwV and

(∀v ∈ V )(vSwZv), then uSw

( ⋃
v∈V

Zv

)
(v) If wRuRv then uSw{v}
(vi) If uSwV and V ⊆ Z ⊆ R[w] then uSwZ.

An ordered quadruple (W,R, {Sw : w ∈ W},⊩) is called a Verbrugge model
if it satisfies the following conditions:

(i) (W,R, {Sw : w ∈ W}) is a Verbrugge frame
(ii) ⊩ is a forcing relation defined as usual in Boolean cases, and
w ⊩ F ▷G iff ∀u((wRu & u ⊩ F ) ⇒ ∃V (uSwV&(∀v ∈ V )(v ⊩ G))).
A pointed Verbrugge model is a pair (M, w), where M is a Verbrugge

model and w is a world in M.
In the rest of this paper we will denote by M and M′ Verbrugge models

(W,R, {Sw : w ∈ W},⊩) and (W ′, R′, {S′
w : w ∈ W ′},⊩), respectively. We

will use the symbol ⊩ to denote forcing relations in all Verbrugge models,
since the context will always prevent confusion.

To define the notion of n-modal equivalence, for a natural number n, we
first need the following auxiliary definition:

Definition 2.2. The modal depth is the function d : Form → N, where
Form is the set of IL-formulas, defined as follows:

d(p) = 0,
d(⊥) = 0,

d(F1 → F2) = max{d(F1), d(F2)},
d(F1 ▷ F2) = 1 + max{d(F1), d(F2)}.

In particular, using the aforementioned conventions, we observe that the
modal depth of IL-formulas of the form □F and ♢F is 1+d(F ). In other words,
modal depth of an IL-formula is the maximum number of nested modalities.

Using the notion of modal depth of an IL-formula we can now define modal
equivalence and n-modal equivalence of two worlds.

Definition 2.3. We say that w ∈ W and w′ ∈ W ′ are modally equiv-
alent, and we write w ≡ w′, if for every IL-formula F , M, w ⊩ F if and only
if M′, w′ ⊩ F , i.e., if they satisfy exactly the same formulas. We say that
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w ∈ W and w′ ∈ W ′ are n-modally equivalent, and we write w ≡n w
′, if

the equivalence holds for all IL-formulas of modal depth up to n.

The notion of n-modal equivalence is closely related with the notion of
n-w-bisimulation which we will define in the next section.

3. Weak n-bisimulations for Verbrugge semantics

The notion of n-w-bisimulation between Verbrugge models was defined in
[4].

Definition 3.1. An n-w-bisimulation between Verbrugge models M
and M′ is a decreasing sequence of relations

Zn ⊆ Zn−1 ⊆ · · · ⊆ Z1 ⊆ Z0 ⊆ W ×W ′

that possesses the following properties:
(at) If wZ0w

′, then w ⊩ p if and only if w′ ⊩ p′, for all
propositional letters p

(n-w-forth) For every i ∈ {1, . . . , n}, if wZiw′ and wRu, then there
exists a nonempty set U ′ ⊆ R′[w′] such that for all u′ ∈
U ′ we have uZi−1u

′ and for each function V ′ : U ′ →
P(W ′) such that for all u′ ∈ U ′ we have u′S′

w′V ′(u′),
there exists a set V such that uSwV and for all v ∈ V
there exists v′ ∈

⋃
u′∈U ′ V ′(u′) with vZi−1v

′

(n-w-back) For every i ∈ {1, . . . , n}, if wZiw′ and w′R′u′, then there
exists a nonempty set U ⊆ R[w] such that for all u ∈ U
we have uZi−1u

′ and for each function V : U → P(W )
such that for all u ∈ U we have uSwV (u), there exists a
set V ′ such that u′S′

w′V ′ and for all v′ ∈ V ′ there exists
v ∈

⋃
u∈U V (u) with vZi−1v

′.
We say that w and w′ are n-w-bisimilar and we write M, w ↭ n M′, w′

if there is an n-w-bisimulation Z0 ⊇ Z1 ⊇ · · · ⊇ Zn such that wZnw′.
A w-bisimulation between two Verbrugge models M and M′ is a single

relation Z ⊆ W×W ′, that has the properties (at), (n-w-forth) and (n-w-back),
with all Zi being equal to Z. When Z is a w-bisimulation linking two worlds
w ∈ W and w′ ∈ W ′, we say that w and w′ are w-bisimilar and we write
M, w ↭ M′, w′.

