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ON DEGREES IN FAMILY OF MAPS CONSTRUCTED VIA
MODULAR FORMS

Goran Muić

Abstract. This paper is a continuation of our previous works (see
Muić, Monatsh. Math. 180 (2016), 607–629 and Kodrnja, Muić, Ramanu-
jan J. 55 (2021), 393–420) where we have studied maps from X0(N) into
P2 (and more general) constructed via modular forms of the same weight.
In this short note we study how degrees of the maps and degrees of the
resulting curve change when we let modular forms vary.

1. Introduction

In our earlier paper [14] we gave fairly general study of complex holo-
morphic maps X0(N) −→ P2 (and more general) and proved a formula for
the degrees [14, Theorem 1-4] described below in Theorem 1.1. Based on
[14, Theorem 1-4], we developed the test for birationality of the maps (see
the introduction in [14]). Using these results, the problems of constructing
birational maps into P2 has been studied in [7] with emphasis on the explicit
computations in SAGE. The paper [7] constructs various models over C of
X0(N) complementing previous works such as [2–6, 9, 12, 19, 20]. We also
mention interesting new direction regarding smooth models [1]. The purpose
of the present short note is to study how degrees of the maps and degrees of
the resulting curve change when we let modular forms vary. The main result
is Theorem 1.2 (see below).

We continue by recalling some standard facts from [11]. Let H be the
upper half–plane. Then the group SL2(R) acts on H as follows:

g.z = az + b

cz + d
, g =

(
a b
c d

)
∈ SL2(R).

We let j(g, z) = cz + d. The function j satisfies the cocycle identity:
(1.1) j(gg′, z) = j(g, g′.z)j(g′, z).
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Next, SL2(R)–invariant measure on H is defined by dxdy/y2, where the
coordinates on H are written in a usual way z = x+

√
−1y, y > 0. A discrete

subgroup Γ ⊂ SL2(R) is called a Fuchsian group of the first kind if∫∫
Γ\H

dxdy

y2 < ∞.

Then, adding a finite number of points in R ∪ {∞} called cusps, FΓ can be
compactified. In this way we obtain a compact Riemann surface RΓ. Let g(Γ)
be the genus of RΓ. One of the most important examples are the groups

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z); c ≡ 0 (mod N)

}
, N ≥ 1.

We write X0(N) for RΓ0(N). As usual we consider RΓ as a smooth irreducible
projective curve over C with the field of rational functions C (RΓ) to be the
field of meromorphic functions on RΓ.

Let Γ be a Fuchsian group of the first kind. Let χ be a character Γ →
C× of finite order. Let m ≥ 1. We consider the space Mm(Γ, χ) (resp.,
Sm(Γ, χ)) of all modular (resp., cuspidal) forms of weight m; this is a space
of all holomorphic functions f : H → C such that f(γ.z) = χ(γ)j(γ, z)mf(z)
(z ∈ H, γ ∈ Γ) which are holomorphic (resp., holomorphic and vanish) at
every cusp for Γ. When χ is trivial, we write Mm(Γ) and Sm(Γ) instead of
Mm(Γ, χ) and Sm(Γ, χ), respectively.

Assume that dimMm(Γ, χ) ≥ 3. We select three linearly independent
modular forms f, g, and h in Mm(Γ, χ), and construct the holomorphic map
RΓ −→ P2 which is uniquely determined by being initially defined by
(1.2) z 7−→ (f(z) : g(z) : h(z))
on the complement of a finite set of Γ–orbits in RΓ of common zeroes of f, g
and h. The image is an irreducible projective plane curve, which we denote
by C(f, g, h) (see [14, Lemma 3-1]). We denote by

C (C(f, g, h))
the field of rational functions on C(f, g, h). It can be realized as a subfield
of the field C (RΓ) of rational functions on RΓ generated over C by g/f and
h/f . By the usual definition, the degree of the map (1.2), denoted by

d(f, g, h),
is the degree of the field extension

C (C(f, g, h)) ⊂ C (RΓ) .
Let l be a line in P2 in general position with respect to C(f, g, h). Then,

it intersects C(f, g, h) in different points the number of which is the degree
of C(f, g, h). We denote the degree of C(f, g, h) by deg C(f, g, h). The main
result of [14] (see [14, Theorem 1-4]) proves the following:
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Theorem 1.1. Assume that dimMm(Γ, χ) ≥ 3. Assume that f, g, h ∈
Mm(Γ, χ) are linearly independent. Then, we have the following:

d(f, g, h) · deg C(f, g, h) = ηm(f, g, h),

where

ηm(f, g, h) def= m

4π

∫∫
Γ\H

dxdy

y2 −
∑
a∈RΓ

min (νa(f), νa(g), νa(h)).

