
RAD HAZU. MATEMATIČKE ZNANOSTI
Vol. 29 = 564 (2025): 187-205
DOI: https://doi.org/10.21857/9e31lhzoqm

THE HERMITE-HADAMARD INEQUALITY FOR
MφMψ-h-CONVEX FUNCTIONS AND RELATED

INTERPOLATIONS

Sanja Varošanec

Abstract. In this paper we consider the Hermite-Hadamard in-
equality for MφMψ-h-convex functions. An MφMψ-h-convexity covers
several particular types of generalized convexity such as a harmonic-h-
convexity, a log-h-convexity, (h, p)-convexity, MpA-h-convexity, MφMψ-
convexity etc. The Hermite-Hadamard type inequalities with two and
with n nodes are given. Special attention is paid to a dyadic partition
of an interval and related interpolations.

1. Introduction

In recent decades we have witnessed the emergence of various types of
convexity. In addition to the classical convexity, we find the following vari-
ants of convexity in the literature: s-convexity, Godunova-Levin convexity,
P -convexity, h-convexity, strong convexity, m-convexity, MN -convexity, MT
convexity, etc. For each type of convexity, one of the first results to be studied
is the Hermite-Hadamard inequality. For the classical convexity, the Hermite-
Hadamard inequality has the following statement.

For an integrable convex function f : [a, b] → R, the following sequence of
inequalities holds:

f

(
a+ b

2

)
≤ 1
b− a

∫ b

a

f(x) dx ≤ 1
2 [f(a) + f(b)].(1.1)

The natural question which arises in connection with this inequality is a ques-
tion of its refinement. In recent literature, we find several articles on this topic.
Here we have to mention article [9] where we find the following refinement.
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188 S. VAROŠANEC

Theorem A Assume that f : [a, b] → R is a convex function on [a, b].
Then for all λ ∈ [0, 1], we have

(1.2) f

(
a+ b

2

)
≤ m(λ) ≤ 1

b− a

∫ b

a

f(x) dx ≤ M(λ) ≤ 1
2 [f(a) + f(b)],

where

m(λ) := λf

(
λb+ (2 − λ)a

2

)
+ (1 − λ)f

(
(1 + λ)b+ (1 − λ)a

2

)
and

M(λ) := 1
2

(
f(λb+ (1 − λ)a) + λf(a) + (1 − λ)f(b)

)
.

If λ = 1
2 , then points in the left refinement are 3a+ b

4 and a+ 3b
4 , i.e

m

(
1
2

)
= 1

2f
(

3a+ b

4

)
+ 1

2f
(
a+ 3b

4

)
in which we recognize the refinement which occurs in [15, p.37] and in articles
about other type of convexity such as [2, 17].

Results from [9] were generalized in [7] for a more general class of func-
tions. Namely, in [7], author obtained corresponding results for h-convex
functions. Let us recall the definition of an h-convex function, [23].

Definition 1.1. Let h : J → R be a non-negative function, ⟨0, 1⟩ ⊆ J . A
function f : I → R is called h-convex if for any x, y from the interval I and
any t ∈ ⟨0, 1⟩ the following holds

f(tx+ (1 − t)y) ≤ h(t)f(x) + h(1 − t)f(y).

This concept covers some classes such as a class of convex functions, a
class of s-convex functions in the second sense (h(t) = ts, s ∈ ⟨0, 1]), a class of
Godunova-Levin functions (h(t) = 1

t ), a class of P-convex functions (h(t) = 1).
The Hermite-Hadamard inequality for an h-convex function was first given in
[4] and [21] and has the following form:

Theorem B If h is an integrable function, h( 1
2 ) ̸= 0, then for an inte-

grable h-convex function f : [a, b] → R, the following sequence of inequalities
holds:

(1.3) 1
2h( 1

2 )
f

(
a+ b

2

)
≤ 1
b− a

∫ b

a

f(x) dx ≤ [f(a) + f(b)]
∫ 1

0
h(x) dx.

If f is h-concave, then the reversed signs of inequalities hold in (1.3).

The following Hermite-Hadamard-type result for an h-convex function can
be found in [7] as a consequence of Theorem 2 from [7] and the corresponding
Remark in the same paper.
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Theorem C If f is a non-negative, integrable, h-convex function on [a, b]
with h ∈ L[0, 1], h( 1

2 ) ̸= 0, then

δ1 ≤ 1
b− a

∫ b

a

f(x) dx

≤ δ2 ≤
[
[h(1 − λ) + λ]f(a) + [h(λ) + 1 − λ]f(b)

] ∫ 1

0
h(t) dt,(1.4)

where

δ1 := 1
2h( 1

2 )

{
(1 − λ)f

[
(1 − λ)a+ (λ+ 1)b

2

]
+ λf

[
(2 − λ)a+ λb

2

]}
δ2 :=

[
f
(
(1 − λ)a+ λb

)
+ (1 − λ)f(b) + λf(a)

] ∫ 1

0
h(t) dt.

