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THE NON-ABELIAN GROUP OF ORDER 26 ACTING ON
STEINER 2–DESIGNS S(2, 6, 91)

Dean Crnković and Doris Dumičić Danilović

Abstract. There are only four known Steiner 2–designs S(2, 6, 91),
the Mills design, the McCalla design and two designs found by C. J. Col-
bourn and M. J. Colbourn. All these designs admit a cyclic automor-
phism of order 91. In 1991, Z. Janko and V. D. Tonchev showed that any
point-transitive Steiner 2–design S(2, 6, 91) with an automorphism group
of order larger than 91 is one of the four known designs. It is an open
question whether there exists a Steiner 2–design S(2, 6, 91) with full au-
tomorphism group of order smaller than 91. In this paper we show that
any Steiner 2–design S(2, 6, 91) having a non-abelian automorphism group
of order 26 (i.e. the Frobenius group Frob26) is isomorphic to one of the
known designs, the McCalla design having the full automorphism group
isomorphic to C91 : C12 or the Colbourn and Colbourn design having the
full automorphism group isomorphic to C91 : C4.

1. Introduction

There are only four known Steiner 2–designs S(2, 6, 91), i.e. designs with
parameters 2–(91, 6, 1). The designs have been found by Mills, C. J. Colbourn
and M. J. Colbourn in [3], [4] and [16]. Each design is cyclic, i.e. having a cyclic
automorphism group acting transitively on points. Two of the designs are the
Mills design and the so called McCalla design (named after Gordon McCalla,
but constructed by C. J. Colbourn and M. J. Colbourn in [4]), which are the
only block-transitive 2–(91, 6, 1) designs, and also point-imprimitive. Their
full automorphism groups were computed by S. D. Stoichev and V. D. Tonchev
in [19]. The Mills and the McCalla design have the full automorphism group
C7 : (C13 : C3) and C7 : (C13 : C12) respectively, so the full automorphism
group of the McCalla design is reaching the bound 91 · 12 obtained in [19].
Their base blocks for the action of the automorphism group C91 generated by
the permutation (0, 1, . . . , 90), are as follows:
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D1) The Mills design - base blocks:
[7, 8, 10, 19, 52, 71], [7, 11, 47, 61, 76, 81], [7, 13, 20, 45, 80, 88].

D2) The McCalla design - base blocks:
[1, 13, 26, 31, 64, 73], [7, 13, 17, 39, 84, 87], [13, 52, 54, 81, 88, 89].

The other two designs have the full automorphism group C7 : (C13 : C4)
and C91, and their base blocks for the action of the automorphism group C91
generated by the permutation (0, 1, . . . , 90), are as follows:

D3) Base blocks: [1, 13, 26, 31, 64, 73], [7, 13, 17, 39, 84, 87], [11, 13, 52, 67, 68, 75].
D4) Base blocks: [7, 8, 10, 19, 52, 71], [7, 11, 28, 33, 48, 62], [7, 13, 20, 45, 80, 88].

Camina and Di Martino in [1] proved that any automorphism group of
a point-transitive 2–(91, 6, 1) design is the natural split extension of a cyclic
group of order 91 by a cyclic group of order d, where d divides 12.

Hence, any point-transitive 2–(91, 6, 1) design is cyclic, and all additional
automorphisms of that design are multipliers forming a cyclic group of order
at most 12. Further, in 1991, Z. Janko and V. D. Tonchev showed that any
point-transitive 2–(91, 6, 1) design with an automorphism group of order larger
than 91 is one of the four known designs (see [12]).

It is an open question whether there exists a 2–(91, 6, 1) design with full
automorphism group of order smaller than 91. Since the non-abelian group
Frob26 is the automorphism group of the two known 2–(91, 6, 1) designs (the
McCalla design D2 and the Colbourn and Colbourn design D3), in this paper
we observe the action of that group on a 2–(91, 6, 1) design.

The paper is organized as follows. After a brief overview of the basic con-
cepts related to designs and their automorphisms, given in the next section,
in Section 3 we outline the construction of designs via orbit matrices. Besides
that, we give an additional constraint on the columns of point orbit matrices
of quasi-symmetric designs and a cyclic automorphism group that correspond
to orbits of odd length. In Sections 4 and 5 we examine the action of the
automorphism groups C13 and C2 on a 2–(91, 6, 1) design. The classification
of 2–(91, 6, 1) designs having the non-abelian group of order 26 as an auto-
morphism group is given in Section 6. It is shown that there exist exactly
two pairwise nonisomorphic Steiner 2–designs S(2, 6, 91) having a non-abelian
automorphism group of order 26, which are isomorphic to the known designs
(the McCalla design D2 and the Colbourn and Colbourn design D3).

Computation in this paper consisted of programs written for GAP [10].

2. Preliminaries

A t–(v, k, λ) design is a finite incidence structure D = (P,B, I), where
I ⊆ P × B, with |P| = v points with the property that each element of B
(called a block) is incident with exactly k points and every t distinct points
are incident with exactly λ blocks. If a design is simple (has no repeated
blocks), then a block can be identified with a subset of the point set P. A
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Steiner system S(t, k, v), or a Steiner t–design S(t, k, v), is a t–(v, k, 1) design
with t ≥ 2.

In a 2–(v, k, λ) design (called a block design) every point is incident with
exactly r = λ(v−1)

k−1 blocks, and r is called the replication number of the design.
The number of blocks is b = vr

k . If a 2–(v, k, λ) design is symmetric (i.e.
b = v), then r = k, and any two distinct blocks B and B′ are incident with
exactly λ common points, i.e. |B ∩ B′| = λ. More generally, a t–design is
called quasi-symmetric with intersection numbers x and y, for nonnegative
integers x < y, if any two blocks intersect in either x or y points. So, any
symmetric design is quasi-symmetric design with x = λ and y is arbitrary.
Any Steiner 2-design (λ = 1) is a quasi-symmetric design with intersection
numbers x = 0 and y = 1. For more information on quasi-symmetric designs
we refer the reader to [17] and [18].

The point-by-block incidence matrix of a t–(v, k, λ) design D = (P,B, I)
is a (v × b) matrix whose rows are indexed by points and columns by blocks,
with the entry in row P and column B being 1 if (P,B) ∈ I, and 0 otherwise.

An isomorphism from one design to an other is a bijective mapping of
points to points and blocks to blocks which preserves incidence. An isomor-
phism from a design D onto itself is called an automorphism of D. The set
of all automorphisms of D forms its full automorphism group denoted by
Aut(D). The concept of G–isomorphism was introduced by V. Ćepulić in [2],
and it is very useful in the isomorph rejection during the construction of de-
signs by using orbit matrices. An isomophism α from a design D1 = (P,B, I1)
onto a design D2 = (P,B, I2) is called a G-isomorphism from D1 onto D2,
for G ≤ Aut(D1) ∩ Aut(D2), if there is an automorphism τ : G → G such
that α(P )τ(g) = α(Q) ⇔ Pg = Q, for each P,Q ∈ P and each g ∈ G, where
Pg denotes the action of g on the point P . In other words, a G–isomorphism
is an isomorphism from one onto antoher design which preserves G-orbits
on the set of points and also on the set of blocks. If I1 = I2, α is called
a G–automorphism of D1. In [6], the authors proved that a permutation
α ∈ S = S(P) × S(B) is a G–isomorphism from D1 onto D2 if and only if α
is in the normalizer NS(G). For more details on G–isomorphisms we refer to
[2] and [6].

3. Orbit matrices and indexing

The method of tactical decomposition (and orbit matrices) is a well known
method which has been used for constructions of 2–designs with presumed
automorphism groups for the last 40 years (see [5, 6, 11–13]). Actually, orbit
matrices were first used by Dembowski (see [8]). Below, we give the notations
and properties for point orbit matrices that we used in the construction of
2–(91, 6, 1) designs.
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Let D be a 2–(v, k, λ) design with G ≤ Aut(D). We denote G-orbits of
points and blocks by P1, . . . ,Pm and B1, . . . ,Bn respectively, and put |Pi| =
ωi, |Bj | = Ωj , 1 ≤ i ≤ m, 1 ≤ j ≤ n. It holds that

∑m
i=1 ωi = v, and also∑n

j=1 Ωj = b. This action of G divides the incidence matrix M of D into m ·n
submatrices Mij , for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Further, by tij we denote the number of blocks in Bj incident with the
representative of the point orbit Pi, i.e. tij = |{B ∈ Bj | (P,B) ∈ I, P ∈ Pi}|.
Analogously, bij is the number of points in Pi incident with the representative
of the block orbit Bj , i.e. bij = |P ∈ Pi | (P,B) ∈ I, B ∈ Bj |. The numbers
tij and bij do not depend on the choice of the representatives of point and
block orbits, respectively. By determining the cardinal number of the set
{(P,B) | (P,B) ∈ I, P ∈ Pi, B ∈ Bj} in two different ways, it follows that
ωitij = Ωjbij .