Now, we discuss the main result of the present paper. We introduce some
notation. Let Ξ ⊂ Mm(Γ, χ) be a subspace such that dim Ξ ≥ 3. Assume
that f, g ∈ Ξ are linearly independent. For each l ≥ 1 (resp., k ≥ 1), we let
Xl (resp., Zk) be the set of all h ∈ Ξ − (Cf + Cg) such that deg C(f, g, h) = l
(resp., d(f, g, h) = k). By Theorem 1.1, we have

Xl and Zk are empty for k, l > m

4π

∫∫
Γ\H

dxdy

y2 .

Obviously, we have

Ξ − (Cf + Cg) = ∪l≥1 Xl = ∪k≥1 Zk.

We remark that X1 = ∅ since f, g, and h are linearly independent. The main
result of the present paper is the following theorem:

Theorem 1.2. Let Ξ ⊂ Mm(Γ, χ) be a subspace such that dim Ξ ≥ 3. We
equip Ξ with Zariski topology. Assume that f, g ∈ Ξ are linearly independent.
Then, we have the following:

(i) The sets Xl are locally closed. The set of all h ∈ Ξ − (Cf + Cg) such
that deg C(f, g, h) is largest possible is open (i.e., the largest L such
that XL ̸= ∅).

(ii) For each l such that Xl ̸= ∅, the set of all h ∈ Xl such that d(f, g, h)
is smallest possible in Xl is an open set in Xl.

(iii) The sets Zk are constructible. The set Zk is empty set unless k divides
[C(RΓ) : C(g/f)].

Recall that we say that Ξ determines the field of rational functions
C(RΓ) if there exists a basis f0, . . . , fs−1 of W , such that C(RΓ) is generated
over C by the quotients fi/f0, 1 ≤ i ≤ s − 1 (see [7, Definition 1.3]). The
notion is independent of the basis. The introduction of [7] contains many
examples of such spaces Ξ (called W there). For example, we may take
Ξ = S2(Γ) if Γ is not hyperelliptic ([15] has determined all Γ0(N) such that
X0(N) is not hyperelliptic (implies g(Γ0(N)) ≥ 3)). Also, for m ≥ 4 is even,
if dimSm(Γ) ≥ max (g(Γ) + 2, 3), then we can take Ξ = Sm(Γ) by general
theory of algebraic curves [13, Corollary 3.4].
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Corollary 1.3. Maintaining assumptions of Theorem 1.2, we assume
also that Ξ determines the field of rational functions C(RΓ). Let L be the
largest possible such that XL ̸= 0. Then, Z1 ∩XL contains a non-empty open
set. In other words, the set of all h ∈ Ξ − (Cf + Cg) such that deg C(f, g, h)
is largest possible and d(f, g, h) = 1 is non-empty open set.

Proof. By [7, Theorem 1.4], Z1 contains a non-empty open set. On the
other hand, by Theorem 1.2, XL is open. The corollary follows.

The corollary improves on [7, Theorem 1.4] since in the language of the
present paper there we could just construct open set in Ξ − (Cf + Cg) such
that d(f, g, h) = 1 without control of deg C(f, g, h). The corollary also gen-
eralizes [7, Corollary 3.7] with a similar conclusion but with more restrictive
assumptions.

2. The Proof of Theorem 1.2

Let h ∈ Ξ − (Cf + Cg). Let Pf,g,h be an irreducible homogeneous poly-
nomial which locus is C(f, g, h). Equivalently, Pf,g,h(f(z), g(z), h(z)) = 0,
for all z ∈ H. The polynomial Pf,g,h is unique up to a multiplication by a
non-zero constant. The dehomogenization Qf,g,h of Pf,g,h with respect to the
last variable satisfies Qf,g,h(g/f, h/f) = 0 in the field of rational functions
C(RΓ). It is very easy to check that Qf,g,h(g/f, ·) is irreducible as a polyno-
mial with coefficients in the field C(g/f). Thus, it is a minimal polynomial
of h/f over C(g/f). Hence, it is equal to the degree of the field extension
C(g/f) ⊂ C(C(f, g, h))

[C(f, g, h) : C(g/f)] = degQf,g,h(g/f, ·).
If we consider the field extensions

C(g/f) ⊂ C(C(f, g, h)) ⊂ C(RΓ),
and compute their degrees, then we obtain the next lemma.

Lemma 2.1. For h ∈ Ξ − (Cf + Cg), the product degQf,g,h(g/f, ·) ·
d(f, g, h) does not depend on h. It is equal to the degree [C(RΓ) : C(g/f)]
(i.e, to the degree of divisor of poles of g/f). In particular, Zk is empty set
unless k divides [C(RΓ) : C(g/f)].