Furthermore, if λ ∈ ⟨0, 1⟩ such that h(λ) ̸= 0, then

(1.5) 1
2h( 1

2 )
min

{
1 − λ

h(1 − λ) ,
λ

h(λ)

}
f

(
a+ b

2

)
≤ δ1.

A closer look into the proof of Theorem C gives that (1.4) is valid regard-
less of non-negativity of f . Non-negativity of f in points (1−λ)a+(λ+1)b

2 and
(2−λ)a+λb

2 is necessary only in (1.5).
If h(t) = t, i.e. if f is a convex function, then the result of Theorem C

collapses to the refinement of Hermite-Hadamard inequality (1.2). It is a

refinement which involves two nodes (1 − λ)a+ (λ+ 1)b
2 and (2 − λ)a+ λb

2 .
In paper [8], a result including n nodes was given. Here we give a version of
that result for a real function of a real variable.

Theorem D Let f be an h-convex with h ∈ L[0, 1], f ∈ L[a, b], h( 1
2 ) ̸= 0.

Then for any partition
0 = λ0 < λ1 < . . . < λn−1 < λn = 1, with n ≥ 1

we have

1
2h( 1

2 )

n−1∑
j=0

(λj+1 − λj)f
((

1 − λj + λj+1

2

)
a+ λj + λj+1

2 b

)

≤ 1
b− a

∫ b

a

f(x) dx

≤
n−1∑
j=0

(λj+1 − λj)×

×
[
f
(
(1 − λj)a+ λjb

)
+ f

(
(1 − λj+1)a+ λj+1b

)] ∫ 1

0
h(t) dt.
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In papers [7] and [8], a case of h-concavity was not considered, but from
the proofs it is clear that if f is h-concave, then inequalities in Theorems C
and D hold with the reversed signs.

The topic of this paper is a counterpart of the Hermite-Hadamard in-
equality for a wider class of functions which covers h-convex functions.

Let φ be a continuous, strictly monotone function defined on the interval
I. By Mφ we denote a quasi-arithmetic mean:

Mφ(x, y; t) := φ−1(tφ(x) + (1 − t)φ(y)), x, y ∈ I, t ∈ [0, 1].
It is obvious that the power mean Mp corresponds to φ(x) = xp if p ̸= 0 and
to φ(x) = log x if p = 0.

Definition 1.2. Let φ and ψ be two continuous, strictly monotone
functions defined on intervals I and K respectively. Let h : J → R
be a non-negative function, ⟨0, 1⟩ ⊆ J and let f : I → K such that
h(t)ψ(f(x)) + h(1 − t)ψ(f(y)) ∈ ψ(K) for all x, y ∈ I, t ∈ ⟨0, 1⟩. We say
that a function f is MφMψ-h-convex if

(1.6) f(Mφ(x, y; t)) ≤ ψ−1
(
h(t)ψ(f(x)) + h(1 − t)ψ(f(y))

)
for all x, y ∈ I and all t ∈ ⟨0, 1⟩. If the sign of inequality is reversed in (1.6),
then f is called MφMψ-h-concave.

Some particular cases of MφMψ-h-convex functions have been recently
investigated in last ten years. If h(t) = t, then MφMψ-h-convexity collapses
to MφMψ-convexity which was described in [15]. Paper [1] consists several
results about properties and the Jensen inequality for MφMψ-h-convex func-
tions where Mφ, Mψ are an arithmetic mean (A), a geometric mean (G)
or a harmonic mean (H). Furthermore, an HA-h-convexity or harmonic-h-
convexity was described in [3] and [19]. An HG-h-convexity is investigated in
[19] and an AG-h-convexity or log-h-convexity in [20]. An AMp-h-convexity
or (h, p)-convexity was described in [11] while some properties of MpA-h-
convex functions were given in [6]. Properties of MφA-h-convex functions
were studied in [24].

In the second section, we prove the Hermite-Hadamard inequality for an
MφMψ-h-convex function. The third section is devoted to different interpola-
tion results related to the Hermite-Hadamard inequality. We end this paper
with results related to a dyadic partition of interval [a, b].

In this paper, if some inequality has a number (n) then its reverse version,
i.e. an inequality with another sign is denoted by (Rn).

2. The Hermite-Hadamard inequality

The following result gives a connection between the theory of h-convexity
and the theory of MφMψ-h-convexity. As we will see below, it is the powerful
tool used in many proofs.
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Proposition 2.1. Let φ and ψ be strictly monotone continuous functions
defined on intervals I and K respectively.

a) Let ψ be an increasing function. A function f : I → R is MφMψ-h-
convex (MφMψ-h-concave) if and only if ψ ◦ f ◦φ−1 is h-convex (h-concave).

b) Let ψ be an decreasing function. A function f is MφMψ-h-convex
(MφMψ-h-concave) if and only if ψ ◦ f ◦ φ−1 is h-concave (h-convex).

Proof. Let us suppose that ψ is increasing. For any u, v ∈ Im(φ) there
exist x, y ∈ I such that φ(x) = u, φ(y) = v. If f is MφMψ-h-convex and ψ is
increasing, then for any t ∈ ⟨0, 1⟩

ψ(f(φ−1(tφ(x) + (1 − t)φ(y)))) ≤ h(t)ψ(f(x)) + h(1 − t)ψ(f(y))

i.e.

