
RAD HAZU. MATEMATIČKE ZNANOSTI
Vol. 29 = 564 (2025): 63-82
DOI: https://doi.org/10.21857/yl4okf8no9

A GENERALIZATION OF A THEOREM OF MURAT ALAN

Mariama Ndao Faye, Kouèssi Norbert Adédji and Alain Togbé

Abstract. Let (Fn)n≥0 and (Ln)n≥0 be the Fibonacci and Lucas
sequences respectively. In 2022, Murat Alan found all Fibonacci and Lucas
numbers which are concatenations of two terms of the other sequence. Let
b ≥ 2 be an integer. In this paper, we generalize the results of Murat Alan
by considering the following Diophantine equations Fn = bdLm + Lk and
Ln = bdFm + Fk in non-negative integers (n, m, k), where d denotes the
number of digits of Lk and Fk in base b, respectively.

1. Introduction

Recall that the generalized Lucas sequence {Un}n≥0 and its companion
sequence {Vn}n≥0 are defined with initial values U0 = 0, U1 = 1, V0 =
2, V1 = r, by

Un+1 = rUn + sUn−1 and Vn+1 = rVn + sVn−1, for n ≥ 0,
where r and s are integers such that ∆ = r2 + 4s > 0. The Binet’s formulae
are given by

Un = αn − βn

α− β
and Vn = αn + βn,(1.1)

where α = r +
√

∆
2 and β = r −

√
∆

2 . If r = s = 1, we get the well-known
Fibonacci sequence {Fn} and its companion Lucas sequence {Ln}. It can be
easily seen by induction that

αn−2 ≤ Fn ≤ αn−1 and αn−1 ≤ Ln ≤ 2αn(1.2)
holds for all n ≥ 1 and n ≥ 0, respectively. There are many papers in the
literature which deal with Diophantine equations involving linear recurrent
sequences. For more details, see [1–4, 9, 11, 13, 15]. In 2005, Banks and Luca
proved in [6] that if un is any binary recurrent sequence of integers then only
finitely many terms of the sequence un can be written as concatenations of
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two or more terms of the same sequence un under the certain mild hypotheses
on un. Namely, they found that 13, 21, and 55 are the only Fibonacci num-
bers which are non trivial concatenations of two terms of Fibonacci numbers.
Later, Alan proved in [5] that 13, 21, and 34 are the only Fibonacci numbers
which are concatenations of two Lucas numbers and 1, 2, 3, 11, 18, and 521 are
the only Lucas numbers which are concatenations of two Fibonacci numbers.
In this paper, we give the following concept in view to generalize Alan’s result
(see [5]).

Definition 1.1. Let b ≥ 2 be an integer. Let N be a positive integer and
suppose N can be written as

N = a1 × bd + a2,

where a1 and a2 are non-negative integers and d is the number of digits of a2
in base b. Then, we call the number N a b-concatenation of a1 and a2.

The goal of this study is to investigate all Fibonacci numbers which are
b-concatenations of two Lucas numbers as well as all Lucas numbers which
are b-concatenations of two Fibonacci numbers. More precisely, we solve the
following two Diophantine equations

Fn = bdLm + Lk and Ln = bdFm + Fk,

in non-negative integers (n,m, k), where d represents the number of digits of
Lk and Fk in base b respectively. Therefore, we generalize the results in [5].
The novelty here is that for fixed b, we prove that the considered equations
have only finitely many solutions up to the point where all these solutions
are found in the range 2 ≤ b ≤ 10. Our proofs use a result of Matveev [14]
on linear forms in logarithms of algebraic numbers and the reduction method
due to Dujella and Pethő [10]. We use a slightly modified version of their
original result.

2. Preliminary results

In this section, we recall the two key results that we need to prove our
main results.

2.1. Matveev’s Theorem. Let η be an algebraic number of degree t, let a0 ̸=
0 be the leading coefficient of its minimal polynomial over Z and let η =
η(1), . . . , η(t) denote its conjugates. The logarithmic height of η is defined by

h(η) = 1
t

log |a0| +
t∑

j=1
log max

(
1,
∣∣∣η(j)

∣∣∣)
 .

In the case where p and q are integers such that q ≥ 1 and gcd(p, q) = 1,
then taking η = p/q the above definition reduces to h(η) = log(max{|p|, q}).
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We have the following result due to Bugeaud, Mignotte, and Siksek (see [8,
Theorem 9.4]) which is an improved version of Matveev’s result (see [14]).

Theorem 2.1. Let γ1, . . . , γs be real algebraic numbers and let b1, . . . , bs
be nonzero integers. Let D be the degree of the number field Q(γ1, . . . , γs) over
Q and let Aj be a positive real number satisfying

Aj = max{Dh(γj), | log γj |, 0.16}, for j = 1, . . . , s.

Assume that
B ≥ max{|b1|, . . . , |bs|}.