We continue with the following two lemmas:

Lemma 2.2. For each k ≥ 1, let Yk be the set of all h ∈ Ξ − (Cf + Cg)
such that degQf,g,h(g/f, ·) = k. Then, Yk is empty unless k divides
[C(RΓ) : C(g/f)]. If this is so, we have Zk = Y[C(RΓ):C(g/f)]/k.

Proof. This follows immediately from Lemma 2.1.

Lemma 2.3. For each l ≥ 1, Xl is the set of all h ∈ Ξ − (Cf + Cg) such
that degPf,g,h = l



ON DEGREES IN FAMILY OF MAPS 93

Proof. It is well-known and easy to check directly that deg C(f, g, h) =
degPf,g,h.

Lemma 2.4. For all h ∈ Ξ − (Cf + Cg), we have degQf,g,h(g/f, ·) ≤
degPf,g,h ≤ ηm(f, g, h) ≤ m

4π
∫∫

Γ\H
dxdy
y2 .

Proof. This follows from Theorem 1.1 and the fact that deg C(f, g, h) =
degPf,g,h.

Now, we prove the key lemma.

Lemma 2.5. We have the following:
(i) The sets Xl are locally closed, X1 = ∅, and the set of all h ∈ Ξ −

(Cf + Cg) such that degPf,g,h is largest possible is open (well–defined
because of Lemma 2.4).

(ii) For each l such that Xl ̸= ∅, the set of all h ∈ Xl such that degQf,g,h
is largest possible in Xl is an open set in Xl.

(iii) The sets Yk ∩ Xl are locally closed, and Yk are constructible sets for
all k, l.

Proof. We let h = λ0f + λ1g+ λ2f2 + · · · + λs−1fs−1 ∈ Ξ − (Cf + Cg).
Let l ≥ 1 be an integer. For α = (α0, α1, α2) ∈ Z3

≥0 such that |α| def=
α0 + α1 + α2 = l, and (i0, i1, . . . , is−1) ∈ Zs≥0 such that

∑s−1
j=0 ij = α2, we

consider a cusp form

fα0+i0gα1+i1f i22 · · · f is−1
s−1 =

∞∑
n=1

bn(α, i0, i1, . . . , is−1)qn ∈ Slm(Γ).

We define homogeneous polynomials for all n ≥ 1 as follows:

(2.1) Bα,n (λ0, . . . , λs−1) =

=
∑

i0+i1+···+is−1=α2

(
α2

i0, i1, . . . , is−1

)
bn(α, i0, i1, . . . , is−1)λi00 · · ·λis−1

s−1 .

We order all
(
l+2

2
)
α’s in the lexicographical order: (0, 0, l) < (0, 1, l − 1) <

· · · < (l, 0, 0). Then, we can consider vectors:

(2.2) Cn (λ0, . . . , λs−1) def=
def=
(
B(0,0,l),n (λ0, . . . , λs−1) , . . . , B(l,0,0),n (λ0, . . . , λs−1)

)
∈ C(l+2

2 ).

Let C (λ0, . . . , λs−1) be an infinite matrix with rows Cn (λ0, . . . , λs−1). Next,
the reader can easily check that (a(0,0,l), . . . , a(l,0,0)) ∈ C(l+2

2 ) is the solution
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of the system of homogeneous equations: 1

(2.3)
∑
α

Bα,n (λ0, . . . , λs−1) aα = 0, n ≥ 1,

if and only if ∑
α

aαf(z)α0g(z)α1h(z)α2 = 0, z ∈ H.

Equivalently, the corresponding homogeneous polynomial belongs to the ideal
of the curve C(f, g, h). This implies that the system (2.3) has only a trivial
solution if l < degPf,g,h while for l ≥ degPf,g,h there always exist a non-
trivial solution. The solution is unique up to a multiplication by a non-zero
element in C if l = degPf,g,h, and determines Pf,g,h. On the other hand,
by Linear algebra, the system (2.3) has a zero solution if and only if C–span
of vectors Cn (λ0, . . . , λs−1), n ≥ 1, is whole C(l+2

2 ). Equivalently, there is a
minor of C (λ0, . . . , λs−1) of size

(
l+2

2
)

×
(
l+2

2
)

which is non-zero. Similarly,
when l = degPf,g,h, C–span of vectors Cn (λ0, . . . , λs−1), n ≥ 1, must be of
codimension one in C(l+2

2 ). Equivalently, there must exists a non-zero minor
of C (λ0, . . . , λs−1) of size