(ψ ◦ f ◦ φ−1)(tu+ (1 − t)v) ≤ h(t)(ψ ◦ f ◦ φ−1)(u) + h(1 − t)(ψ ◦ f ◦ φ−1)(v).

So, ψ ◦ f ◦ φ−1 is h-convex. Other cases are proved in a similar way.

Theorem 2.2 (The Hermite-Hadamard inequality for anMφMψ-h-convex
function). Let h be a non-negative function defined on the interval J, ⟨0, 1⟩ ⊆
J , h( 1

2 ) ̸= 0. Let φ and ψ be strictly monotone continuous functions defined
on intervals I and K respectively such that φ is differentiable on [a, b] ⊆ I.

a) If ψ is increasing, then for an MφMψ-h-convex function f : [a, b] → R
the following holds

1
2h( 1

2 )
(ψ ◦ f)

(
Mφ

(
a, b; 1

2
))

≤ 1
φ(b) − φ(a)

∫ b

a

ψ(f(x))φ′(x) dx

≤
[
ψ(f(a)) + ψ(f(b))

] ∫ 1

0
h(t) dt,(2.1)

provided that all integrals exist.
If f is MφMψ-h-concave, then (R2.1) holds.
b) If ψ is decreasing, then for an MφMψ-h-convex function f (R2.1) holds.

If f is MφMψ-h-concave, then (2.1) holds.

Proof. Let us suppose that ψ is increasing and f is MφMψ-h-convex.
Then, by Proposition 2.1, a function ψ ◦ f ◦ φ−1 is h-convex on φ([a, b]). If
φ is increasing, then φ([a, b]) = [φ(a), φ(b)], while if φ is decreasing, then
φ([a, b]) = [φ(b), φ(a)].

If φ is increasing, then applying (1.3) for a function ψ ◦ f ◦ φ−1, we get

1
2h( 1

2 )
(ψ ◦ f ◦ φ−1)

(φ(a) + φ(b)
2

)
≤ 1
φ(b) − φ(a)

∫ φ(b)

φ(a)
(ψ ◦ f ◦ φ−1)(x) dx

≤
[
(ψ ◦ f ◦ φ−1)(φ(a)) + (ψ ◦ f ◦ φ−1)(φ(b))

] ∫ 1

0
h(t) dt.
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After substitution φ−1(x) = u, the integral in the middle term becomes∫ b

a

ψ(f(x))φ′(x) dx and inequality (2.1) is proved.

If φ is decreasing, then the middle term is 1
φ(a)−φ(b)

∫ φ(a)
φ(b) (ψ◦f◦φ−1)(x) dx

and after the same substitution we get 1
φ(b)−φ(a)

∫ b
a
ψ(f(x))φ′(x) dx and in-

equality (2.1) holds in this case.
All other cases are proved similarly.

Remark 2.3. Some particular cases of the above inequality are known.
If h(t) = t, then the Hermite-Hadamard-type inequality for HG-convex, GG-
convex, MpA-convex, AMp-convex, MφA-convex and MφMψ-convex func-
tions can be found in [16], [13], [10], [5], [22] and [14] respectively.

The Hermite-Hadamard inequality for HA-h-convex, AG-h-convex, AMr-
h-convex functions are given in [19], [20], [11] respectively.

When h has the form h(t) = h1(ts) for the fixed s ∈ ⟨0, 1], then results
related to the Hermite-Hadamard inequality for h-convex functions are given
in [18].

Note that Theorem 2.2 covers all the cases already mentioned. In the
above-mentioned articles, the authors proved the Hermite-Hadamard type
inequalities directly, ab ovo. But Proposition 2.1 allows us to prove such
results much more elegantly using known results for h-convex functions.

3. Hermite-Hadamard type results with several nodes

In this section we direct our attention to Hermite-Hadamard-type results
including two or more nodes. The section is finished with several results
involving a dyadic partition of an interval. The following theorem is a gener-
alization of Theorem C given in MφMψ-h-convexity settings. In fact, this is
a Hermite-Hadamard-type result which on the left-hand side includes values
of a function in two points:

φ−1
(

(1 − λ)φ(a) + (1 + λ)φ(b)
2

)
and φ−1

(
(2 − λ)φ(a) + λφ(b)

2

)
and which, in particular case, leads to the refinement of the Hermite-Hada-
mard inequality for an MφMψ-convex function.