The following conditions hold for tij (see [6, 11]):

0 ≤ tij ≤ Ωj , 1 ≤ i ≤ m, 1 ≤ j ≤ n,(3.1)
n∑
j=1

tij = r, 1 ≤ i ≤ m,(3.2)

m∑
i=1

ωi
Ωj
tij = k, 1 ≤ j ≤ n,(3.3)

n∑
j=1

ωs
Ωj
tsjts′j = λωs + δss′ · (r − λ), 1 ≤ s, s′ ≤ m.(3.4)

Definition 3.1. A (m× n) matrix T = [tij ] with entries satisfying con-
ditions (3.1) − (3.4) is called a point orbit matrix of a 2–(v, k, λ) design with
orbit lengths distributions (ω1, . . . , ωm) and (Ω1, . . . ,Ωn).

Definition 3.2. A (l× n) matrix [tij ], for l < m, with entries satisfying
conditions (3.1), (3.2), (3.4), and the condition

l∑
i=1

ωi
Ωj
tij ≤ k, 1 ≤ j ≤ n,

is called a partial point orbit matrix of a 2–(v, k, λ) design with orbit lengths
distributions (ω1, . . . , ωm) and (Ω1, . . . ,Ωn).

Remark 3.3. By replacing tij with Ωj
ωi
bij in the equations (3.2)–(3.4) we

get the (m × n) matrix B = [bij ] which is called a block orbit matrix of a
2–(v, k, λ) design satisfying the given equations, where 0 ≤ bij ≤ ωi, 1 ≤ i ≤
m, 1 ≤ j ≤ n. So, the entry bij corresponds to the sum of a column in Mij ,
and the entry tij corresponds to the sum of a row in Mij .



Frob26 ACTING ON 2–(91, 6, 1) DESIGNS 41

Obviously, if an automorphism group acts semi-standardly on D i.e. with
the same orbit lengths distribution on the set of points and on the set of
blocks, then D is a symmetric design and T = B.

The construction of designs based on orbit matrices consists of two basic
steps (see [11]). The first step is the construction of orbit matrices for the
presumed automorphism group G of a design and orbit lengths distributions
for an action of G on the set of points and blocks. The second step is the
construction of incidence matrices of designs corresponding to the orbit ma-
trices obtained. This step is often called the indexing of orbit matrices. So,
during the indexing of orbit matrices, one have to determine which blocks are
incident with the representative of a point orbit for the presumed action of G
on a design. That suggests the notion of an index set. The set of indices of
blocks in the G-orbit Bj indicating which blocks of Bj are incident with the
representative of the point G-orbit Pi is called the index set for an entry tij
in a point orbit matrix, i ∈ {1, . . .m} and j ∈ {1, . . . , n}.

For the indexing, and also for the construction of orbit matrices we have
used reverse lexicographical order, as described in [2].

In many cases, the indexing of orbit matrices is very hard to implement
(due to many possibilities for index sets that should be determined for each
tij , where i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Hence, in some cases, it is
convenient to add an additional step in the construction of designs, the so
called refinement of orbit matrices for a solvable group G ≤ Aut(D) onto
orbit matrices for an action of a normal subgroup H ⊴G, since each G-orbit
of points or blocks of D decomposes to one or more H-orbits of the same size,
and the group G/H acts transitively on that set of H-orbits. In such a way,
each orbit matrix for the group G decomposes to orbit matrices for the group
H (for more information see [6, 7]).

An orbit matrix does not have to produce a design, while, on the other
hand, many designs can be constructed from a single orbit matrix. Moreover,
different orbit matrices may produce isomorphic designs. Thus, constructed
designs need to be checked additionally for isomorphisms. However, the iso-
morph rejection, i.e. the elimination of (partial) orbit matrices which will
produce isomorphic designs is very useful technique to reduce the number
of constructed isomorphic designs. In this way, the computational time and
memory required to execute the construction is reduced and contributes sig-
nificantly to its implementation. So, to reduce the number of isomorphic
designs during the construction, elements of the normalizer NS(P)×S(B)(G),
for a design D = (P,B, I) and a group G ≤ Aut(D) can be used. In particu-
lar, during the construction of (partial) orbit matrices, for the elimination of
isomorphic ones, all permutations of their rows and columns, i.e. the elements
from Sm × Sn which satisfy the conditions from Proposition 3.4 can be used
(see [6] and [7]).
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Proposition 3.4. Let D = (P,B, I) be a 2–(v, k, λ) design, G ≤ Aut(D),
and let the (m × n) matrix T be a point orbit matrix of the design D with
respect to the group G. Then, let g = (α, β) ∈ S = Sm×Sn with the following
properties:

1. if α(s) = t, then the stabilizer GPs is conjugate to GPt , where Ps, Pt ∈
P, Ps = PsG and Pt = PtG,

2. if β(i) = j, then Gxi is conjugate to Gxj , where xi, xj ∈ B, Bi =
xiG, Bj = xjG.

Then there exists a permutation g∗ ∈ CS(P)×S(B)(G), such that

α(s) = t if and only if g∗(Ps) = Pt, and

β(i) = j if and only if g∗(Bi) = Bj .

Definition 3.5. Two orbit matrices T and T ′ are isomorphic if there is
a permutation g = (α, β) ∈ Sm × Sn (called an isomorphism) from T onto
T ′ = Tg that satisfies the conditions from Proposition 3.4. If T = Tg then
the permutation g is called an automorphism of the orbit matrix T .

All automorphisms of the orbit matrix T form the full automorphism
group of T denoted by Aut(T ). During the construction of orbit matrices, for
the isomorph rejection one can use the isomorphisms on the set of (partial)
orbit matrices. But, during the indexing only the automorphisms of orbit
matrices and also, more generally, theG-isomorphisms of designs (i.e. elements
from the normalizer NS(P)×S(B)(G)) can be used (see [6]).

3.1. Orbit matrices of quasi-symmetric designs. The method of constructing
designs by using orbit matrices has been applied also for quasi-symmetric
designs (see [9, 14]). V. Krčadinac and R. Vlahović Kruc in [14] used an
additional property that can be applied on the columns of block orbit matrices
for quasi-symmetric designs. In the following proposition, we give a similar
property of point orbit matrices of quasi-symmetric designs.

Proposition 3.6. Let D be a quasi-symmetric 2–(v, k, λ) design with
intersection numbers x and y, 0 ≤ x < y, and G ≤ Aut(D) acting with orbit
lengths distributions (ω1, . . . , ωm) and (Ω1, . . . ,Ωn) on the set of points and
blocks, respectively. Then the point orbit matrix T = [tij ] has an additional
property:

1
Ωj

m∑
i=1

ωitijtij′ =
{
ξx+ (Ωj′ − ξ)y, for j ̸= j′, 0 ≤ ξ ≤ Ωj′

k + ξx+ (Ωj′ − 1 − ξ)y, for j = j′, 0 ≤ ξ < Ωj′ .

(3.5)

Proof. For a fixed block B in a block orbit Bj let us determine the
number of points that are incident with B and B′, for all blocks B′ in a
block orbit Bj′ , i.e., count the number of elements in the set {(P,B′) ∈ P ×
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Bj′ | (P,B) ∈ I, (P,B′) ∈ I}. Hence, it holds that
m∑
i=1

bijtij′ =
∑

B′∈Bj′

| ⟨B⟩ ∩

⟨B′⟩ | = ξx+ (Ωj′ − ξ)y + (k − y)δjj′ , where ⟨B⟩ represents the set of points
incident with the block B, and nonnegative integer ξ ≥ 0 such that ξ ≤ Ωj′

for j ̸= j′, and ξ ≤ Ωj′ − 1 for j = j′. Since ωitij = Ωjbij , the property (3.5)
holds.