It is much easier to think of the previous definition pictorially. Figure
1 illustrates the (n-w-forth) clause. We use • to depict given (or universally
quantified) nodes, while by ◦ we depict nodes whose existence we demand.
We use straight arrows to depict relations R, R′, Z, and wavy arrows to
depict relations Sw and S′

w′ . Full lines depict given (or universally quantified)
relations, while dashed ones depict relations whose existence follows from some
conditions. We depict sets of nodes analogously.
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Figure 1. Illustration of the (n-w-forth) clause.

Various properties of w-bisimulations are stated in [4]. Here, we will just
repeat some statements from Propositions 2.8 and 3.2 in [4], about properties
of w-bisimulations and n-w-bisimulations which we will use in the selection
method.

Proposition 3.2. Let M and M′ be Verbrugge models, let w ∈ W and
w′ ∈ W ′, and n ∈ N.

(a) If w and w′ are n-w-bisimilar, then they are n-modally equivalent.
(b) If w and w′ are w-bisimilar, then they are modally equivalent.

4. Obtaining a tree model with finite height

In this section we will describe the first phase of the selection process. We
will define the unravelling of a Verbrugge model in order to obtain the tree
model property for logic of interpretability IL. Then we will define the height
of a rooted Verbrugge model and consider a restriction of the unravelling of
a Verbrugge model to obtain an important result: every IL-formula that is
satisfiable on some Verbrugge model is satisfiable on some tree model with
finite height.

Let F be an arbitrary satisfiable IL-formula. Then there exists an Ver-
brugge model M and a world w in M such that M, w ⊩ F . We say that
a pointed Verbrugge model (M, w) is rooted if for every world w′ in M
there exists an R-path from w to w′, i.e. there exists a sequence of worlds
w0, w1, . . . , wm in M such that w0 = w, wm = w′ and for all k < m we have
wkRwk+1. We also say that the world w is the root of that model.
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Before the definition of the unravelling of a Verbrugge model, we introduce
some notation that will be used. Let W be a set. We denote by W ∗ the set
of all finite words over the alphabet W. Also, we denote by π a function from
W ∗ to W defined as follows:

π(w0w1 . . . wn) = wn.

For V ∗ ⊆ W ∗, we denote π[V ∗] = {π(v∗) : v∗ ∈ V ∗}.
Now we give the definition of the unraveling of a Verbrugge model.

Definition 4.1. Let M = (W,R, {Sw : w ∈ W},⊩) be a Verbrugge model
and w0 ∈ W . The unravelling of M from w0 is a quadruple (W ∗, R∗, {S∗

w∗ :
w∗ ∈ W ∗},⊩), where:

(i) W ∗ is the set of words of the form w∗ = w0w1 . . . wn−2w, where
w0Rw1 . . . Rwn−2Rw is any R-path in W starting from w0,

(ii) R∗ ⊆ W ∗ ×W ∗ is the proper prefix relation,
(iii) u∗S∗

w∗V ∗ if and only if u∗ ∈ R∗[w∗], V ∗ ⊆ R∗[w∗] and π(u∗)Sπ(w∗)
π[V ∗],

(iv) w∗ ⊩ p if and only if π(w∗) ⊩ p, for any propositional variable p.

In the following proposition we list the basic properties of the unravelling,
all of which are easily verified from the definitions.

Proposition 4.2. Let M be a Verbrugge model, w0 ∈ W and M∗ the
unravelling of M from w0. Then:

(a) M∗ is a Verbrugge model
(b) w0 ∈ W and w0 ∈ W ∗ are w-bisimilar
(c) (W ∗, R∗) is a transitive tree rooted at w0.