Theorem 3.1. Let h be a non-negative function defined on the inter-
val J , ⟨0, 1⟩ ⊆ J , h( 1

2 ) ̸= 0. Let φ and ψ be strictly monotone continuous
functions defined on intervals I and K respectively such that φ is differen-
tiable on [a, b] ⊆ I. Let f : I → R.
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(i) If ψ is increasing, then for an MφMψ-h-convex function f the follow-
ing holds

∆1 ≤ 1
φ(b) − φ(a)

∫ b

a

ψ(f(x))φ′(x) dx

≤ ∆2 ≤
{

[h(1 − λ) + λ]ψ(f(a)) + [h(λ) + 1 − λ]ψ(f(b))
}∫ 1

0
h(t) dt,(3.1)

where

∆1 := 1
2h( 1

2 )

{
(1 − λ)(ψ ◦ f)

(
Mφ

(
a, b; 1 − λ

2

))
+λ(ψ ◦ f)

(
Mφ

(
a, b; 2 − λ

2

))}
∆2 :=

[
ψ(f(Mφ(a, b; 1 − λ))) + (1 − λ)ψ(f(b)) + λψ(f(a))

] ∫ 1

0
h(t) dt,

provided that all integrals exist.
Furthermore, if h(λ), h(1 − λ) ̸= 0 and (ψ ◦ f)

(
Mφ

(
a, b; 1−λ

2

))
, (ψ ◦

f)
(
Mφ

(
a, b; 2−λ

2

))
≥ 0 for some λ ∈ ⟨0, 1⟩, then

1
2h( 1

2 )
min

{
1 − λ

h(1 − λ) ,
λ

h(λ)

}
(ψ ◦ f)

(
Mφ

(
a, b; 1

2
))

≤ ∆1.(3.2)

If f is MφMψ-h-concave, then (R3.1) and (R3.2) (with change min →
max) hold.

(ii) If ψ is decreasing and f is MφMψ-h-convex, then (R3.1) and (R3.2)
(with change min → max) hold. If ψ is decreasing and f is MφMψ-h-concave,
then (3.1) and (3.2) are valid.

Proof. Let us prove the case when ψ is increasing. Other cases are done
in the similar manner. Denote G := ψ ◦ f . Since f is MφMψ-h-convex on
I, then G ◦ φ−1 is h-convex on Im(φ) and applying Theorem C on function
G ◦ φ−1, we get

δ1 = 1
2h( 1

2 )

{
(1 − λ)(G ◦ φ−1)

(
(1 − λ)φ(a) + (1 + λ)φ(b)

2

)
+λ(G ◦ φ−1)

(
(2 − λ)φ(a) + λφ(b)

2

)}
δ2 =

[
(G ◦ φ−1)((1 − λ)φ(a) + λφ(b)) + (1 − λ)G(b) + λG(a)

] ∫ 1

0
h(t) dt.

The second term in (1.4) becomes 1
φ(b)−φ(a)

∫ b
a
ψ(f(x))φ′(x) dx and the fourth

term in (1.4) becomes[
ψ(f(Mφ(a, b; 1 − λ))) + (1 − λ)ψ(f(b)) + λψ(f(a))

] ∫ 1

0
h(t) dt.
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Since

(G ◦ φ−1)
(

(1 − λ)φ(a) + (1 + λ)φ(b)
2

)
= (ψ ◦ f)

(
Mφ

(
a, b; 1 − λ

2

))
(G ◦ φ−1)

(
(2 − λ)φ(a) + λφ(b)

2

)
= (ψ ◦ f)

(
Mφ

(
a, b; 2 − λ

2

))
(G ◦ φ−1) ((1 − λ)φ(a) + λφ(b)) = (ψ ◦ f)(Mφ(a, b; 1 − λ))

we get (3.1).
Let us prove inequality (3.2). Let us rewrite δ1 on this way:

2h
(

1
2

)
δ1 = 1 − λ

h(1 − λ)h(1 − λ)(G ◦ φ−1)
(

(1 − λ)φ(a) + (1 + λ)φ(b)
2

)
+ λ

h(λ)h(λ)(G ◦ φ−1)
(

(2 − λ)φ(a) + λφ(b)
2

)
≥ min

{
1 − λ

h(1 − λ) ,
λ

h(λ)

}
×

×
{

(h(1 − λ)(G ◦ φ−1)
(

(1 − λ)φ(a) + (1 + λ)φ(b)
2

)
+ h(λ)(G ◦ φ−1)

(
(2 − λ)φ(a) + λφ(b)

2

)}
≥ min

{
1 − λ

h(1 − λ) ,
λ

h(λ)

}
×

×(G ◦ φ−1)
[
(1 − λ) (1 − λ)φ(a) + (λ+ 1)φ(b)

2 + λ
(2 − λ)a+ λb

2

]
= min

{
1 − λ

h(1 − λ) ,
λ

h(λ)

}
(G ◦ φ−1)

(
φ(a) + φ(b)

2

)
= min

{
1 − λ

h(1 − λ) ,
λ

h(λ)

}
(ψ ◦ f)

(
Mφ

(
a, b; 1

2
))
.

Corollary 3.2. Let the assumptions of Theorem 3.1 hold.
(i) If ψ is increasing, then for an MφMψ-h-convex function f : I → R

the following holds:

1
4h2( 1

2 )
(ψ ◦ f)

(
Mφ

(
a, b; 1

2
))

≤ 1
4h( 1

2 )

{
(ψ ◦ f)

(
Mφ

(
a, b; 1

4
))

+ (ψ ◦ f)
(
Mφ

(
a, b; 3

4
))}
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≤ 1
φ(b) − φ(a)

∫ b

a

ψ(f(x))φ′(x) dx

≤
{

(ψ ◦ f)
(
Mφ

(
a, b; 1

2
))

+ ψ(f(a)) + ψ(f(b))
2

}∫ 1

0
h(t) dt

≤
[

1
2 + h

(1
2

)] [
ψ(f(a)) + ψ(f(b))

] ∫ 1

0
h(t) dt,(3.3)

provided that all integrals exist.
If f is MφMψ-h-concave, then (R3.3) holds.
(ii) If ψ is decreasing and f is MφMψ-h-convex, then (R3.3) holds. If ψ

is decreasing and f is MφMψ-h-concave, then (3.3) is valid.