If Λ := γb1
1 · · · γbss − 1 ̸= 0, then

(2.1) |Λ| ≥ exp(−1.4 · 30s+3 · s4.5 ·D2(1 + logD)(1 + logB)A1 · · ·As).

2.2. Dujella-Pethő’s Lemma. Let x be a real number. We denote by ||x|| :=
min{|x − n| : n ∈ Z} the distance from x to the nearest integer. Thus, we
have the following result that is a slight modified version of the original result
due to Dujella and Pethő [10].

Lemma 2.2. Let M be a positive integer, let p/q be a convergent of the
continued fraction of a real number τ such that q > 6M , and let A,B, µ be
some real numbers with A > 0 and B > 1. Let

ε = ||µq|| −M · ||τq||.

If ε > 0, then there is no solution of the inequality

0 < |mτ − n+ µ| < AB−w,

in positive integers m,n and w with

m ≤ M and w ≥ log(Aq/ε)
logB .

3. Fibonacci numbers as b-concatenation of two Lucas numbers

Given a real number θ, we denote the floor function of θ by ⌊θ⌋, the
greatest integer less than or equal to θ. In this section, we will prove the
following result.

Theorem 3.1. Let b ≥ 2 be an integer. Then, the Diophantine equation

(3.1) Fn = bdLm + Lk,

has only finitely many solutions in non-negative integers (k, b,m, n, d) with
d = ⌊logb Lk⌋ + 1. Namely, we have n < 2.6 × 1029 · log4 b.
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3.1. Proof of Theorem 3.1. If the Diophantine equation (3.1) holds for b ≥ 2,
we would get from (1.2) that

d = ⌊logb Lk⌋ + 1 ≤ 1 + logb Lk < 1 + logb(2αk)

= 1 + k
logα
log b + log 2

log b < k + 2

and
d = ⌊logb Lk⌋ + 1 > logb Lk ≥ logb(αk−1) = (k − 1) logα

log b .

So, we deduce that

(3.2) (k − 1) logα
log b < d < k + 2.

Since
Lk = blogb Lk < bd ≤ b1+logb Lk = b · blogb Lk = b · Lk,

we have

(3.3) Lk < bd ≤ b · Lk.

From the last inequality, together with equation (3.1), we can easily see,
according to (1.2), that

αn−2 ≤ Fn = bdLm + Lk ≤ b · Lk · Lm + Lk < (b+ 1) · Lm · Lk
and

(b+ 1) · Lm · Lk < (b+ 1) · 2αm · 2αk = 4(b+ 1)αm+k = αlogα(4(b+1)) · αm+k.

Therefore, we obtain

αn−2 < αm+k+logα(b+1)+logα 4.(3.4)

Also, we get

αn−1 ≥ Fn = bdLm + Lk > Lk · Lm + Lk > Lk · Lm ≥ αm+k−2,

which leads to

αn−1 > αm+k−2.(3.5)

We now combine inequalities (3.4) and (3.5) to obtain

(3.6) m+ k − 1 < n < m+ k + 5 + log(b+ 1)
logα .

For the rest of the proof we can only consider that n− k ≥ 4. Let us show it
now. Note that Lk = Fk+1+Fk−1, for k ≥ 1 and Fk+3 = 2Fk+1+Fk−1+Fk−2,
for k ≥ 2. Thus, the Diophantine equation (3.1) becomes

Fn = bdLm + Fk+1 + Fk−1.
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Since Lm ≥ 1 and bd > Lk, we have Fn = bdLm +Lk > bd +Lk > Lk +Lk =
2Lk. Thus

Fn > 2(Fk+1 + Fk−1)
= (2Fk+1 + Fk−1) + Fk−1 > 2Fk+1 + Fk−1 + Fk−2 = Fk+3.

It follows that n > k + 3, more precisely
n− k ≥ 4.

We use now Binet’s formula for Fibonacci and Lucas sequences in order
to rewrite the Diophantine equation (3.1) in the form

αn − βn√
5

= (αm + βm) bd + Lk

which leads to
αn√

5
− αmbd = βn√

5
+ βmbd + Lk.

Taking absolute values of both sides of the above equality, we get that∣∣∣∣ αn√
5

− αmbd
∣∣∣∣ < ∣∣∣∣ βn√

5

∣∣∣∣+ |βm| bd + Lk.

Since β = −α−1, then we have that∣∣∣∣ αn√
5

− αmbd
∣∣∣∣ < 1

αn
√

5
+ bd

αm
+ Lk.

Dividing through by αn/
√

5, we get the inequality∣∣∣∣1 − bd
√

5
αn−m

∣∣∣∣ < 1
α2n + bd

√
5

αn+m +
√

5Lk
αn

.