By Proposition 4.2. we can now obtain a rooted Verbrugge model
(M∗, w∗) that is in fact a transitive tree such that M, w ↭ M∗, w∗, so
by Proposition 3.2. we conclude M, w ≡ M∗, w∗. Now M, w ⊩ F implies
M∗, w∗ ⊩ F . Thus we have obtained the following result:

if an IL-formula is satisfiable on some Verbrugge model, then
that IL-formula is satisfied at the root of some Verbrugge model
which is a transitive tree.

Sometimes (see e.g. [1]) this property of a logic is called the tree model
property. So, IL has the tree model property with respect to Verbrugge seman-
tics. A related question of (finite) subtree model property for IL is considered
in [2].

Now we define the notion of the height of a state in a rooted Verbrugge
model (M, w).

Definition 4.3. Let (M, w) be a rooted Verbrugge model. We recursively
define the notion of the height of a world in M as follows:

(i) the only element of height 0 is the root w,
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(ii) the states of height n + 1 are those immediate R-successors of worlds
of height n that have not yet been assigned a height smaller than n+1.

We denote the height of a world w′ in M by h(w′). The height of a rooted
model (M, w) is the maximum n such that there is a world of height n in
M, if such a maximum exists; otherwise we say that the height of the rooted
model (M, w) is infinite.

In order to obtain a finite submodel of a Verbrugge model, we will consider
the restriction of a rooted Verbrugge model (M, w) which will contain all the
states that can be reached from the root w in at most k steps, for some natural
number k, where each step is a move from the current world to its immediate
R-successor.

Definition 4.4. Let k ∈ N and let (M, w) be a rooted Verbrugge model.
The restriction of (M, w) to k, denoted by (M, w) ↾ k, is defined as the
submodel containing only states whose height is at most k and relations are
restricted to those states. More precisely, (M, w) ↾ k = (Wk, Rk, {S(k)

v : v ∈
Wk},⊩), where:

• Wk = {v ∈ W : h(v) ⩽ k}
• Rk = R ∩ (Wk ×Wk)
• S

(k)
v = Sv ∩ (Rk[v] × (P(Rk[v] \ {∅}))), for all v ∈ Wk

• v ⊩ p in the restriction if and only if v ⊩ p in the starting model, for
all v ∈ Wk and all propositional variables p.

It is easy to check that the restriction of a rooted Verbrugge model to
some k is a Verbrugge model.

The following proposition will be used to show that for a given IL-formula
F of modal depth k that is satisfiable at the root of some pointed Verbrugge
model (M, w0), the restriction of (M∗, w0) to k contains all the worlds we
need to satisfy F .

Proposition 4.5. Let (M, w0) be a pointed Verbrugge model and let k ∈
N. Let M∗ be the unravelling of M from w0. Then for every world w∗ in
M∗ ↾ k we have

M∗ ↾ k,w∗ ↭ l M
∗, w∗,

where l = k − h(w∗).

Proof. Let M∗ ↾ k = (W ′, R′, {S′
w′ : w′ ∈ W ′,⊩) and let w∗ be a world

in M∗ ↾ k. Define relations Zl ⊆ Zl−1 ⊆ · · · ⊆ Z0 ⊆ W ′ ×W ∗ as follows:
Zi := {(v′, v∗) : v′ ∈ M∗ ↾ (k − i), π(v′) = π(v∗)}.

It follows that Zl ⊆ Zl−1 ⊆ · · · ⊆ Z0 and w∗Zlw
∗. In the rest of the proof, we

will show that the sequence of relations (Zi) satisfies the conditions (at) and
(l-w-forth) from the definition of l-w-bisimulation. The condition (l-w-back)
is proved analogously.
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Let v′ ∈ W ′ and v∗ ∈ W ∗ be worlds such that v′Z0v
∗. From the defini-

tion of Z0 we have π(v′) = π(v∗). Now for every propositional variable p from
the definition of unravelling and its restriction we obtain the following equiv-
alences: M∗ ↾ k, v′ ⊩ p if and only if M∗, v′ ⊩ p if and only if M, π(v′) ⊩ p if
and only if M∗, v∗ ⊩ p. So we have proved the condition (at) for the sequence
of relations (Zi) is satisfied.