Proof. Firstly we consider the case when ψ is increasing and f isMφMψ-
h-convex. The second and the third inequalities in (3.3) are simple conse-
quences of Theorem 3.1 for λ = 1

2 . Let us prove the first and the fourth
inequalities.

For an h-convex function F the following inequality holds:

F (A) + F (B) ≥ 1
h( 1

2 )
F

(
A+B

2

)
.(3.4)

Numbers A := φ(a)+3φ(b)
4 and B := 3φ(a)+φ(b)

4 satisfy:

A+B

2 = φ(a) + φ(b)
2

and applying (3.4) on function F := ψ ◦ f ◦ φ−1, we get

(ψ ◦ f)
(
Mφ

(
a, b; 1

4
))

+ (ψ ◦ f)
(
Mφ

(
a, b; 3

4
))

≥ 1
h( 1

2 )
(ψ ◦ f)

(
Mφ(a, b; 1

2)
)

and the first inequality in (3.3) holds.
Let us prove the fourth inequality. From (3.4) we get

(ψ ◦ f)
(
Mφ(a, b; 1

2)
)

≤ h
(1

2

)[
ψ(f(a)) + ψ(f(b))

]
and hence

(ψ◦f)
(
Mφ

(
a, b; 1

2
))

+ ψ(f(a)) + ψ(f(b))
2 ≤

[
1
2 + h

(1
2

)] [
ψ(f(a))+ψ(f(b))

]
and the fourth inequality in (3.3) is valid.
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Corollary 3.3. Let h satisfies the assumptions of Theorem 3.1. Let f
be a positive GG-h-convex function on [a, b] ⊆ [0,∞⟩. Then(

f(
√
ab)
) 1

4h2( 1
2 ) ≤

[
f( 4√

a3b)f( 4√
ab3)

] 1
4h( 1

2 )

≤ exp
(

1
log b/a

∫ b

a

log f(x) dx
x

)

≤
(
f(

√
ab)
√
f(a)f(b)

)H
≤
(√

f(a)f(b)
)H[ 1

2 +h( 1
2 )]
,(3.5)

where H =
∫ 1

0 h(t) dt and provided that all integrals exist.

Proof. It is a consequence of Corollary 3.2 for ψ = φ = log.

Remark 3.4. Inequality (3.5) for h(t) = t i.e. for GG-convex or multi-
plicatively convex function can be found in [15, p.62]. It is worth to mention
that every polynomial with non-negative coefficients is GG-convex, every real
analytic function f(x) =

∑
anx

n with an ≥ 0 is GG-convex on [0, R⟩ where
R is the radius of convergence. Also, the Gamma function is GG-convex.

Corollary 3.5. Let h satisfies the assumptions of Theorem 3.1. Let f
be a function on [a, b] ⊆ [0,∞⟩ and φ(x) = xp, p ̸= 0.

If p > 0 and f is MφA-h-convex, then

1
4h2( 1

2 )
f

((
ap + bp

2

)1/p
)

≤ 1
4h( 1

2 )

{
f

((
ap + 3bp

4

)1/p
)

+ f

((
3ap + bp

4

)1/p
)}

≤ p

bp − ap

∫ b

a

f(x)xp−1 dx

≤

{
f

((
ap + bp

2

)1/p
)

+ f(a) + f(b)
2

}∫ 1

0
h(t)dt

≤
[

1
2 + h

(1
2

)]
[f(a) + f(b)]

∫ 1

0
h(t)dt,(3.6)

provided that all integrals exist.
If p < 0 and f is MφA-h-convex, then (R3.6) holds.

Proof. It is a consequence of Corollary 3.2 for ψ(x) = x, φ(x) = xp.

Remark 3.6. If h(t) = t and p = 1, then 4h2( 1
2 ) = 1, 1

2 + h( 1
2 ) = 1 and

inequality (3.6) becomes the refinement of the Hermite-Hadamard inequality
(1.1).
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The following Hermite-Hadamard-type result involves more than two
nodes.

Theorem 3.7. Let h be a non-negative function defined on the interval
J, ⟨0, 1⟩ ⊆ J , h( 1

2 ) ̸= 0. Let φ and ψ be strictly monotone continuous func-
tions defined on intervals I and K respectively such that φ is differentiable on
[a, b] ⊆ I.