(
l+2

2
)

− 1 ×
(
l+2

2
)

− 1 while all minors of size size(
l+2

2
)

×
(
l+2

2
)

must be equal to zero.
Above discussion implies the first claim in (i) i.e., the sets Xl are locally

closed. X1 = ∅ since f, g, and h are linearly independent. Let L be the largest
possible degree of degPf,g,h when h ranges over Ξ−(Cf + Cg). We prove that
XL is open. First we note that all

(
L+2

2
)
×
(
L+2

2
)

minors are identically equal to
zero on Cs. Indeed, if there would be a non-identically zero minor, say M , of
that size, then the system (2.3) has a trivial solution when M(λ0, . . . , λs−1) ̸=
0. Hence, degPf,g,h > L for h such that M(λ0, . . . , λs−1) ̸= 0 which is a
contradiction. Now, XL is open since h ∈ XL if and only if there exists a
minor M of size

(
L+2

2
)

− 1 ×
(
L+2

2
)

− 1 such that M(λ0, . . . , λs−1) ̸= 0. This
completes the proof of (i).

Now, we prove (ii). Assume that l satisfies Xl ̸= ∅. Let L be the largest
possible degree of degQf,g,h when h ranges over Xl. Let h ∈ Xl. Then, the
solution of the corresponding system (2.3) satisfies aβ = 0 for all β of the
form β = (β0, β1, L

′) with L′ > L. Of course, for h ∈ Xl such that aβ ̸= 0,
for some β of the form (β0, β1, L), we have degQf,g,h = L.

Open sets M(λ0, . . . , λs−1) ̸= 0, where M ranges over all minors
(
l+2

2
)

−
1 ×

(
l+2

2
)

− 1 cover Xl. Let us fix such minor M . Then, M is obtained by
removing some column (and using

(
l+2

2
)

− 1 rows but they are not important

1By using Sturm bound for Slm(Γ) we can bound the number of equation, but this is
not important here.
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here), say γ-th. Then, rewriting the system (2.3) in the form∑
α ̸=γ

Bα,n (λ0, . . . , λs−1) aα = −Bγ,n (λ0, . . . , λs−1) aγ , n ≥ 1,

we see that the solution is given by

(2.4) aα = −aγ
Mα (λ0, . . . , λs−1)
M (λ0, . . . , λs−1) , for all α ̸= aγ ,

where the determinant Mα is obtained from M by replacing α-th column with
the column of the corresponding Bγ,n’s (i.e., using n’s that determine rows
of M). Using (2.4), we see that aγ ̸= 0. Also, we see that aα ̸= 0 if and
only if Mα (λ0, . . . , λs−1) ̸= 0. Let us fix now arbitrary α. Then, letting M
vary, we see that the set of all h ∈ Xl such that aα ̸= 0 is open in Xl. This
immediately implies that the set of all h such that one of the coefficients aβ ,
for β of the form (β0, β1, L), is non-zero is open. This completes the proof of
(ii).

For the claim (iii), we recall that a constructible set is a finite union of
locally closed sets. Then, it is enough to prove that Yk ∩Xl is locally closed
for each l. As in the previous part of the proof, this intersection corresponds
to the solution of the system (2.3) such that aα = 0, for all α of the form
α = (α0, α1, k

′) with k′ > k, and there exists β such that aβ ̸= 0 where
β = (β0, β1, k). As before, using (2.4) this set is intersection of one closed set,
one open set and Xl. But since Xl is itself intersection of a closed and an
open set, see the same holds for Yk ∩Xl. This means that Yk ∩ Xl is locally
closed. This completes the proof of the lemma.

Finally, we complete the proof of Theorem 1.2. (i) follows from Lemma
2.5 (i) and Lemma 2.3. (ii) follows from Lemma 2.5 (ii) and Lemma 2.2. The
first claim in (iii) follows also from Lemma 2.2 and Lemma 2.5 (iii). The
second claim of (iii) is contained in Lemma 2.1.
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O stupnjevima u familiji preslikavanja konstruiranih preko
modularnih formi

Goran Muić

Sažetak. Ovaj rad je nastavak naših ranijih radova (vidi
Muić, Monatsh. Math. 180 (2016), 607–629 i Kodrnja, Muić,
Ramanujan J. 55 (2021), 393–420) u kojima proučavamo preslika-
vanja s X0(N) u P2 (i općenitije) konstruiranih preko modularnih
formi iste težine. U ovom kratkom priopćenju proučavamo kako
se stupnjevi preslikavanja i stupnjevi odgovarajućih krivulja mi-
jenjanju kada dopustimo da se modularne forme mijenjaju.
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