Ding et al. in [9] made the classification of quasi-symmetric 2–(28, 12, 11)
designs with intersection numbers x = 4, y = 6, having an automorphism of
order 7 without fixed points or blocks. In that paper, the authors considered
all possible values of the sums

∑m
i=1 b

2
ij for each column j ∈ {1, . . . , n} in the

constructed block orbit matrices B = [bij ], in order to eliminate some of them.
Observing such an action of an automorphism of order 7 on an orbit of blocks,
the authors have set fewer options for the parameter ξ in (3.5) for j = j′, so
they got less number of candidates for columns in block orbit matrices. In the
sequel, we make a generalization of their approach for any quasi-symmetric
design and its cyclic automorphism group G having an orbit of blocks of odd
length.

Let M be an incidence matrix of a quasi-symmetric 2–(v, k, λ) design D
having intersection numbers x and y with a presumed cyclic automorphism
group G acting on D. Let P1, . . .Pm be point orbits and B1, . . . ,Bn block
orbits of D with respect to the action of G. Then, the corresponding (m×n)
point orbit matrix T = [tij ] refines to an incidence matrix M of D that is
divided into m · n circulant submatrices Mij , for 1 ≤ i ≤ m, 1 ≤ j ≤ n, as
follows:

T =

 t11 · · · t1n
...

. . .
...

tm1 · · · tmn

 ⇒ M =

 M11 · · · M1n
...

. . .
...

Mm1 · · · Mmn

.
Let Mj be a (v × Ωj) submatrix of M corresponding to the block orbit Bj ,
for j ∈ {1, . . . , n}. Then, it is easy to see that MT

j Mj =
∑m
i=1 M

T
ijMij , and

the elements of MT
j Mj are the intersection numbers of blocks from the orbit

Bj . The matrix MT
j Mj is both symmetric and circulant, and its elements

are from the set {k, x, y} with k on the diagonal, since the intersection of a
block with itself is equal to k. Label the entries of the first row in MT

j Mj by
m1, . . . ,mΩj . If Ωj is odd, for some j ∈ {1, . . . ,m}, then

m2 = mΩj , m3 = mΩj−1, . . . , mΩj+1
2

= mΩj+3
2
,

since MT
j Mj is a symmetric and circulant matrix. So, there are Ωj−1

2 pairs
of equal elements (x or y) in each row of MT

j Mj . It is obvious that m1 = k.
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Therefore, the first row sum in MT
j Mj is

(3.6)
Ωj∑
i=1

mi = k + 2u · x+ (Ωj − 1 − 2u)y = k + (Ωj − 1)y + 2u(x− y),

for u = 0, . . . , Ωj−1
2 .

On the other hand, the sum of the entries in the first row of MT
j Mj

represents the sum of block intersections in the block orbit Bj , i.e. the sum∑
B′∈Bj | ⟨B⟩ ∩ ⟨B′⟩ | for a block B ∈ Bj . Hence, from (3.6) and the proof

of Proposition 3.6, the additional restriction on the columns of a point orbit
matrix T = [tij ] follows. This restriction is given in the following proposition.

Proposition 3.7. Let D be a quasi-symmetric 2–(v, k, λ) design with
the intersection numbers x and y, 0 ≤ x < y, and a cyclic automorphism
group G ≤ Aut(D) acting on D with orbit lengths distributions (ω1, . . . , ωm)
and (Ω1, . . . ,Ωn). A point orbit matrix T = [tij ] has the following property
(QS-property).

1. If j ̸= j′, then
1

Ωj

m∑
i=1

ωitijtij′ = u · x+ (Ωj′ − u)y, 0 ≤ u ≤ Ωj′ .(3.7)

2. If j = j′ then

(3.8) 1
Ωj

m∑
i=1

ωit
2
ij = k + 2u · x + (Ωj − 1 − 2u)y, 0 ≤ u ≤ Ωj − 1

2 , for Ωj odd,

(3.9) 1
Ωj

m∑
i=1

ωit
2
ij = k + u · x + (Ωj − 1 − u)y, 0 ≤ u < Ωj , for Ωj even.

Remark 3.8. The number of potential values for the parameter u in
(3.8) is twice as small as the number of possible values for the parameter ξ
in (3.5) for j = j′ and an Ωj > 1 odd, where j ∈ {1, 2, . . . , n}. In the case
when Ωj is even, then the entries of the first row in MjTMj are m1 = k,
m2 = mΩj ,m3 = mΩj−1, . . . ,mΩj

2
= mΩj

2 +2
and mΩj

2 +1
. So, in this case

the first row sum in MjTMj doest not give any restriction on the parameter
0 ≤ ξ < Ωj for j = j′ in Proposition 3.6.

Remark 3.9. Note that the QS-property from Proposition 3.7 can be
modified for a block orbit matrix B = [bij ] by using the equality ωitij = Ωjbij .

Remark 3.10. We checked whether the orbit matrices obtained in Section
6.1 satisfy the conditions outlined in Propositions 3.6 and 3.7. Since all the
constructed orbit matrices satisfy these conditions, that did not lead to a
reduction of the number of the orbit matrices.
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4. The action of C13 on a 2–(91, 6, 1) design

To determine the action of the non-abelian group Frob26 on a 2–(91, 6, 1)
design, first we need to examine the action of its normal subgroup C13 on a 2–
(91, 6, 1) design. To ascertain the number of points fixed by an automorphism
of a prime order we use the following theorem, given in [15].

Theorem 4.1. Let α be an automorphism of prime order p of a 2–(v, k, 1)
design. If α has fT fixed points, then

fT ≤
{
r + k − p− 1, if p ≤ k − 1
r − p−1

k−1 , if p ≥ k.

Proposition 4.2. An automorphism of order 13 acts fixed point and fixed
block free on a 2–(91, 6, 1) design.

Proof. If a 2–(91, 6, 1) design admits an automorphism ρ of order 13,
then the number of points fixed by ρ is fT ∈ {0, 13}, since ρ acts on the set of
points (and blocks) in orbits of length 1 and 13, and by Theorem 4.1 it holds
that fT ≤ 15. The replication number is r = 18, hence each ρ–fixed point is
incident with 5 or 18 blocks fixed by ρ. Let there exists a ρ–fixed point incident
with 18 fixed blocks. Since each ρ–fixed block is incident with k = 6 fixed
points and fT ≤ 13, there will always be a pair of ρ–fixed blocks that intersect
in more than one fixed point, which is a contradiction. So, for fT = 13, each
ρ–fixed point should be incident with exactly 5 ρ–fixed blocks. If we consider
the fixed part of a design and count the incident pairs of points and blocks
fixed by ρ, i.e. |{(P,B) ∈ P ×B | (P,B) ∈ I, where P and B are fixed by ρ}|,
in two ways, then we obtain fB · 6 = 13 · 5. That implies that fB /∈ N0, which
is a contradiction. Hence, fT = fB = 0.

5. The action of C2 on a 2–(91, 6, 1) design

Proposition 5.1. If an involutory automorphism acts on a 2–(91, 6, 1)
design, then the number of fixed points is fT ∈ {1, 7, 13, 15, 17, 19, 21}.

Proof. If σ is an involutory automorphism of a 2–(91, 6, 1) design, then
it follows from Theorem 4.1 that fT ≤ 21. Obviously, fT ≡ 1(mod 2), since
σ acts on the set of points (and blocks) in orbits of length 1 or 2, and v = 91.
Hence, fT ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21}.

The decomposition of a point orbit matrix A of a design for an action
of the automorphism σ, in general, is given in (5.1), where the first column
corresponds to the point and the first row corresponds to the block orbit



46 D. CRNKOVIĆ AND D. DUMIČIĆ DANILOVIĆ

lengths distribution.