(i) If ψ is increasing, then for an MφMψ-h-convex function f : I → R
and for a partition

0 = λ0 < λ1 < . . . < λn−1 < λn = 1, with n ≥ 1

we have

1
2h( 1

2 )

n−1∑
j=0

(λj+1 − λj)(ψ ◦ f)
(
Mφ

(
a, b; 1 − λj + λj+1

2
))

≤ 1
φ(b) − φ(a)

∫ b

a

ψ(f(x))φ′(x) dx

≤
n−1∑
j=0

(λj+1 − λj)
{

(ψ ◦ f)
(
Mφ(a, b; 1 − λj)

)
+ (ψ ◦ f)

(
Mφ(a, b; 1 − λj+1)

)}∫ 1

0
h(t) dt,(3.7)

provided that all integrals exist.
If f is MφMψ-h-concave, then (R3.7) holds.
(ii) If ψ is decreasing and f is MφMψ-h-convex, then (R3.7) holds. If ψ

is decreasing and f is MφMψ-h-concave, then (3.7) is valid.

Proof. Let ψ be increasing and f be MφMψ-h-convex. Denote G :=
ψ ◦ f . Then a function ψ ◦ f ◦ φ−1 is h-convex on φ([a, b]) and applying
Theorem D on function G ◦ φ−1, we get

1
2h( 1

2 )

n−1∑
j=0

(λj+1 − λj)G
(
φ−1

((
1 − λj + λj+1

2

)
φ(a) + λj + λj+1

2 φ(b)
))

≤ 1
φ(b) − φ(a)

∫ b

a

G(x)φ′(x) dx

≤
n−1∑
j=0

(λj+1 − λj)
{
G
(
φ−1 ((1 − λj)φ(a) + λjφ(b))

)
+G

(
φ−1 ((1 − λj+1)φ(a) + λj+1φ(b))

)}∫ 1

0
h(t) dt.(3.8)
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Using the fact that G
(
φ−1

((
1 − λj+λj+1

2

)
φ(a) + λj+λj+1

2 φ(b)
))

= (ψ ◦

f)
(
Mφ

(
a, b; 1− λj+λj+1

2
))

etc, we get (3.7). Other cases are done in a similar
manner.

If a partition is equidistant, then the series of inequalities in (3.7) can be
extended. Namely, we have the following result.

Theorem 3.8. Let h be a non-negative function defined on the interval
J, ⟨0, 1⟩ ⊆ J , h( 1

2 ) ̸= 0. Let φ and ψ be strictly monotone continuous func-
tions defined on intervals I and K respectively such that φ is differentiable on
[a, b] ⊆ I. Let f : I → R. Let n ≥ 2.

(i) If ψ is increasing, then for an MφMψ-h-convex function f the follow-
ing inequalities hold

1
4h2( 1

2 )
(ψ ◦ f)

(
Mφ

(
a, b; 1

2
))

≤ l(n) ≤ 1
φ(b) − φ(a)

∫ b

a

ψ(f(x))φ′(x) dx ≤ L(n)

≤ 1
n

[
ψ(f(a)) + ψ(f(b))

]1 + 2
n−1∑
j=1

h

(
j

n

)
∫ 1

0
h(t) dt,(3.9)

provided that all integrals exist and where

l(n) = 1
2nh( 1

2 )

n−1∑
j=0

(ψ ◦ f)
(
Mφ

(
a, b; 2n− 2j − 1

2n
))

L(n) = 2
n

∫ 1

0
h(t) dt


n−1∑
j=1

(ψ ◦ f)
(
Mφ

(
a, b; j

n

))
+ ψ(f(a)) + ψ(f(b))

2

 .

If f is MφMψ-h-concave, then (R3.9) holds.
(ii) If ψ is decreasing and f is MφMψ-h-convex, then (R3.9) holds. If ψ

is decreasing and f is MφMψ-h-concave, then (3.9) is valid.

Proof. Let us suppose that ψ is increasing and f is MφMψ-h-convex.
The second and the third inequalities in (3.9) are simply consequences of
Theorem 3.7 when we apply it on points: λj = j

n . Let us prove the first
inequality. Putting in (3.4) F = ψ ◦ f ◦ φ−1 = G ◦ φ−1 and

A = 2n− 2j − 1
2n φ(a) + 2j + 1

2n φ(b), B = 2j + 1
2n φ(a) + 2n− 2j − 1

2n φ(b)
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and since A+B = φ(a) + φ(b), we get

G
(
φ−1(2n− 2j − 1

2n φ(a) + 2j + 1
2n φ(b)

))
+G

(
φ−1(2j + 1

2n φ(a) + 2n− 2j − 1
2n φ(b)

))
≥ 1
h
( 1

2
)G(φ−1(φ(a) + φ(b)

2
))
,

i.e.

G
(
Mφ

(
a, b; 2n− 2j − 1

2n
))

+G
(
Mφ

(
a, b; 2j + 1

2n
))

≥ 1
h
( 1

2
)G(Mφ

(
a, b; 1

2
))
.