Combining now Lk < bd ≤ b · Lk with the inequalities of Lk, given by (1.2),
we get the following estimates∣∣∣∣1 − bd

√
5

αn−m

∣∣∣∣ < 1
α2n + b · 2αk

√
5

αn+m + 2αk
√

5
αn

= 1
α2n + 2

√
5b

αn+m−k + 2
√

5
αn−k

<
1

αn−k + 2
√

5b
αn−k + 2

√
5

αn−k = 1 + 2
√

5b+ 2
√

5
αn−k .

Furthermore, for b ≥ 2, we have 1 + 2
√

5b+ 2
√

5 < α5 · b. Thus, we obtain

(3.7)
∣∣∣∣1 − bd

√
5

αn−m

∣∣∣∣ < b

αn−k−5 .

Next, to apply Theorem 2.1, we need to take

(3.8) Λ1 := 1 − bd ·
√

5 · α−(n−m)
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and
γ1 = b, γ2 =

√
5, γ3 = α,

b1 = d, b2 = 1, b3 = −(n−m).
Assume that Λ1 = 0. We obtain

αn−m =
√

5 · bd.(3.9)

Taking the norm in Q(
√

5) of both sides of (3.9), we get ±1 = 5b2d, which is
impossible. So Λ1 ̸= 0. We know that γ1, γ2, γ3 are elements of L = Q(

√
5).

Hence D := [L : Q] = 2. Using the properties of the height function h(·), we
get

h(γ1) = h(b) = log b, h(γ2) = h(
√

5) = 1
2 log 5, h(γ3) = h(α) = 1

2 logα.

Therefore, in Theorem 2.1 we can take the following values

A1 = 2 log b, A2 = log 5 and A3 = logα.

Dividing the both sides of Fn = bdLm + Lk by Lm, we get

bd < bd + Lk
Lm

= Fn
Lm

≤ αn−m,

and then
d < (n−m) · logα

log b ,

which also implies that

d < n−m, for b ≥ 2.(3.10)

We deduce that

max{|b1|, |b1|, |b3|} = max{d; 1;n−m} < n−m = B.

Taking s = 3. and applying Theorem 2.1 to (3.8), lead to

log |Λ1| > −1.4 · 306 · 34.5 · 22 · (1 + log 2) · (1 + log(n−m))×
2 log b · log 5 · logα.

Combining this with (3.7), we get

(3.11) n− k − 5 < 1.6 × 1012 · log b · (1 + log(n−m)).

Then, we rewrite the Diophantine equation (3.1) in the form
αn − βn√

5
= bdLm + αk + βk,

which also implies that

αn
(

1√
5

− αk−n
)

− bdLm = βn√
5

+ βk.



A GENERALIZATION OF A THEOREM OF MURAT ALAN 69

Taking the absolute value of both sides of the above equality and using the
fact that β = −α−1, we get∣∣∣∣αn( 1√

5
− αk−n

)
− bdLm

∣∣∣∣ < ∣∣∣∣ βn√
5

∣∣∣∣+
∣∣βk∣∣ = 1√

5αn
+ 1
αk
.

Therefore, we obtain∣∣∣∣∣∣1 − bdLm

αn
(

1√
5 − αk−n

)
∣∣∣∣∣∣ < 1

1/
√

5 − αk−n
·
(

1√
5α2n

+ 1
αn+k

)
.

Moreover, we have∣∣∣∣∣∣1 − bdLm

αn
(

1√
5 − αk−n

)
∣∣∣∣∣∣ < 1

1/
√

5 − αk−n
×
(

1√
5α2n

+ 1
αn+k

)

=
√

5αn−k

αn−k −
√

5
×
(

1√
5α2n

+ 1
αn+k

)
=

√
5

αn−k −
√

5
×
(

1√
5αn+k

+ 1
α2k

)
<

1.5 ·
√

5
αn−k −

√
5

×
(

1
α2k

)
.

In above inequalities, we have used the fact that n − k ≥ 4, which implies
n > k. Since n− k ≥ 4, we have

0 < 1.5 ·
√

5
αn−k −

√
5
< 1,

and therefore ∣∣∣∣∣∣1 − bdLm

αn
(

1√
5 − αk−n

)
∣∣∣∣∣∣ < 1

α2k .(3.12)

Put

Λ2 := 1 − bdLm

αn
(

1√
5 − αk−n

) .
We will apply Theorem 2.1 to Λ2. So, we take the following data

γ1 = b, γ2 = α, γ3 = Lm

1/
√

5 − αk−n
,

b1 = d, b2 = −n, b3 = 1.

Note that γ1, γ2 and γ3 are elements of the real quadratic number field L =
Q(

√
5). Therefore, we have D := [L : Q] = 2, the degree of the number field L.
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The heights of the algebraic numbers γ1, γ2 and γ3 are defined respectively
by h(γ1) = log b, h(γ2) = 1

2 logα and

h(γ3) = h

(
Lm

1√
5 − αk−n

)
≤ h(Lm) + h

(
1√
5

− αk−n
)

≤ logLm + h

(
1√
5

)
+ h(αk−n) + log 2

< m logα+ 1
2 log 5 + n− k

2 logα+ 2 log 2.