(5.1)

A 1 · · · 1 2 · · · 2
1
... A11 A12
1
2
... A21 A22
2

Each block fixed by an involution is incident with an even number of non–fixed
points. Since k = 6, a fixed block is also incident with an even number of fixed
points. For the number of σ–fixed blocks it holds that fB = n′

0 +n′
2 +n′

4 +n′
6,

where n′
i is the number of fixed blocks incident with i fixed points, for i ∈

{0, 2, 4, 6}.
Now, we consider all possible point and block orbit lengths distributions,

which are determined by the number of points and blocks fixed by σ.
1) Let fT = 1. Then the point orbit matrix A has 46 rows. In this case, a
fixed block is incident with 6 non–fixed points (fB = n′

0), so the sum of all
elements in the submatrix A21 is equal to 3 · fB . Since two non-fixed points
from the same orbit are incident with exactly one common fixed block, each
row in A21 is a permutation of (1, 0, 0, . . . , 0). Thus, the sum of the elements
in A21 is 45 = 3 · fB , which gives us fB = 15.

2) In the case of fT = 3, the point orbit matrix A has 3 + 44 = 47 rows. A
fixed block is incident with 0 or 2 fixed points, so fB = n′

0 + n′
2. Further,

n′
2 = 3, since each pair of fixed points must be incident with one common

fixed block. Each of the n′
2 fixed blocks is incident with 4 non-fixed points,

and each of the n′
0 fixed blocks is incident with 6 non-fixed points, i.e. the

sum of all elements in A21 is 2n′
2 + 3n′

0 = 6 + 3n′
0. Analogously as in the first

case, each row in the submatrix A21 is a permutation of (1, 0, 0, . . . , 0), hence
the sum of elements in A21 is 44 · 1 = 6 + 3n′

0, which is not possible.
3) If fT = 5, then the point orbit matrix A has 5+43 = 48 rows. A fixed block
is incident with 0, 2 or 4 fixed points, so fB = n′

0 +n′
2 +n′

4. Each pair of fixed
points is incident with one common fixed block (a block incident with 2 or 4
fixed points), so the number of pairs of fixed points is

(5
2
)

= n′
4 ·
(4

2
)

+ n′
2 · 1.

It is easy to check that the solutions are n′
4 = 1, n′

2 = 4 and n′
4 = 0, n′

2 = 10.
However, neither of the possibilities meets the condition 3·n′

0+2·n′
2+1·n′

4 = 43
(i.e. the sum of elements in A21).
4) Let fT = 7. Then the matrix A has 7 + 42 = 49 rows. A fixed block is
incident with 0, 2, 4 or 6 fixed points, so fB = n′

0 + n′
2 + n′

4 + n′
6. For the
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number of pairs of fixed points the following holds:

(5.2) 21 =
(

7
2

)
= n′

6 ·
(

6
2

)
+ n′

4 ·
(

4
2

)
+ n′

2 ⇒ n′
6 ≤ 1.

The sum of elements in A21 is equal to

(5.3) 3 · n′
0 + 2 · n′

2 + 1 · n′
4 = 42.

4.1) If n′
6 = 1, then n′

4 = 0, since fT = 7 and λ = 1. So, from (5.2) and
(5.3) it follows that n′

2 = 6 and n′
0 = 10, hence fB = 17.

4.2) If n′
6 = 0, then it is easy to see that n′

4 ≤ 2, since λ = 1. If n′
4 = 2 (5.2)=⇒

n′
2 = 9 (also if n′

4 = 1 (5.2)=⇒ n′
2 = 15), but from (5.3) it follows that

n′
0 /∈ N. Hence, n′

4 = 0, so n′
2 = 21 and fB = 21.

5) Let fT = 9, then the number of σ-fixed blocks is fB = n′
0 + n′

2 + n′
4 + n′

6,
and the matrix A has 9 + 41 = 50 rows. Here, the following conditions on the
sum of the elements in A21 and on the number of pairs of fixed points hold:

(5.4) 3 · n′
0 + 2 · n′

2 + 1 · n′
4 = 41 ⇒ n′

2 ≤ 20,

(5.5) 36 =
(

9
2

)
= n′

6 ·
(

6
2

)
+ n′

4 ·
(

4
2

)
+ n′

2.

Since λ = 1, it follows that n′
6 ≤ 1. If n′

6 = 1, then n′
4 = 1 (so n′

2 = 15),
which follows from (5.4), (5.5) and λ = 1. However, from (5.4) it follows that
n′

0 /∈ N. If n′
6 = 0, then n′

4 ≤ 3, i.e. there are at most 3 fixed blocks incident
with 4 fixed points, since any pair of fixed points are incident with a common
fixed block. However, it is easy to check that for each n′

4 ≤ 3, the equations
(5.4) and (5.5) lead to a conclusion that n′

0 /∈ N0.
6) If fT = 11, then fB = n′

0 +n′
2 +n′

4 +n′
6, and the matrix A has 11+40 = 51

rows. The following conditions on the sum of the elements in A21 and on the
number of pairs of fixed points hold:

(5.6) 3 · n′
0 + 2 · n′

2 + 1 · n′
4 = 40 ⇒ n′

2 ≤ 20,

(5.7) 55 =
(

11
2

)
= n′

6 ·
(

6
2

)
+ n′

4 ·
(

4
2

)
+ n′

2.

It is easy to check that n′
6 ≤ 2, since λ = 1. If n′

6 = 2, then n′
4 = 0 and

n′
2 = 25, but (5.6) leads to a contradiction, since n′

2 ≤ 20. In the case
of n′

6 = 1, then n′
4 ≤ 2, but the equations (5.6) and (5.7) also lead to a

contradiction. If n′
6 = 0, then from (5.6) and (5.7) follows that n′

4 ≥ 6. Since
λ = 1, it can be checked easily that in this case there are at most 6 fixed
blocks having exactly 4 fixed blocks. So, n′

4 = 6, which implies that n′
2 = 19.

Now the equation (5.6) gives that n′
0 /∈ N0.

7) If fT = 13, then fB = n′
0 +n′

2 +n′
4 +n′

6, and the matrix A has 13+39 = 52
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rows. The following conditions on the sum of the elements in A21 and on the
number of pairs of fixed points hold:

(5.8) 3 · n′
0 + 2 · n′

2 + 1 · n′
4 = 39 ⇒ n′

2 ≤ 19,

(5.9) 78 =
(

13
2

)
= n′

6 ·
(

6
2

)
+ n′

4 ·
(

4
2

)
+ n′

2.

There are at most 2 fixed blocks incident with 6 fixed points, i.e. n′
6 ≤ 2. If

n′
6 = 2, then it is easy to check that n′

4 ≤ 1, but then the equations (5.8) and
(5.9) are not satisfied. If n′

6 = 1, then the equation (5.9) and n′
2 ≤ 19 imply

that n′
4 ≥ 8. In this case, the maximal number of fixed blocks having exactly

4 fixed points is 6, which is a contradiction. If n′
6 = 0, then from (5.8) and

(5.9) follows that n′
4 = 12, n′

2 = 6 and n′
0 = 5. Hence, there are 23 fixed

blocks, i.e. fB = 23.

8) The results for fT ∈ {15, 17, 19, 21} are presented in Table 1.

fT = 15
Conditions Solutions
The sum in A21: 1) If n′

6 = 3, then n′
4 = 8, n′

2 = 12, n′
0 = 2 ⇒ fB = 25

3n′
0 + 2n′

2 + n′
4 = 38 2) If n′

6 = 2, then n′
4 = 11, n′

2 = 9, n′
0 = 3 ⇒ fB = 25

#Pairs of fixed points: 3) If n′
6 = 1, then n′

4 = 14, n′
2 = 6, n′

0 = 4 ⇒ fB = 25
n′

2 + 6n′
4 + 15n′

6 = 105 4) If n′
6 = 0, then n′

4 = 17, n′
2 = 3, n′

0 = 5 ⇒ fB = 25
Upper-bound for n′

6: n′
6 ≤ 3

fT = 17
Conditions Solutions
The sum in A21: 1) If n′

6 = 3, then n′
4 = 14, n′

2 = 7, n′
0 = 3 ⇒ fB = 27

3n′
0 + 2n′

2 + n′
4 = 37 2) If n′

6 = 2, then n′
4 = 17, n′

2 = 4, n′
0 = 4 ⇒ fB = 27

#Pairs of fixed points: 3) If n′
6 = 1, then n′

4 = 20, n′
2 = 1, n′

0 = 5 ⇒ fB = 27
n′

2 + 6n′
4 + 15n′

6 = 136 4) If n′
6 = 0, then there are no solutions.