We will now prove the (l-w-forth) condition holds. Let i ∈ {1, 2, . . . , l},
x′, u′ ∈ W ′ and x∗ ∈ W ∗ such that x′Zix

∗ and x′R′u′. From x′Zix
∗ and the

definition of Zi we have that π(x′) = π(x∗) and x′ ∈ M∗ ↾ (k − i). Since
R′ is a restriction of the relation R∗ on W ′, from x′R′u′ we have x′R∗u′, so
by the definition of R∗ and the transitivity of R we have π(x′)Rπ(u′). From
x∗ ∈ W ∗ and the definition of unravelling it follows that

x∗ = w0w1 . . . π(x∗),
where w0Rw1 . . . Rπ(x∗) is an R–path in W from w0. We define

u∗ = w0w1 . . . π(x∗)π(u′).
From π(x∗) = π(x′)Rπ(u′) it follows u∗ ∈ W ∗, π(u∗) = π(u′) and x∗R∗u∗.
Now put U∗ = {u∗}. Clearly U∗ ⊆ R∗[w∗] and u′Zi−1u

∗
1 for every u∗

1 ∈ U∗.
Let V ∗ : U∗ → P(W ∗) be an arbitrary function such that for every

u∗
1 ∈ U∗ we have u∗

1S
∗
x∗V ∗(u∗

1). From the definition of the set U∗ we have
u∗S∗

x∗V ∗(u∗). First we define V ⊆ W as the set V = π[V ∗(u∗)]. From
x′ ∈ W ′ ⊆ W ∗ and the definition of unravelling it follows that

x′ = w0v1 . . . π(x′),
where w0Rv1 . . . Rπ(x′) is an R–path in W from w0. From u∗S∗

x∗V ∗(u∗)
we have π(u∗)Sπ(x∗) π[V ∗(u∗)] which implies π[V ∗(u∗)] ⊆ R(π(x∗)). Now
V = π[V ∗(u∗)] implies V ⊆ R(π(x∗)). We define the set V ′ in the following
way:

V ′ =
{
w0v1 . . . π(x′)v

∣∣ v ∈ V
}
.

From V ⊆ R(π(x∗)) = R(π(x′)) it follows that the set V ′ consists of the
immediate R∗-successors of the world x′. Now π(u′) = π(u∗), π(x′) = π(x∗),
π[V ∗(u∗)] = V = π[V ′], π(u∗)Sπ(x∗)π[V ∗(u∗)] and V ′ ⊆ R′[x′] by the defi-
nition of unravelling imply that u′S∗

x′V ′. From x′ ∈ M∗ ↾ (k − i) it follows
V ′ ⊆ M∗ ↾ (k − i+ 1) = M∗ ↾ (k − (i− 1)) so by u′S∗

x′V ′ we obtain u′S′
x′V ′.

Let v′ ∈ V ′ be an arbitrary world. By the definition of the set V ′ we have
v′ = w0v1 . . . π(x′)v for some v ∈ V . From v ∈ V and V = π[V ∗] it follows that
there is v∗ ∈ V ∗(u∗) such that π(v∗) = v. So, we have π(v∗) = v = π(v′) and
from v′ ∈ V ′ and V ′ ⊆ M∗ ↾ (k−(i−1)) we obtain v′ ∈ M∗ ↾ (k−(i−1)). This
means that for the world v∗ ∈ V ∗(u∗) =

⋃
u∗

1∈U∗ V ∗(u∗
1) we have v′Zi−1v

∗.
Thus the condition (l-w-forth) is proved.

Note that for every pointed Verbrugge model (M, w), model (M∗, w) ↾ k
has finite height, but is not necessarily finite since it can have infinitely many
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(finite) R∗-paths from the root w. In the next section we will use the selection
method to fix that in order to obtain a finite Verbrugge model and thus
conclude the proof by selection that interpretability logic has the finite model
property with respect to Verbrugge semantics.