From (3.6), we get m < (n− k) + 1. It follows that

h(γ3) < 3(n− k) + 2
2 logα+ log(4

√
5).

Therefore, we can take

A1 = 2 log b, A2 = logα, A3 = (3(n− k) + 2) logα+ 2 log(4
√

5).

Since B ≥ max{|bi|} = max{d, 1, n} and d < n − m < n, then we can take
B = n. Also, in this case s = 3. Thus, combining (3.12) with Theorem 2.1,
we see that

k < 1.4 · 306 · 34.5 · 22 · (1 + log 2) · (1 + logn) · log b×

(3(n− k) + 2) logα+ 2 log(4
√

5)

which becomes

k < 9.7 × 1011 · (1 + logn) ·
[
(3(n− k) + 2) logα+ 2 log(4

√
5)
]

· log b.(3.13)

Assume that k ≤ m. Then, n−m ≤ n− k and using (3.11) we can write

n− k − 5 < 1.6 × 1012 · log b · (1 + log(n− k))

which implies

n− k < 2.8 × 1012 · log(n− k) · log b.(3.14)

Note also that to obtain inequality (3.14), we have used the fact that

1 + log(n− k) < 1.72 log(n− k)

which is valid for n − k ≥ 4. To get an upper bound of n − k in terms of b,
we have to recall the following result [12, Lemma 7].

Lemma 3.2. If ℓ ≥ 1, H >
(
4ℓ2)ℓ and H > L/(logL)ℓ, then

L < 2ℓH(logH)ℓ.
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Thus, we can take ℓ = 1, L = n− k and H = 2.8 × 1012 · log b. Therefore,
we deduce that

n− k < 2 × 2.8 × 1012 · log b× log(2.8 × 1012 · log b)
< 5.6 × 1012 · log b× (28.7 + log log b).

For b ≥ 2, we can easily see that 28.7 + log log b < 41 log b. Thus, it follows
that

n− k < 2.3 × 1014 · log2 b and m− 1 < n− k < 2.3 × 1014 · log2 b.

Since k ≤ m, from (3.6) we have

n < m+ k + 5 + log(b+ 1)
logα ≤ 2m+ 5 + log(b+ 1)

logα .

Therefore, we obtain
n < 4.7 × 1014 · log2 b.(3.15)

Assume now that m < k. Combining the inequalities (3.6) and (3.13), we
obtain

1
2

[
n− 5 − log(b+ 1)

logα

]
< k < 9.7 × 1011 × (1 + logn)(3.16)

×
[
(3(n− k) + 2) logα+ 2 log(4

√
5)
]

× log b.

From inequality (3.11), we get

(3(n− k) + 2) logα+ 2 log(4
√

5)

= 3(n− k) logα+ 2 logα+ 2 log(4
√

5)

< 1.6 × 1012 · 3 logα · (1 + logn) · log b+ 17 logα+ 2 log(4
√

5)
< 2.4 × 1012 · (1 + logn) · log b.

Substituting this in (3.16) leads to

n < 4.7 × 1024 · (1 + logn)2 · log2 b,

which also implies that n < 9.4 × 1024 · log2 n · log2 b where we have used
the fact that 1 + logn < 2 logn, for all n > 1. To get an upper bound of n
in term of b, we need to refer to Lemma 3.2 by putting ℓ = 2, L = n and
H = 9.4 × 1024 · log2 b. Then, Lemma 3.2 gives

n < 22 × 9.4 × 1024 · log2 b× (57.6 + 2 log log b)2.

Note that for b ≥ 2, we have 57.6 + 2 log log b < 83 log b and then
n < 2.6 × 1029 · log4 b.(3.17)

Therefore, from (3.15) and (3.17) whether m ≤ k or not the bound n <
2.6 × 1029 · log4 b is valid in all cases. This completes the proof.
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3.2. Application for 2 ≤ b ≤ 10. First, in the range 0 ≤ max{m, k} < 100,
we got only the Fibonacci numbers, which satisfy equation (3.1) and given in
the following result. Note also that the upper bounds of the parameters in
this range are obtained by referring to the inequalities (3.2) and (3.6).