Let us write the sum
∑n−1
j=0 (ψ ◦f)

(
Mφ

(
a, b; 2n−2j−1

2
))

twice and add the
addend indexed by j from the first sum with the addend indexed by (n−j−1)
from the second sum. Then we get

2
n−1∑
j=0

(ψ ◦ f)
(
Mφ

(
a, b; 2n− 2j − 1

2n
))

=
n−1∑
j=0

(ψ ◦ f)
(
Mφ

(
a, b; 2n− 2j − 1

2n
))

+ (ψ ◦ f)
(
Mφ

(
a, b; 2j + 1

2n
))

≥
n−1∑
j=0

1
h
( 1

2
) (ψ ◦ f)

(
Mφ

(
a, b; 1

2
))

= n

h
( 1

2
) (ψ ◦ f)

(
Mφ

(
a, b; 1

2
))

and the first inequality in (3.9) follows.
In the proof of the fourth inequality in (3.9) we apply a definition of

MφMψ-h-convexity on each addend in the sum and transform it:

ψ(f(a)) + ψ(f(b)) + 2
n−1∑
j=1

(ψ ◦ f)
(
Mφ

(
a, b; j

n

))

≤ ψ(f(a)) + ψ(f(b)) + 2
n−1∑
j=1

(
h
( j
n

)
ψ(f(a)) + h

(n− j

n

)
ψ(f(b))

)

=
[
ψ(f(a)) + ψ(f(b))

]1 + 2
n−1∑
j=1

h
( j
n

)
and from this estimate the fourth inequality in (3.9) follows.
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In the following theorem we consider a particular partition of interval
[0, 1], so-called a dyadic partition. Let m ≥ 1 be an integer and let

λj := j

2m , j = 0, 1, 2, . . . , 2m.

Note that Corollary 3.2 contains result of this type for m = 1. In literature,
there are no similar results for h-convex functions. Therefore, we can not use
Proposition 2.1 in the proof of the following theorem.

Theorem 3.9. Let h be a non-negative function defined on the interval
J, ⟨0, 1⟩ ⊆ J , h( 1

2 ) ̸= 0. Let φ and ψ be strictly monotone continuous func-
tions defined on intervals I and K respectively such that φ is differentiable on
[a, b] ⊆ I. Let f : I → R.

(i) If ψ is increasing, then for an MφMψ-h-convex function f and m ∈ N
the following holds

l(2m+1) ≥ 1
2h( 1

2 )
l(2m)(3.10)

L(2m+1) ≤
(

1
2 + h

(1
2

))
L(2m)(3.11)

L(2m) ≤ 8h2
(1

2

)∫ 1

0
h(t)dt · l(2m) + 1

2m

∫ 1

0
h(t)dt

{
ψ(f(a)) + ψ(f(b))

− 2h
(1

2

)
ψ

(
f
(
Mφ(a, b, 2m+1 − 1

2m+1 )
))

− 2h
(1

2

)
ψ

(
f
(
Mφ(a, b, 1

2m+1 )
))}

,(3.12)

where l(n) and L(n) are defined as in Theorem 3.8.
If f is MφMψ-h-concave, then (R3.10), (R3.11) and (R3.12) hold.
(ii) If ψ is decreasing and f is MφMψ-h-convex, then (R3.10), (R3.11)

and (R3.12) hold. If ψ is decreasing and f is MφMψ-h-concave, then (3.10),
(3.11) and (3.12) hold.

Proof. We prove the case when ψ is increasing and f isMφMψ-h-convex.
We use notation: F := ψ ◦ f ◦ φ−1, A := φ(a) and B := φ(B).

From Theorem 3.8 we get:

l(2m+1) = 1
2m+2h( 1

2 )

2m+1−1∑
j=0

F

(
(2m+2 − 2j − 1)A+ (2j + 1)B

2m+2

)
.

Since

{0, 1, 2, . . . 2m+1 − 1} = {0, 2, 4, . . . , 2m+1 − 2} ∪ {1, 3, 5, . . . , 2m+1 − 1}
= {2k : k = 0, 1, . . . , 2m − 1} ∪ {2k + 1 : k = 0, 1, . . . , 2m − 1},
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we obtain

l(2m+1) = 1
2m+2h( 1

2 )

{2m−1∑
k=0

F

(
(2m+2 − 4k − 1)A+ (4k + 1)B

2m+2

)

+
2m−1∑
k=0

F

(
(2m+2 − 4k − 3)A+ (4k + 3)B

2m+2

)}
.

Since F is h-convex, then F (x) + F (y) ≥ 1
h( 1

2 )F (x+y
2 ). Putting in this in-

equality x = (2m+2−4k−1)A+(4k+1)B
2m+2 and y = (2m+2−4k−3)A+(4k+3)B

2m+2 , we get
that l(2m+1) is bounded from below as follows

l(2m+1) ≥ 1
2m+2h( 1

2 )

2m−1∑
k=0

1
h( 1

2 )
F

(
(2m+1 − 2k − 1)A+ (2k + 1)B

2m+1

)
= 1

2h( 1
2 )
l(2m).

Hence (3.10) is proved.
Let us prove (3.11). Again, we split the sum in L(2m+1) into two sums:

one with odd indices and the second sum with even indices.