5. The selection method

In the previous section we proved that any satisfiable IL-formula is satis-
fiable in a Verbrugge model that is a tree of finite height.

Before the main theorem, let us introduce some notation. Let M be a
Verbrugge model, let w ∈ W be an arbitrary world and F an IL-formula.
Denote by Prop the (finite) set of all propositional variables that occur in F .
Then it can be proved that for n ∈ N there exist only finitely many mutually
non-equivalent IL-formulas G whose modal depth is less than or equal to n,
whose variables are from the set Prop and for which M, w ⊩ G holds. For
details on this in the case of basic modal logic see e.g. [3]. The case of IL
is analogous. We denote the conjunction of these finitely many formulas by
χnw. It follows that for each n ∈ N we have that M, w ⊩ χnw. Note that the
definition of the formula χnw implies that d(χnw) ⩽ n.

Now we are ready to prove the finite model property for interpretability
logic IL with respect to Verbrugge semantics by selection.

Theorem 5.1. Let F be an IL formula. If F is satisfiable in a Verbrugge
model, then F is satisfiable in a finite Verbrugge model.

Proof. Le F be an arbitrary satisfiable IL-formula. Then there exists
a Verbrugge model M and a world w0 in that model such that M, w0 ⊩ F .
Let k be the modal depth of F and denote by Prop the (finite) set of all
propositional variables that occur in F . Then by the tree model property of
IL with respect to Verbrugge semantics there exists a rooted Verbrugge model
(M∗, w∗

0) which is a transitive tree such that M∗, w∗
0 ⊩ F . By Proposition 4.5.

for the Verbrugge model N = (M∗ ↾ k) we have that M∗, w∗
0 ↭ k N, w

∗
0 . Since

d(F ) ⩽ k by Proposition 3.2. we have N, w∗
0 ⊩ F .

This resulted in a model that is a transitive tree of finite height. But
that tree can have infinite number of branches. All that remains is to adapt
the process of selecting finitely many branches from Theorem 2.34. in [1]
and show that thus obtained model, which we will denote by N′, satisfies
N, w∗

0 ↭ k N′, w∗
0 .

Let N = (W,R, {Sw : w ∈ W},⊩) be an arbitrary Verbrugge model. First
we define a sequence of sets of worlds (Seti)i∈N. Put Set0 = {w∗

0}. Suppose
that for some i ∈ N we have defined Seti. Then we define Seti+1 as follows:

• For each v ∈ Seti, consider the set of all IL-formulas of the form ¬(G▷
H) that are logically mutually non-equivalent, whose modal depth is
less than or equal to k, whose set of propositional variables is a subset
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of Prop and for which N, v ⊩ ¬(G ▷ H) holds. There are finitely
many such formulas, so we can denote them by F0, F1, . . . , Fm, for
some m ∈ N.

• For each i ∈ {0, 1, . . . ,m}, from N, v ⊩ Fi ≡ ¬(G▷H) it follows that
there exists some world u ∈ W such that vRu and N, u ⊩ G and for
every V ⊆ W such that uSwV there exists v′ ∈ V such that N, v′ ⊮ H.

• We build Seti+1 by placing in it one such world u for each i ∈ {0, 1, . . . ,
m} and we repeat this procedure for each world v ∈ Seti.

It is easy to prove by induction that each Seti is finite and h(v) ⩾ i for
all v ∈ Seti. Since the height of the model N is equal to k, it follows that
Seti = ∅ for all i > k.

We define the model N′ = (W ′, R′, {S′
w : w ∈ W ′},⊩) as the submodel of

N whose set of worlds is W ′ =
⋃
i∈N Seti. Due to the previous considerations,

we have W ′ =
⋃k
i=0 Seti. As each Seti is finite, it follows that the obtained

model is finite. For each i ∈ {0, 1, . . . , k}, we define the relation Zi ⊆ W ×W ′

as follows:
wZiw

′ if and only if N, w′ ⊩ χiw.