Theorem 3.3. Let b be a positive integer such that 2 ≤ b ≤ 10. Then,
the numbers 3, 5, 8, 13, 21, 34, 55, 89, 233, 377, 610, and 987 are the
only Fibonacci numbers which satisfy the Diophantine equation (3.1). More
precisely, we have

3 = F4 = 21 · 1 + 1,
5 = F5 = 21 · 2 + 1 = 31 · 1 + 2 = 41 · 1 + 1,
8 = F6 = 31 · 2 + 2 = 51 · 1 + 3 = 61 · 1 + 2 = 71 · 1 + 1,
13 = F7 = 31 · 4 + 1 = 32 · 1 + 4 = 41 · 3 + 1 = 51 · 2 + 3
13 = F7 = 61 · 2 + 1 = 91 · 1 + 4 = 101 · 1 + 3,
21 = F8 = 32 · 2 + 3 = 51 · 4 + 1 = 61 · 3 + 3 = 91 · 2 + 3,
21 = F8 = 101 · 2 + 1,
34 = F9 = 31 · 11 + 1 = 32 · 3 + 7 = 81 · 4 + 2 = 91 · 3 + 7,
34 = F9 = 101 · 3 + 4,
55 = F10 = 31 · 18 + 1 = 42 · 3 + 7,
89 = F11 = 31 · 29 + 2 = 81 · 11 + 1,
233 = F13 = 81 · 29 + 1,
377 = F14 = 81 · 47 + 1,
610 = F15 = 81 · 76 + 2,
987 = F16 = 63 · 4 + 123 = 81 · 123 + 3.

In fact, we will prove that there is no other solutions of the Diophantine
equation (3.1) if max{m, k} ≥ 100. Thus, let us assume that max{m, k} ≥
100. It suffices to prove the following result.

Proposition 3.4. If the Diophantine equation (3.1) holds, then m ≤ 190.
Moreover, if m < k, then the set of solution of (3.1) is empty.

Proof. We assume that m > 190. Let
Γ1 := d log b− (n−m) logα+ log(

√
5).(3.18)

As 184 < m− 6 < n− k − 5 and 2 ≤ b ≤ 10, then from (3.8), we obtain

|Λ1| := |eΓ1 − 1| < b

αn−k−5 <
1
2 .

It follows that
|Γ1| < 2b

αn−k−5 .

So, from (3.18), we write

0 <
∣∣∣∣d log b

logα − (n−m) + log(
√

5)
logα

∣∣∣∣ < 2b/ logα
αn−k−5 .(3.19)
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Also, for 2 ≤ b ≤ 10 we have d < n − m < n < 7.3 × 1030. Hence, since the
conditions of Lemma 2.2 are satisfied, we may now apply it to inequalities
(3.19) with the following data:

M := 7.3 × 1030, A := 2b/ logα, B := α, w := n− k − 5,

τ := log b
logα and µ := log(

√
5)

logα .

Let qt be the denominator of the t-th convergent of the continued fraction of τ.
So, with the help of Mathematica the results obtained by applying Lemma 2.2
are listed in the following table.

Table 1. The upper bound on n− k − 5

b 2 3 4 5 6 7 8 9 10
qt q71 q63 q70 q66 q62 q70 q62 q60 q65
n− k − 5 < 160 159 160 161 166 162 163 170 163
ε > 0.42 0.29 0.44 0.48 0.05 0.11 0.34 0.48 0.43

So, we deduce that

n− k − 5 < log((18/ logα) · q60/0.48))
logα < 170,

in all cases. However, this contradicts the fact that 184 < m− 6 < n− k− 5.
Therefore, we conclude that m ≤ 190. For the second part of the proof, we
suppose that m < k. From (3.6), we obtain

n− k < m+ 5 + log(b+ 1)
logα < 200.

Substituting this upper bound for n − k into the (3.16) and using the fact
that 2 ≤ b ≤ 10, we get

1
2

[
n− 5 − log(b+ 1)

logα

]
< k < 2.9 × 1014 × (1 + logn) · log b,

and then

n < 1.4 × 1015 × (1 + logn)).(3.20)

Therefore, from (3.20), it follows that n < 5.6 × 1016. Next, we put

Γ2 := d log b− n logα+ log
(

Lm

1/
√

5 − αk−n

)
.(3.21)

Thus we get

|Λ2| := |eΓ2 − 1| < 1
α2k .
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Since m < k, then k = max{m, k} ≥ 100. Thus 1/α2k < 1/2, which also
implies

|Γ2| < 2
α2k .(3.22)

By dividing both sides of (3.22) by logα, we get

0 <

∣∣∣∣∣∣∣∣d
log b
logα − n+

log
(

Lm

1/
√

5 − αk−n

)
logα

∣∣∣∣∣∣∣∣ <
2/ logα
α2k .(3.23)

To apply Lemma 2.2, we will use the following parameters:

w := 2k, A := 2/ logα, B := α, M := 5.6 × 1016 > n > d,

τ := log b
logα and µ :=

log
(

Lm

1/
√

5 − αk−n

)
logα .

Let qt be the denominator of the t-th convergent of the continued fraction of
τ. Now, using Mathematica we see for each 0 ≤ m ≤ 190 and 4 ≤ n−k < 200,
the following results:

Table 2. The upper bound on 2k

b 2 3 4 5 6 7 8 9 10
qt q40 q41 q38 q34 q36 q41 q37 q36 q38
2k < 107 109 107 106 106 111 106 106 114
ε > 10−4 10−4 10−5 10−4 10−4 10−5 0.002 10−4 10−6

Therefore, in all cases we get that k < 57, which is a contradiction because of
the bound on k. This completes the proof of Proposition 3.4.