Upper-bound for n′
6: n′

6 ≤ 3
fT = 19

Conditions Solutions
The sum in A21: 1) If n′

6 = 4, then n′
4 = 18, n′

2 = 3, n′
0 = 4 ⇒ fB = 29

3n′
0 + 2n′

2 + n′
4 = 36 2) If n′

6 = 3, then n′
4 = 21, n′

2 = 0, n′
0 = 5 ⇒ fB = 29

#Pairs of fixed points: 3) If n′
6 = 2, then there are no solutions.

n′
2 + 6n′

4 + 15n′
6 = 171 4) If n′

6 = 1, then there are no solutions.
Upper-bound for n′

6: n′
6 ≤ 4 5) If n′

6 = 0, then there are no solutions.
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fT = 21
Conditions Solutions
The sum in A21: 1) If n′

6 = 7, then n′
4 = 17, n′

2 = 3, n′
0 = 4 ⇒ fB = 31

3n′
0 + 2n′

2 + n′
4 = 35 2) If n′

6 = 6, then n′
4 = 20, n′

2 = 0, n′
0 = 5 ⇒ fB = 31

#Pairs of fixed points: 3) If n′
6 = 5, then there are no solutions.

n′
2 + 6n′

4 + 15n′
6 = 210 4) If n′

6 = 4, then there are no solutions.
Upper-bound for n′

6: n′
6 ≤ 7 5) If n′

6 = 3, then there are no solutions.
5) If n′

6 = 2, then there are no solutions.
5) If n′

6 = 1, then there are no solutions.
5) If n′

6 = 0, then n′
4 = 35, n′

2 = 0, n′
0 = 0 ⇒ fB = 35

Table 1. The numbers of blocks fixed by an involution, for
fT ∈ {15, 17, 19, 21}.

The construction of 2–(91, 6, 1) designs assuming only an action of an
involutory automorphism or an automorphism of order 13, would be a very
difficult task if approached using the method of tactical decomposition and
orbit matrices, due to a very large number of possibilities for rows in orbit
matrices to be determined, and then also for their indexing. However, for a
larger group, such as Frob26, the classification of 2–(91, 6, 1) designs can be
carried out, as it is shown in the next section.

6. The group Frob26 acting on a 2–(91, 6, 1) design

In this section we study the action of the non-abelian group Frob26 ∼=
C13 : C2 on a 2–(91, 6, 1) design D. The group Frob26 acts as an automor-
phism group of two known 2–(91, 6, 1) designs, the McCalla design D2 and
the Colbourn and Colbourn design D3.

Let the group G ∼= Frob26 be presented as follows

G =
〈
ρ, σ |ρ13 = σ2 = 1, σρσ = ρ−1〉 .

Let us denote the points of D as P = {Pj | P = 1, 2, . . . , 7, j =
0, 1, . . . , 12} and the blocks of D as B = {Bj | B = 1, 2, . . . , 21, j =
0, 1, . . . , 12}. By Proposition 4.2, we may assume that the automorphism
ρ of order 13 acts on the set of points and blocks of D as (P0, P1, . . . , P12),
P = 1, 2, . . . , 7, and (B0, B1, . . . , B12), B = 1, 2, . . . , 21, respectively.

The involutory automorphism σ acts on a ρ–orbit of points or blocks of
D in one of the following ways.

1. Let σ be the stabilizer of the representative P0 of the ρ–orbit of points
{P0, P1, . . . , P12}, for P ∈ {1, 2, . . . , 7}, and also of the representative
B0 of the ρ–orbit of blocks {B0, B1, . . . , B12}, for B ∈ {1, 2, . . . , 21}.
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Then, these ρ–orbits are also G–orbits and the permutation σ acts on
the indices of a point and block ρ–orbit in one of the following ways:

σ =
{

(0)(1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7)
(0)(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12).(6.1)

Let us take a look on the action of

σ = (0)(1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7)

on the ρ–orbit of points {P0, P1, . . . , P12} and blocks {B0, B1, . . . , B12}.
In that case, such an action of σ on incident pairs is given as follows

(6.2) (Bi, Pj) 7→ (B(12·i) mod 13, P(12·j) mod 13), for all i, j ∈ {0, 1, . . . , 12}.

Hence, the corresponding part of the incidence matrix is given as fol-
lows:

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
B0 x0 x1 x2 x3 x4 x5 x6 x6 x5 x4 x3 x2 x1
B1 x1 x0 x1 x2 x3 x4 x5 x6 x6 x5 x4 x3 x2
B2 x2 x1 x0 x1 x2 x3 x4 x5 x6 x6 x5 x4 x3
B3 x3 x2 x1 x0 x1 x2 x3 x4 x5 x6 x6 x5 x4
B4 x4 x3 x2 x1 x0 x1 x2 x3 x4 x5 x6 x6 x5
B5 x5 x4 x3 x2 x1 x0 x1 x2 x3 x4 x5 x6 x6
B6 x6 x5 x4 x3 x2 x1 x0 x1 x2 x3 x4 x5 x6
B7 x6 x6 x5 x4 x3 x2 x1 x0 x1 x2 x3 x4 x5
B8 x5 x6 x6 x5 x4 x3 x2 x1 x0 x1 x2 x3 x4
B9 x4 x5 x6 x6 x5 x4 x3 x2 x1 x0 x1 x2 x3
B10 x3 x4 x5 x6 x6 x5 x4 x3 x2 x1 x0 x1 x2
B11 x2 x3 x4 x5 x6 x6 x5 x4 x3 x2 x1 x0 x1
B12 x1 x2 x3 x4 x5 x6 x6 x5 x4 x3 x2 x1 x0

where the elements xi ∈ {0, 1},∀i ∈ {0, 1, . . . , 6}, represent incidences
between blocks and points.

For an entry tij in a point orbit matrix T , corresponding to a G-
orbit of points and blocks of length 13, it holds that tij ∈ {0, 1, . . . , 4},
since λ = 1. Besides that, if σ is the stabilizer of the representative a
ρ–orbit of points and a ρ-orbit of blocks fixing exactly one point and
block, as given in (6.1), it is easy to see that

(6.3) tij ∈ {0, 1, 2}.

Namely, to index a point orbit matrix having an entry tij = 4 (i.e. to
determine the corresponding index set), it can be done in exactly 15
ways, as follows (only first rows are listed since the other 12 rows are
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their cyclic permutations):
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1], [0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1],
[0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1], [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0],
[0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]

But, none of the 15 possibilities above satisfy the intersection condition
λ = 1, since for each possibility there is a pair of points from the G–
orbit that is incident with more than 1 common block. Analogously,
if an entry in a point orbit matrix is tij = 3, it cannot be indexed
because none of the following 6 candidates have adequate intersections
of rows obtained by cyclic permutations:

[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0], [1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0].

If σ is the stabilizer of the representative of a ρ–orbit of points fixing
exactly one point, and the stabilizer of the representative of a ρ–orbit
of blocks fixing all blocks (or vice versa), then the corresponding entry
in a point orbit matrix for the action of G on a 2–(91, 6, 1) design must
be equal to 0.

2. Let us observe the case when σ does not stabilize any point form some
ρ–orbit of points, i.e. σ maps a ρ–orbit {P0, P1, . . . , P12} onto a ρ–orbit
{P ′

0, P
′
1, . . . , P

′
12}, for P ̸= P ′.

2.1) If σ is the stabilizer of the representative of a ρ–orbit of
blocks {B0, B1, . . . , B12}, acting on the set of indices as σ =
(0)(1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7), then σ acts on incident
pairs as follows

(Bi, Pj) 7→ (B(12·i) mod 13, P
′
(12·j) mod 13), for all i, j ∈ {0, 1, . . . , 12}.