Since for all u, v in N and each i ∈ N \ {0} we have that N, v ⊩ χiu implies
N, v ⊩ χi−1

u , we obtain Zk ⊆ Zk−1 ⊆ . . . ⊆ Z0. Also, N, w∗
0 ⊩ χkw∗

0
implies

w∗
0Zkw

∗
0 .

We will show that the sequence of relations Z0, Z1, . . . , Zk is a k-w-
bisimulation. It will follow that N, w∗

0 ↭ k N′, w∗
0 , which implies N, w∗

0 ≡k

N′, w∗
0 . Since N, w∗

0 ⊩ F and d(F ) ⩽ k, then we have N′, w∗
0 ⊩ F . Since N′ is

a finite Verbrugge model, we obtain the desired claim.
First, let us show that the condition (at) from the definition of k-w-

bisimulation holds. Let wZ0w
′ and p ∈ Prop. The definition of Z0 implies

N, w′ ⊩ χ0
w. This implies that N, w ⊩ p holds if and only if N, w′ ⊩ p holds.

We now show that the condition (k-w-forth) from the definition of k-w-
bisimulation holds. Let i ∈ {1, . . . , k}. Let wZiw′ and let u ∈ W be such that
wRu. From wRu and N, u ⊩ χi−1

u we have that N, w ⊩ ♢χi−1
u . Recall that ♢

is an abbreviation, so this means N, w ⊩ ¬(χi−1
u ▷ ⊥). From wZiw

′ and the
definition of the relation Zi, it follows that N, w′ ⊩ χiw. Since the depth of
¬(χi−1

u ▷ ⊥) is at most i, N, w ⊩ ¬(χi−1
u ▷ ⊥) implies N, w′ ⊩ ¬(χi−1

u ▷ ⊥).
The definition of W ′ implies that for some j ∈ N we have w′ ∈ Setj , so there
exists some u′ ∈ Setj+1 (and thus u′ ∈ W ′) such that N, u′ ⊩ χi−1

u . So,
uZi−1u

′. Let U ′ be the set that consists of all u′ ∈ W ′ such that w′R′u′ and
N, u′ ⊩ χi−1

u . The previous considerations imply U ′ ̸= ∅.
Let V ′ : U ′ → P(W ′) be an arbitrary function such that for every world

u′ ∈ U ′ we have u′S′
w′V ′(u′). Let V ′′ =

⋃
u′∈U ′ V ′(u′). Assume the opposite,

i.e., for every set V such that uSwV there exists a world v ∈ V such that for
every world v′ ∈ V ′′ it does not hold vZi−1v

′. The latter is by the definition
of Zi−1 equivalent to N, v′ ⊩ ¬χi−1

v , which is equivalent to N, v ⊩ ¬χi−1
v′ .
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Therefore, for every set V such that uSwV there exists a world v ∈ V such
that N, v ⊩ ¬

∨
v′∈V ′′ χ

i−1
v′ . Since W ′ is finite, and then also is V ′′ ⊆ W ′, the

latter disjunction is finite, and thereby the given formula is well-defined. So,
we have u ∈ W such that wRu and for any V ⊆ W such that uSwV there is
v ∈ V such that N, v ̸⊩

∨
v′∈V ′′ χ

i−1
v′ . Hence, N, w ⊩ ¬

(
χi−1
u ▷

∨
v′∈V ′′ χ

i−1
v′

)
.

The depth of the previous formula is at most i, so from N, w′ ⊩ χiw we
conclude that N, w′ ⊩ ¬

(
χi−1
u ▷

∨
v′∈V ′′ χ

i−1
v′

)
. Since w′ ∈ Setj for some

j ∈ N, there must be some u′′ ∈ Setj+1 such that w′R′u′′, N, u′′ ⊩ χi−1
u and

for any X ′ such that u′S′
w′X ′ there is x′ ∈ X ′ with N, x′ ̸⊩

∨
v′∈V ′′ χ

i−1
v′ .