4. Lucas numbers as b-concatenation of two Fibonacci numbers

In this section, we will prove the following result. Here, the method is
similar to that developed is Section 3. Therefore, we will avoid some details.

Theorem 4.1. Let b ≥ 2 be an integer. Then, the Diophantine equation

(4.1) Ln = bdFm + Fk,

has only finitely many solutions in non-negative integers (k, b,m, n, d) with
d = ⌊logb Lk⌋ + 1. Namely, we have n < 1.8 × 1030 · log4 b.
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4.1. Proof of Theorem 4.1. We start by assuming that equation (4.1) holds.
First, we determine some relations between the variables n, m, k, and d, where
d is the number of digits of Fk in base b, i.e., d = ⌊logb Fk⌋+1. Also we assume
that m ̸= 0. The case m = 0 will be treated separately in the next subsection.
Therefore, using the idea developed at the beginning of subsection 3.1, we
easily obtain the following inequalities

(4.2) (k − 2) logα
log b < d < k,

(4.3) Fk < bd ≤ b · Fk,

and

(4.4) m+ k − 4 − log 2
logα < n ≤ m+ k − 1 + log(b+ 1)

logα .

Furthermore, from inequalities (1.2) and (4.1) we get

2αn > Ln = bdFm + Fk > Fk ≥ αk−2

and then

n− k > −
(

2 + log 2
logα

)
i.e., n− k ∈ {−3,−2,−1, 0, 1, 2, · · · }.

Moreover, from (4.1) we get

bdFm =
{
Fk−4 − Fk−1, if n = k − 3,
Fk−3 − Fk−2, if n = k − 2,

which leads to a contradiction. Therefore, we will study equation (4.1) in the
range

n− k ≥ −1.
To do this, we can focus on the following two cases.
The case n− k ≥ 1.

With Binet’s Formula for Fibonacci and Lucas sequences, we rewrite the
Diophantine equation (4.1) into the form

αn + βn =
(
αm − βm√

5

)
bd + Fk.

So, we get

αn − αm√
5
bd = −βn√

5
bd − βn + Fk.

Hence, we have∣∣∣∣αn − αm√
5
bd
∣∣∣∣ < |βn| + |βm| bd√

5
+ Fk = 1

αn
+ bd√

5αm
+ Fk.(4.5)
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Dividing through (4.5) by αn and using (4.3), we have∣∣∣∣1 − bd√
5αn−m

∣∣∣∣ < b+ 2
αn−k .(4.6)

Put

Λ3 := 1 − bd√
5αn−m

.

Applying Theorem 2.1 to Λ3 by choosing

(γ1, b1) = (b, d), (γ2, b2) = (
√

5,−1) and (γ3, b3) = (α,−(n−m)),

we obtain

log |Λ3| > −1.4 · 306 · 34.5 · 22 · (1 + log 2) · (1 + log(n−m+ 2))×(4.7)
2 log b · log 5 · logα.

Combining now (4.6) and (4.7), we get

n− k < 3.2 × 1012 · (1 + log(n−m+ 2)) · log b.(4.8)

We use (1.1) to rearrange equation (4.1) as

αn + βn = bdFm + αk − βk√
5

,

which also leads to

αn
(

1 − αk−n
√

5

)
− bdFm = −βn − βk√

5
.

Taking now absolute value of both sides of the equality above, we get∣∣∣∣αn(1 − αk−n
√

5

)
− bdFm

∣∣∣∣ < |βn| +
∣∣∣∣ βk√

5

∣∣∣∣ = 1
αn

+ 1√
5αk

and therefore ∣∣∣∣∣∣1 − bdFm

αn
(

1 − αk−n√
5

)
∣∣∣∣∣∣ < 1

α2k ,(4.9)

which is valid for n− k ≥ 1. Put

Λ4 := 1 − bdFm

αn
(

1 − αk−n√
5

) .
Next, we can take the data

γ1 = b, γ2 = α, γ3 = Fm

1 − αk−n√
5

,

b1 = d, b2 = −n, b3 = 1
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and s = 3 in view to apply Theorem 2.1 to Λ4. Using Theorem 2.1 and
combining the result obtained with inequality (4.9), we get

2k logα < 1.4 × 306 × 34.5 × 22 × (1 + log 2) × (1 + log(n+ 2)))
× 2 log b× logα× [(3(n− k) + 6) logα+ 3.7] .

This implies that
k < 9.7 × 1011 · (1 + log(n+ 2)) · ((3(n− k) + 6) logα+ 3.7) · log b.(4.10)

• If k ≤ m, then n−m ≤ n− k. Hence, from inequality (4.8) we obtain
n− k < 3.2 × 1012 · (1 + log(n− k + 2)) · log b,

which implies
n− k + 2 < 6.2 × 1012 · log(n− k + 2) · log b,(4.11)

where we use the fact that
1 + log(n− k + 2) < 1.91 log(n− k + 2) for n− k + 2 ≥ 3.