Hence, the representativeB0 of theG–orbit of blocks {B0, B1, . . . ,
B12} is as follows (the remaining blocks are obtained by cyclic
permutations), where xi ∈ {0, 1},∀i ∈ {0, 1, . . . , 12}:

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10P11P12 P ′
0 P ′

1 P ′
2 P ′

3 P ′
4 P

′
5 P

′
6 P

′
7 P

′
8 P

′
9 P

′
10P

′
11P

′
12

B0 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x0 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

For an entry bij in a block orbit matrix B that corresponds to the
G–orbit of blocks of length 13, and to the G–orbit of points of
length 26, it can be shown that bij ∈ {0, 2}, since λ = 1 and the
refinement of bij for the action of ρ requires its decomposition
on [1, 1] or [0, 0]. Namely, the action i 7→ 12i mod 13 on the
indices can be written as i 7→ −i mod 13, and since j − i ≡
−((−j)−(−i)) mod 13, there exist two columns in the incidence
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matrix of the design, one corresponding to {P0, P1, . . . , P12} and
the other corresponding to {P ′

0, P
′
1, . . . , P

′
12}, having two ones in

the positions corresponding to two rows, i.e. the corresponding
blocks intersect in more than one point. This is a contradiction
with λ = 1. Hence, bij ̸= 4, i.e. it does not decompose as [2, 2].
That also implies that bij can not be decomposed as [3, 3] or
[4, 4]. Hence, bij ∈ {0, 2}.

2.2) If σ maps a ρ–orbit {B0, B1, . . . , B12} onto a ρ–orbit of blocks
(B′

0, B
′
1, . . . , B

′
12), for B ̸= B′, then for all i, j ∈ {0, 1, . . . , 12} σ

acts as follows
(Bi, Pj) 7→ (B′

(12·i) mod 13, P
′
(12·j) mod 13),

(Bi, P ′
j) 7→ (B′

(12·i) mod 13, P(12·j) mod 13).
Hence, the representatives B0 and B′

0 of the G-orbits of
blocks {B0, B1, . . . , B12} and {B′

0, B
′
1, . . . , B

′
12}, respectively, for

xi, yi ∈ {0, 1},∀i ∈ {0, 1, . . . , 12}, are as follows:

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10P11P12 P ′
0 P ′

1 P ′
2 P ′

3 P ′
4 P

′
5 P

′
6 P

′
7 P

′
8 P

′
9 P

′
10P

′
11P

′
12

B0 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12
B′

0 y0 y12 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 x0 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

3. If σ is the stabilizer of the representative of a ρ–orbit of points
{P0, . . . , P12}, but does not stabilize a block from a ρ–orbit of
blocks, i.e. maps a ρ–orbit {B0, B1, . . . , B12} onto a ρ-orbit of blocks
{B′

0, B
′
1, . . . , B

′
12}, for B ̸= B′, then the action of σ is given by

(Bi, Pj) 7→ (B′
(12·i)mod 13, P(12·j)mod 13), for all i, j ∈ {0, 1, . . . , 12}.

Hence, the representatives B0 and B′
0 of the G–orbit of blocks

{B0, B1, . . . , B12} and {B′
0, B

′
1, . . . , B

′
12}, respectively, for xi ∈ {0, 1},

∀i ∈ {0, 1, . . . , 12}, are as follows:

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10P11P12
B0 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
B′

0 x0 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

Here, an entry bij in a block orbit matrix B that corresponds to the
G–orbit of blocks {B0, B1, . . . , B12, B′

0, B
′
1, . . . , B

′
12} of length 26 and

to the G–orbit of points (P0, P1, . . . , P12) of length 13, is equal to
(6.4) bij ∈ {0, 1}.

The argumentation is analogous to the case 2.1).
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As stated above, point and block orbit lengths for an action of G
on D are 13 and 26. However, there are two types of (point or block)
orbits of size 13, since the involutory automorphism σ could act in two
different ways, fixing only one or all elements in a ρ–orbit, as given in
(6.1). If the permutation representation of σ in an G–orbit of length 13
is (0)(1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7), i.e. fixes only one element, then its
length will be denoted by 13. Otherwise, if σ fixes all elements in the G-orbit,
then its length will be denoted by 13.

Thus, based on the study of possible actions of the automorphism group
G on D given above, here we give an overview of the entries which may appear
in a point orbit matrix T . The first row and the first column represent a block
and a point G–orbit lengths distribution, respectively:

(6.5) T =

13 · · · 13 13 · · · 13 26 · · · 26
13
... 0, 1, . . . 4 0 0

13
13
... 0 0, 1, 2 0, 2

13
26
... 0 0, 1 0, 1, . . . , 6

26

By Propositions 4.2 and 5.1, one can conclude that there are 12 possible
orbit lengths distributions for an action of G ∼= Frob26 on a 2–(91, 6, 1) design
D. These distributions are denoted by F1, F2, . . ., F12 and shown in Table 2.
In the third column we marked if a distribution is good, which means that it
could produce at least one point orbit matrix. The distributions F1, F3, F6,
. . ., F12 will not produce orbit matrices, since for a G–orbit of blocks of length
13 there is at most one G–orbit of points of length 13, so the corresponding
column sum in block orbit matrices will be less than 6.
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σ-fixed G-orbit lengths distributions Good
points/blocks

fT = 1 F1: (ω1, . . . , ω4) = (13, 26, 26, 26), (Ω1, . . . ,Ω11) = (13, 13, 13,
×9︷ ︸︸ ︷

26, . . . , 26) No

fB = 15 F2: (ω1, . . . , ω4) = (13, 26, 26, 26), (Ω1, . . . ,Ω18) = (
×15︷ ︸︸ ︷

13, . . . , 13, 26, 26, 26) Yes

fT = 7 F3: (ω1, . . . , ω7) = (
×7︷ ︸︸ ︷

13, . . . , 13), (Ω1, . . . ,Ω13) = (13, 13, 13, 13, 13,
×8︷ ︸︸ ︷

26, . . . , 26) No

fB = 17 F4: (ω1, . . . , ω7) = (
×7︷ ︸︸ ︷

13, . . . , 13), (Ω1, . . . ,Ω19) = (
×17︷ ︸︸ ︷

13, . . . , 13, 26, 26) Yes

fT = 7 F5: (ω1, . . . , ω7) =

×7︷ ︸︸ ︷
(13, . . . , 13), (Ω1, . . . ,Ω21) = (

×21︷ ︸︸ ︷
13, . . . , 13) Yes

fB = 21 F6: (ω1, . . . , ω7) =

×7︷ ︸︸ ︷
(13, . . . , 13), (Ω1, . . . ,Ω15) = (13,

×8︷ ︸︸ ︷
13, . . . , 13,

×6︷ ︸︸ ︷
26, . . . , 26) No

fT = 13 F7: (ω1, . . . , ω4) = (13, 26, 26, 26), (Ω1, . . . ,Ω16) = (13,
×10︷ ︸︸ ︷

13, . . . , 13,
×5︷ ︸︸ ︷

26, . . . , 26) No
fB = 23

fT = 15 F8: (ω1, . . . , ω5) = (13, 13, 13, 26, 26), (Ω1, . . . ,Ω17) = (13,
×12︷ ︸︸ ︷

13, . . . , 13,
×4︷ ︸︸ ︷

26, . . . , 26) No
fB = 25

fT = 17 F9: (ω1, . . . , ω6) = (13,
×4︷ ︸︸ ︷

13, . . . , 13, 26), (Ω1, . . . ,Ω12) = (13, 13, 13,
×9︷ ︸︸ ︷

26, . . . , 26) No

fB = 27 F10: (ω1, . . . , ω6) = (13,
×4︷ ︸︸ ︷

13, . . . , 13, 26), (Ω1, . . . ,Ω18) = (13,
×14︷ ︸︸ ︷

13, . . . , 13, 26, 26, 26) No

fT = 19 F11: (ω1, . . . , ω7) = (13,
×6︷ ︸︸ ︷

13, . . . , 13), (Ω1, . . . ,Ω13) = (13, 13, 13, 13, 13,
×8︷ ︸︸ ︷

26, . . . , 26) No

fB = 29 F12: (ω1, . . . , ω7) = (13,
×6︷ ︸︸ ︷

13, . . . , 13), (Ω1, . . . ,Ω19) = (13,
×16︷ ︸︸ ︷

13, . . . , 13, 26, 26) No
fT = 21 A distribution does not exist.

fB = 31 or 35

Table 2. Orbit lengths distributions for the action of G ∼=
Frob26 on a 2–(91, 6, 1) design.