Then in particular we have u′′ ∈ U ′, so the latter in particular holds for
X ′ = V ′(u′′). But this means that there exists a world v′′ ∈ V ′(u′′) ⊆ V ′′

such that N, v′′ ⊩ ¬
∨
v′∈V ′′ χ

i−1
v′ , contradicting N, v′′ ⊩

∨
v′∈V ′′ χ

i−1
v′ , which

holds since v′′ ∈ V ′′ and N, v′′ ⊩ χi−1
v′′ .

It remains to prove (k-w-back). Let i ∈ {1, . . . , k}. Assume wZiw′ and
w′R′u′. Then w′Ru′, which together with N, u′ ⊩ χi−1

u′ implies N, w′ ⊩ ♢χi−1
u′ .

This means N, w′ ⊩ ¬(χi−1
u′ ▷ ⊥). From wZiw

′ and the definition of Zi it
follows N, w′ ⊩ χiw, which is equivalent to N, w ⊩ χiw′ . Since the depth of
¬(χi−1

u′ ▷ ⊥) is up to i, we have N, w ⊩ ¬(χi−1
u′ ▷ ⊥). Then there exists

u ∈ W such that wRu and N, u ⊩ χi−1
u′ , which is equivalent to N, u′ ⊩ χi−1

u .
Therefore, uZi−1u

′. We define U as the set of all worlds u ∈ W such that
wRu and N, u ⊩ χi−1

u′ . The previous considerations imply U ̸= ∅.
Let V : U → P(W ) be an arbitrary function such that for all u ∈ U we

have uSwV (u). Put V ′′ =
⋃
u∈U V (u). Since U consists of all u such that

wRu and N, u ⊩ χi−1
u′ , we obtain N, w ⊩ χi−1

u′ ▷
∨
v∈V ′′ χi−1

v . Although the
set V ′′ ⊆ W is not necessarily finite, the previous disjunction is finite if we
consider only mutually logically non-equivalent formulas χi−1

v whose modal
depth is at most i − 1. From wZiw

′ and the fact that the modal depth of
χi−1
u′ ▷

∨
v∈V ′′ χi−1

v is at most i, we have N, w′ ⊩ χi−1
u′ ▷

∨
v∈V ′′ χi−1

v . Now,
N, u′ ⊩ χi−1

u′ implies that there exists a set V ′ such that u′S′
w′V ′ and for all

v′ ∈ V ′ we have N, v′ ⊩
∨
v∈V ′′ χi−1

v . This implies that all v′ ∈ V ′ there is
v ∈ V ′′ such that N, v′ ⊩ χi−1

v , i.e., vZi−1v
′, which concludes the proof.

6. Conclusion and future work

Proving that a logical system has the finite model property using the
selection technique leads to the so-called finite tree property (or in the present
case, finite tree-like model property, since the obtained model is tree only with
respect to the accessibility relation, while it has much richer structure than
an ordinary tree). This may result in additional difficulties when we explore
finite model property with respect to subclasses of models characteristic to
particular principles of interpretability. It may be possible, though, to adapt
the technique for a particular class, or to combine it with some other steps
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before or after the selection phase. We leave these considerations for future
work.
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Metoda selekcije za logiku interpretabilnosti IL uz Verbruggeinu
semantiku

Sebastijan Horvat i Tin Perkov

Sažetak. Logika interpretabilnosti je modalna logika koja
formalizira pojam relativne interpretabilnosti izmedu aritmetičkih
teorija prvog reda. Veltmanova semantika je osnovna seman-
tika za logiku intepretabilnosti. Verbruggeina semantika je gen-
eralizacija Veltmanove semantike. Ključan korak u dokazivanju
odlučivosti nekog logičkog sistema je dokazivanje svojstva kon-
ačnih modela tog logičkog sistema. Jedna od metoda za dokazi-
vanje tog svojstva je selekcija. Prilagodbom tehnika koje su ko-
rištene u slučaju Kripkeovih modela, u ovome radu pokazujemo
da se metoda selekcije može primijeniti i u složenijem slučaju Ver-
bruggeinih modela.
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