Next, to get an upper bound of n−k in terms of b, we have to apply Lemma 3.2
to (4.11) with

ℓ = 1, L = n− k + 2 and H = 6.2 × 1012 · log b.
Thus, we have n− k < 5.4 × 1014 · log2 b. Moreover, from (4.4) we obtain

m−
(

4 + log 2
logα

)
< n− k < 5.4 × 1014 · log2 b

and

n ≤ 2m− 1 + log(b+ 1)
logα < 1.1 × 1015 · log2 b.(4.12)

• If m < k, then from (4.4) and (4.10) we see that
1
2

[
n− log(b+ 1)

logα + 1
]
< k < 9.7 × 1011 · (1 + log(n+ 2))(4.13)

× [(3(n− k) + 6) logα+ 3.7] · log b.

Now, combining (4.8) with n−m < n, we deduce that
(3(n− k) + 6) logα+ 3.7 < 4.7 × 1012 · (1 + log(n+ 2)) · log b.

Inserting this into (4.13), we get

n < 9.2 × 1024 · (1 + log(n+ 2))2 · log2 b

< 5.8 × 1025 · log2(n+ 2) · log2 b,(4.14)

where we use the fact that 1 + log(n+ 2) < 2.5 log(n+ 2) which is valid, for
all n ≥ 0. Next we apply Lemma 3.2 to (4.14) with

ℓ = 2, H = 5.9 × 1025 · log2 b, L = n+ 2
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and we get that

n < 1.8 × 1030 · log4 b.(4.15)

The cases n− k ∈ {−1, 0}.
In this case, using (4.4) we easily see that m ≤ 5. For these cases, we use

one more time the identity Lk = Fk−1 + Fk+1 to see that the Diophantine
equation (4.1) becomes

bdFm =
{
Fk−2, if n = k − 1,
2Fk−1, if n = k.

The above equations imply to consider the following Diophantine equations

bdFm = λFk + µFk−1, with (λ, µ) ∈ {(0, 2), (1,−1)}.(4.16)

Inserting Binet’s formula of Fibonacci sequence in (4.16) leads to

bdFm = λ
αk − βk√

5
+ µ

αk−1 − βk−1
√

5
,

which becomes

bdFm − αk
(
λ√
5

+ µ

α
√

5

)
= −λβk + µβk−1

√
5

.(4.17)

We take the absolute value of both sides of (4.17) and then dividing the two

sides of the inequality obtained by αk
(
λ√
5

+ µ

α
√

5

)
, we find

∣∣∣∣bd · Fm

λ/
√

5 + µ/α
√

5
· α−k − 1

∣∣∣∣ < 5
αk−1 .(4.18)

Let

Λ5 := bd · Fm

λ/
√

5 + µ/α
√

5
· α−k − 1.

As in Section 3, one can prove that Λ5 ̸= 0. So, we apply Theorem 2.1 to Λ5
with s = 3,

(γ1, b1) = (b, d), (γ2, b2) = (α,−k), (γ3, b3) =
(

Fm

λ/
√

5 + µ/α
√

5
, 1
)

and therefore we get

k < 4 × 1015 · log b with n ∈ {k − 1, k}.(4.19)

This completes the proof of Theorem 4.1.
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4.2. Application for 2 ≤ b ≤ 10. Let us start with the case m = 0. Then,
Diophantine equation (4.1) becomes Ln = Fk which is only possible if n < k.
Assume now n > 30. Using the fact that LnFn = F2n we get that F2n = FnFk
and from (4.4) we have n < k ≤ n + 5 < 2n. It follows from the primitive
divisor theorem [7] that the Diophantine equation F2n = FnFk has no solution
for 2n > 30. However, in the range n ≤ 15, the solutions of Ln = Fk are
easy to find. Assume now that m ̸= 0. First, we wrote a short computer
program to search the parameters d, n,m and k satisfying (4.1) in the range
1 ≤ max{m, k} ≤ 200 and we found only the Lucas numbers given in the
following result.