6.1. Construction of orbit matrices and designs. In the previous section, all
point and block orbit lengths distributions for the action of G ∼= Frob26 on a
2–(91, 6, 1) design are determined. Now, for each good distribution (i.e. the
distributions F2, F4 and F5) we construct up to isomorphism all point orbit
matrices. Then, from each point orbit matrix obtained, we will construct the
corresponding designs.

F2) ForG–orbit lengths distribution (ω1, . . . , ω4) = (13, 26, 26, 26), (Ω1, . . . ,
Ω18) = (13, . . . , 13, 26, 26, 26), all possible candidates (up to permuta-
tions of columns that correspond to the block orbits of the same length)
for the rows of a point orbit matrix T that correspond to a point orbit
of length 13 and 26 are shown in Table 3. They satisfy the conditions
(3.1), (3.2), (3.4) for s = s′, and (6.5).
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13 26
1) [2,2,2,2,2,2,1,1,1,1,1,1,0,0,0,0,0,0] 1) [1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,4,1,0]
2) [2,2,2,2,2,2,1,1,1,1,0,0,0,0,0,2,0,0] 2) [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,4,2,1]
3) [2,2,2,2,2,2,1,1,0,0,0,0,0,0,0,2,2,0]
4) [2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,2,2,2]

Table 3. Candidates for the rows of a point orbit matrix for
the distribution F2.

An entry in the first row of T should not be equal to 1, since k = 6
and each entry in the submatrix of T denoted below by (*) must be
equal to 0 or 1 regarding (6.5). So, the first three candidates given in
the first column of Table 3 can be eliminated. Hence, the first row in
T is as given below.

T =

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 26 26 26
13 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 2 2 2
26 1 1 1 1 1 1 1 1 1
26 (∗) 1 1 1 1 1 1 1 1 1
26 1 1 1 1 1 1 1 1 1

By summing up the elements of columns in (*) the value 6·2 = 12 is
obtained, since k = 6. On the other hand, summing up the elements of
all possible rows in (*) we get that the total sum of 12 can be obtained
only for the first candidate in the second column (corresponding to
point orbits of length 26) in Table 3. Therefore, one can notice that
there is only one point orbit matrix for the distribution F2, up to
isomorphisms, i.e. permutations of rows and columns corresponding
to G–orbits of the same length (see Proposition 3.4), as presented in
(6.6).

(6.6)

T =

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 26 26 26
13 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 2 2 2
26 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 4 1 0
26 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 4
26 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 4 1

Let us consider the refinements of T for the action of the automor-
phism group ⟨ρ⟩ ⊴ G of order 13. Up to permutations of the columns,
there are exactly 4 candidates for rows in point orbit matrices for ⟨ρ⟩
satisfying the conditions (3.1), (3.2) and (3.4) for s = s′, as listed here:
[4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 , [3, 3, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
and [2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Let us take a look on the first three rows of the matrix T in (6.6).
The rows could be refined for the action of the automorphism ρ, as
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shown here:
(6.7)

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
13 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
13 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 4 0 1 0 0 0
13 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 4 0 1 0 0
13 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 4 0
13 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 4

The second and the forth row in (6.7) do not satisfy the condition
(3.4) for the action of the automorphism ρ on a 2–(91, 6, 1) design.
More generally, there will always be a pair of rows in a refined matrix
for the action of ρ, obtained from T , which does not satisfy the equation
(3.4), for s ̸= s′. Therefore, we can conclude that there are no 2–
(91, 6, 1) designs admitting the action of the group G ∼= Frob26 with
the orbit lengths distribution F2.

F4) Now, let us take a look at the orbit lengths distribution (ω1, . . . , ω7) =
(13, . . . , 13), (Ω1, . . . ,Ω19) = (13, . . . , 13, 26, 26) for the action of the
automorphism group G on the set of points and blocks of a 2–(91, 6, 1)
design, respectively. The candidates (up to permutations of columns
corresponding to the block orbits of the same length) for rows in a
point orbit matrix T = [tij ] are given in Table 4, and they satisfy the
conditions (3.1), (3.2), (3.4) for s = s′ and (6.5).

13
1) [ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 ]
2) [ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0 ]
3) [ 2, 2, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2 ]

Table 4. Candidates for the rows of a point orbit matrix for
the distribution F4.

It is easy to see that only the first and the third candidate in
Table 4 are compatible, i.e. they satisfy the condition (3.3) and (3.4)
for s ̸= s′.

The next step in the construction of designs is to obtain all pairwise
nonisomorphic point orbit matrices for the action of G on D with the
distribution F4. During the construction, we were eliminating partial
point orbit matrices having two rows with two 1s in the same columns,
since in that case the action of the involutory automorphism σ in the
orbits of length 13 given in (6.2) implies there are two blocks from G–
orbits of length 13 that intersect in at least two points. For isomorph
rejection we were using the permutations of rows and columns of (par-
tial) point orbit matrices that satisfy the conditions from Proposition
3.4. The construction gave us exactly 6 pairwise nonisomorphic point
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orbit matrices that satisfy the conditions (3.1)−(3.4), that are given
in Table 5.

T1 =


2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0
2 2 0 0 0 0 2 2 1 0 0 0 2 2 1 0 0 2 2
2 2 0 0 0 0 0 0 0 2 2 1 0 0 1 2 2 2 2
0 0 2 2 0 0 2 0 0 1 0 2 2 0 1 2 0 2 2
0 0 2 2 0 0 0 1 2 0 2 0 0 2 1 0 2 2 2
0 0 0 0 2 2 1 0 2 2 0 0 2 0 1 0 2 2 2
0 0 0 0 2 2 0 2 0 0 1 2 0 2 1 2 0 2 2

 T2 =


2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0
2 2 0 0 0 0 2 2 1 0 0 0 2 2 1 0 0 2 2
2 2 0 0 0 0 0 0 0 2 2 1 0 0 1 2 2 2 2
0 0 2 2 0 0 2 0 0 1 0 2 2 0 1 2 0 2 2
0 0 2 0 2 0 1 0 2 2 0 0 0 2 1 0 2 2 2
0 0 0 2 0 2 0 2 0 0 1 2 0 2 1 0 2 2 2
0 0 0 0 2 2 0 1 2 0 2 0 2 0 1 2 0 2 2



T3 =


2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0
2 2 0 0 0 0 2 2 1 0 0 0 2 2 1 0 0 2 2
2 2 0 0 0 0 0 0 0 2 2 1 0 0 1 2 2 2 2
0 0 2 2 0 0 2 0 0 1 0 2 2 0 1 2 0 2 2
0 0 2 0 2 0 1 0 2 2 0 0 0 2 1 0 2 2 2
0 0 0 2 0 2 0 1 2 0 2 0 2 0 1 0 2 2 2
0 0 0 0 2 2 0 2 0 0 1 2 0 2 1 2 0 2 2

 T4 =


2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0
2 2 0 0 0 0 2 2 1 0 0 0 2 2 1 0 0 2 2
2 2 0 0 0 0 0 0 0 2 2 1 0 0 1 2 2 2 2
0 0 2 2 0 0 2 0 0 1 0 2 2 0 1 2 0 2 2
0 0 2 0 2 0 0 2 0 0 1 2 0 2 1 0 2 2 2
0 0 0 2 0 2 0 1 2 0 2 0 2 0 1 0 2 2 2
0 0 0 0 2 2 1 0 2 2 0 0 0 2 1 2 0 2 2



T5 =


2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0
2 2 0 0 0 0 2 2 1 0 0 0 2 2 1 0 0 2 2
2 0 2 0 0 0 2 0 0 2 1 0 0 0 1 2 2 2 2
0 2 0 2 0 0 0 0 0 1 2 2 2 0 1 2 0 2 2
0 0 2 0 2 0 0 1 2 0 0 2 2 0 1 0 2 2 2
0 0 0 2 0 2 1 0 2 0 2 0 0 2 1 0 2 2 2
0 0 0 0 2 2 0 2 0 2 0 1 0 2 1 2 0 2 2

 T6 =


2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0
2 2 0 0 0 0 2 2 1 0 0 0 2 2 1 0 0 2 2
2 0 2 0 0 0 1 0 2 2 0 0 0 0 1 2 2 2 2
0 2 0 2 0 0 0 0 0 2 2 1 2 0 1 2 0 2 2
0 0 2 0 2 0 0 2 0 0 1 2 2 0 1 0 2 2 2
0 0 0 2 0 2 2 0 0 1 0 2 0 2 1 0 2 2 2
0 0 0 0 2 2 0 1 2 0 2 0 0 2 1 2 0 2 2


Table 5. All pairwise nonisomorphic point orbit matrices
for the action of G on a 2–(91, 6, 1) design with the orbit
lengths distribution F4.