Theorem 4.2. Let b be a positive integer such that 2 ≤ b ≤ 10. Then, the
numbers 3, 4, 7, 11, 18, 29, 47, 322 and 521 are the only Lucas numbers that
satisfy Diophantine equation (4.1). More precisely, we have

3 = L2 = 21 · 1 + 1,
4 = L3 = 31 · 1 + 1,
7 = L4 = 21 · 3 + 1 = 22 · 1 + 3 = 31 · 2 + 1 = 41 · 1 + 3,
7 = L4 = 51 · 1 + 2 = 61 · 1 + 1,
11 = L5 = 21 · 5 + 1 = 22 · 2 + 3 = 31 · 3 + 2 = 41 · 2 + 3,
11 = L5 = 51 · 2 + 1 = 61 · 1 + 5 = 81 · 1 + 3 = 91 · 1 + 2,
11 = L5 = 101 · 1 + 1,
18 = L6 = 51 · 3 + 3 = 81 · 2 + 2 = 101 · 1 + 8,
29 = L7 = 23 · 3 + 5 = 24 · 1 + 13 = 42 · 1 + 13 = 81 · 3 + 5,
29 = L7 = 91 · 3 + 2,
47 = L8 = 91 · 5 + 2,
322 = L12 = 62 · 8 + 34,
521 = L13 = 63 · 2 + 89 = 102 · 5 + 21.

For the proof of Theorem 4.2, we assume that max{m, k} > 200.
The case n− k ≥ 1.
Here, it suffices to prove the following result.
Proposition 4.3. If Diophantine equation (4.1) holds, then m ≤ 190.

Moreover, if m < k, then the set of solution of (4.1) is empty.
Proof. Assume that m > 190. Put

Γ3 := d log b− (n−m) logα+ log(
√

5).(4.20)

Since 184 < m− 4 − log 2
logα < n− k and 2 ≤ b ≤ 10, then from (4.6)

|Λ3| := |eΓ3 − 1| < b+ 2
αn−k <

1
2 ,

which implies that
|Γ3| < 2(b+ 2)

αn−k .
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From (4.20), we get

0 <
∣∣∣∣d log b

logα − (n−m) + log(
√

5)
logα

∣∣∣∣ < 2(b+ 2)/ logα
αn−k .(4.21)

Moreover, for 2 ≤ b ≤ 10, we see that d < n−m+2 < n+2 < 5.1×1031. Thus,
we can apply Lemma 2.2 to (4.21) with M := 5.1 × 1031, A := 2(b+ 2)/ logα,
B := α, w := n− k,

τ := log b
logα and µ := log(

√
5)

logα .

So, with the help of Mathematica we deduce that n − k < 171, in all cases.
However, this contradicts the fact that 184 < m−4− log 2

logα < n−k. Therefore,

we conclude that m ≤ 190. Now when m < k, from (4.4) we get

n− k ≤ m− 1 + log(b+ 1)
logα ≤ 194.

By substituting this upper bound for n−k into (4.13) and using the fact that
2 ≤ b ≤ 10, we obtain

1
2

[
n− log(b+ 1)

logα

]
< k < 2.8 × 1014 × (1 + log(n+ 2)) · log b,

and then n < 5.2 × 1016. Put

Γ4 := d log b− n logα+ log
(

Fm

1 − αk−n/
√

5

)
.(4.22)

So, we have

|Λ4| := |eΓ4 − 1| < 1
α2k .

Since m < k, then k = max{m, k} > 200. Thus 1/α2k < 1/2, which also
implies that

|Γ4| < 2
α2k .(4.23)

Therefore, dividing both sides of (4.23) by logα, we get that

0 <

∣∣∣∣∣∣∣∣d
log b
logα − n+

log
(

Fm

1 − αk−n/
√

5

)
logα

∣∣∣∣∣∣∣∣ <
2/ logα
α2k .

We apply Lemma 2.2 to the above inequalities and we get in all cases k < 193,
which is a contradiction.

The case n− k ∈ {−1, 0}.
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In this case 1 ≤ m ≤ 5. Since max{m, k} > 200, then we have k > 200.
Put

Γ5 := d log b− n logα+ log
(

Fm

λ/
√

5 + µ/α
√

5

)
.

Note that for k > 200, we get

|Λ5| := |eΓ5 − 1| < 5
αk−1 <

1
2

and so

0 <

∣∣∣∣∣∣∣∣d
log b
logα − n+

log
(

Fm

λ/
√

5 + µ/α
√

5

)
logα

∣∣∣∣∣∣∣∣ <
10/ logα
αk−1 .(4.24)

Now, we apply Lemma 2.2 to (4.24) and we see in all cases according to the
values of b that k < 177 which is a contradiction because k > 200. This
completes the proof of Theorem 4.2.
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Generalizacija teorema Murata Alana

Mariama Ndao Faye, Kouèssi Norbert Adédji i Alain Togbé

Sažetak. Neka su (Fn)n≥0 i (Ln)n≥0 Fibonaccijev i Lucasov
niz. Murat Alan je 2022. godine pronašao sve Fibonaccijeve i
Lucasove brojeve koji su spojevi dva člana drugog niza. Neka je
b ≥ 2 cijeli broj. U ovom radu generaliziramo rezultate Murata
Alana razmatrajući sljedeće diofantske jednadžbe Fn = bdLm+Lk
i Ln = bdFm+Fk u nenegativnim cijelim brojevima (n, m, k), gdje
d označava broj znamenki od Lk i Fk u bazi b.
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