The next step is to construct designs from the obtained orbit ma-
trices T1, . . . , T6, so called indexing of orbit matrices. Cleary, if tij = 1
or tij = 0, for i ∈ {1, . . . , 7} and j ∈ {1, . . . , 17}, then tij are indexed
in a unique way, due to (6.2). However, there are exactly 6 possibili-
ties for indexing when tij = 2, for i ∈ {1, . . . , 7}, j ∈ {1, . . . , 17}, (see
(6.2)), which are listed here (only the first rows since the others can
be obtained by cyclic permutations):

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0].

(6.8)

There are six entries equal to 2 in the first 17 columns of each
row in T1, . . . , T6, and each of them must be indexed in a different
way, since λ = 1. Further, there are 13 possibilities to index an entry
tij = 2 for i ∈ {1, . . . , 7} and j ∈ {18, 19}, i.e. an element in matrices
T1, . . . T6 that corresponds to a G–orbit of points of length 13 and to
a G–orbit of blocks of length 26, with respect to the action described
through the case 3 in Section 6. Namely, a G–orbit of blocks of length
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26 decomposes into two ρ–orbits of length 13, for the action of the
automorphism of order 13, so tij = 2 refines to [1, 1] for the action of ρ,
which can further be indexed in 13 ·1 ways. For the isomorph rejection
during the indexing, we have used the elements of the normalizer of
the group G in the group S(P) × S(B), denoted in [6] by αl, for
2 ≤ l ≤ 12. So, the entry t11 = 2 is indexed in this unique way:
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1].

The indexing of the point orbit matrices T1, . . . , T6 was carried out
quickly. The result of the indexing of the orbit matrices T1, . . . , T6,
conducted using the computer program that we developed for that
purpose, is that none of the matrices produce a 2–(91, 6, 1) design.

F5) If a 2–(91, 6, 1) design D has an automorphism group G ∼= Frob26
acting on its points and blocks with the orbit lengths distribution
(ω1, . . . , ω7) = (13, . . . , 13), (Ω1, . . . ,Ω21) = (13, . . . , 13), respectively,
then there is only one candidate (up to permutations of its columns)
for a row of a point orbit matrix T = [tij ]:

(6.9) [2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

by the conditions (3.1), (6.5) and the equations
∑21
j=1 tij = 18,∑21

j=1 t
2
ij = 13 + 17 = 30.

As in the case of the distribution F4, we can eliminate point orbit
matrices with two rows having two 1s on the same position. Besides
that, the QS-property from Proposition 3.7 can be applied in the con-
struction of (partial) point orbit matrices. So, for j = j′, the following
equations hold

∑7
i=1 t

2
ij = 6 + 0 + (13 − 1 − 2u) · 1 = 18 − 2u, for

u = 0, . . . , 6, and j = 1, . . . , 21. Hence,
7∑
i=1

tijtij′ ∈
{

{0, 1, . . . , 13}, for j ̸= j′

{6, 8, 10, 12, 14, 16, 18}, for j = j′.
(6.10)

The candidates for columns of a point orbit matrix (up to the permut-
ing the rows) are:

2 2 2 1
2 2 1 1
2 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

and it is easy to check that the columns satisfy the property (6.10).
Therefore in this case the QS-property from Proposition 3.7 was not
included into our computations.

There are
(21

6
)
·
(15

6
)

= 271591320 candidates for each row of a point
orbit matrix. Hence, without the elimination of pairwise isomorphic
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(partial) point orbit matrices, it wouldn’t be possible to carry on with
the construction. For the isomorph rejection during the construction
of (partial) point orbit matrices we used all permutations of their rows
and columns (i.e. the permutations (α, β) ∈ S7 ×S21), since all of them
satisfy the conditions from Proposition 3.4.

By using the above mentioned eliminations, we constructed 3865485
pairwise nonisomorphic point orbit matrices that satisfy the conditions
(3.1)−(3.4). The number of pairwise nonisomorphic partial point orbit
matrices per row grows rapidly. The first row produces only 1 partial
orbit matrix, then the second row gives 9, the third 827, the forth
101704, the fifth row gives around 6.5 million and the sixth row even
more of pairwise nonisomorphic partial point orbit matrices.

The next step in the construction of designs is indexing, i.e. the
construction of designs from the obtained point orbit matrices. If an
entry of a point orbit matrix is tij = 0 or tij = 1, clearly it should be
indexed in a unique way, due to (6.2), but there are 6 possibilities for
indexing an entry tij = 2, as listed in (6.8).

There are six entries equal to 2 in each row of point orbit matrices,
and each of them must be indexed in a different way, since λ = 1.
Likewise, if there are two entries equal to 2 in a column of a point orbit
matrix, then it is easy to see that they must be indexed differently
as well. Therefore, there are 6! candidates for each row of a point
orbit matrix, except for the first row for which there 1 · 5! = 120
possibilities, since the entry t11 = 2 can be indexed in the unique way:
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], due to the isomorph rejection with the
elements of the normalizer of G in S(P) × S(B). The indexing of the
point orbit matrices constructed was carried out very quickly.

The sole point orbit matrix that yielded the desired designs is as
follows:

OM =



2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 2 2 1 0 0 0 2 2 2 1 1 1 0 0 0
1 2 0 1 0 0 0 0 0 2 2 1 2 1 0 2 1 0 2 1 0
1 0 0 0 2 1 2 0 0 1 0 2 0 0 1 1 2 2 2 0 1
0 1 0 0 1 2 0 1 2 0 2 0 0 1 2 0 2 0 1 2 1
0 0 2 1 1 0 0 2 0 0 1 2 1 0 1 2 0 1 0 2 2
0 0 1 2 0 1 1 0 2 2 0 0 1 2 0 0 0 2 1 1 2

 .

In the end, four 2–(91, 6, 1) designs are constructed from the point
orbit matrix OM , but only two of them are pairwise nonisomorphic.
By using GAP, we established that the designs are isomorphic to the
McCalla design D2 and the Colbourn and Colbourn design D3.

Finally, we summarise the above results in the following theorem.
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Theorem 6.1. Let D be a Steiner 2–design S(2, 6, 91) having a non-
abelian automorphism group G of order 26. Then, a subgroup of G of order
13 acts without fixed points and fixed blocks, an involution fixes 7 points and
21 blocks, and D is isomorphic either to the McCalla design D2 or to the
Colbourn and Colbourn design D3.
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Steinerovi 2–dizajni S(2, 6, 91) s nekomutativnom grupom
automorfizama reda 26

Dean Crnković i Doris Dumičić Danilović

Sažetak. Do sada su poznata samo četiri Steinerova 2–
dizajna s parametrima S(2, 6, 91). To su Millsov dizajn, McCalla
dizajn i dva dizajna koja su konstruirali C. J. Colbourn i M. J. Col-
bourn. Svaki od njih imaju cikličku grupu automorfizama reda
91. Z. Janko i V. D. Tonchev dokazali su da je svaki Steinerov
2–dizajn S(2, 6, 91) s grupom automorfizama reda većeg od 91,
koja djeluje tranzitivno na skupu točaka, izomorfan s jednim od
četiri poznata dizajna. Još uvijek je neodgovoreno pitanje pos-
toji li Steinerov 2–dizajn S(2, 6, 91) s punom grupom automor-
fizama reda manjeg od 91. U ovom smo radu pokazali da je
svaki Steinerov 2–design S(2, 6, 91) s nekomutativnom grupom
automorfizama reda 26 (odnosno Frobeniusovom grupom Frob26)
izomorfan s jednim od dva poznata dizajna, s McCalla dizajnom
koji ima punu grupu automorfizama izomorfnu s C91 : C12 ili
s Colbourn i Colbourn dizajnom koji ima punu grupu automor-
fizama izomorfnu s C91 : C4.
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