L(2m+1) = 1
2m

∫ 1

0
h(t)dt

{
F (A) + F (B)

2 +
2m−1∑
k=1

F

(
(2m+1 − 2k)A+ 2kB

2m+1

)

+
2m−1∑
k=0

F

(
(2m+1 − 2k − 1)A+ (2k + 1)B

2m+1

)}

= 1
2m

∫ 1

0
h(t)dt

{2m−1∑
k=0

F

(
(2m+1 − 2k − 1)A+ (2k + 1)B

2m+1

)

+
[

1
2

2m−1∑
k=1

F

(
(2m+1 − 2k)A+ 2kB

2m+1

)
+ F (A)

2

]

+
[

1
2

2m−1∑
k=1

F

(
(2m+1 − 2k)A+ 2kB

2m+1

)
+ F (B)

2

]}

= 1
2m

∫ 1

0
h(t)dt

{2m−1∑
k=0

F

(
[(2m − k)A+ kB]+[(2m − k − 1)A+ (k + 1)B]

2 · 2m

)
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+ 1
2

2m−1∑
k=0

F

(
(2m+1 − 2k)A+ 2kB

2m+1

)

+ 1
2

2m−1∑
r=0

F

(
(2m − r − 1)A+ (r + 1)B

2m

)}

≤ 1
2m

∫ 1

0
h(t)dt

{2m−1∑
k=0

h
(1

2

)
F

(
(2m − k)A+ kB

2m

)

+
2m−1∑
k=0

h
(1

2

)
F

(
(2m − k − 1)A+ (k + 1)B

2m

)

+ 1
2

2m−1∑
k=0

F

(
(2m − k)A+ kB

2m

)
+ 1

2

2m−1∑
r=0

F

(
(2m − r − 1)A+ (r + 1)B

2m

)}

= 1
2m

∫ 1

0
h(t)dt

(
1
2 + h

(1
2

))
×

×

{2m−1∑
k=0

[
F

(
(2m − k)A+ kB

2m

)
+ F

(
(2m − k − 1)A+ (k + 1)B

2m

)]}

=
(

1
2 + h

(1
2

))
L(2m).

Let us prove (3.12). Note that for k = 1, 2, . . . , 2m − 1

(2m − k)A+ kB

2m

= 1
2

(
(2m+1 − 2k + 1)A+ (2k − 1)B

2m+1 + (2m+1 − 2k − 1)A+ (2k + 1)B
2m+1

)
.

Since F is h-convex, we get

2m−1∑
k=1

F
( (2m − k)A+ kB

2m
)

≤
2m−1∑
k=1

h
(1

2

){
F

(
(2m+1− 2k + 1)A+ (2k − 1)B

2m+1

)
+ F

(
(2m+1 − 2k − 1)A+ (2k + 1)B

2m+1

)}

= h
(1

2

)2
2m−1∑
j=0

F

(
(2m+1 − 2j − 1)A+ (2j + 1)B

2m+1

)

− F

(
(2m+1 − 1)A+B

2m+1

)
− F

(
A+ (2m+1 − 1)B

2m+1

)]
.



MφMψ-h-CONVEX FUNCTIONS 203

Adding on the both sides F (A)+F (B)
2 and using notations for l and L, we get

2m−1∫ 1
0 h(t)dt

L(2m) ≤ 2m+2h2
(1

2

)
· l(2m) + F (A) + F (B)

2

− h2
(1

2

)
F

(
(2m+1 − 1)A+B

2m+1

)
− h2

(1
2

)
F

(
A+ (2m+1 − 1)B

2m+1

)
and (3.12) is proved.

If h( 1
2 ) ≤ 1

2 , then the previous Theorem gives a sequence of interpolations
of the Hermite-Hadamard inequality.

Corollary 3.10. Suppose that the assumptions of Theorem 3.9 hold. Let
h( 1

2 ) ≤ 1
2 .

If ψ is increasing and f is an MφMψ-h-convex integrable function such
that ψ ◦ f ◦ φ−1 is non-negative, then the following holds

1
4h2( 1

2 )
(ψ ◦ f)

(
Mφ

(
a, b; 1

2
))

≤ l(2) ≤ l(22) ≤ . . . ≤ l(2m) ≤ . . .

≤ 1
φ(b) − φ(a)

∫ b

a

ψ(f(x))φ′(x) dx

≤ . . . ≤ L(2m) ≤ . . . ≤ L(22) ≤ L(2)

≤
[

1
2 + h

(1
2

)] [
ψ(f(a)) + ψ(f(b))

] ∫ 1

0
h(t) dt.(3.13)

Additionally, if
∫ 1

0 h(t) dt ≤ 1
2 and if ψ ◦ f ◦ φ−1 is bounded on φ([a, b]), then

(3.14) lim
m→∞

(L(2m) − l(2m)) = 0

and

(3.15) lim
m→∞

l(2m) = 1
φ(b) − φ(a)

∫ b

a

ψ(f(x))φ′(x) dx = lim
m→∞

L(2m).

Proof. If h( 1
2 ) ≤ 1

2 , then 1
2h( 1

2 ) ≥ 1 and 1
2 + h

(
1
2

)
≤ 1 and from (3.10)

and (3.11) we have that for any m ≥ 1

l(2m+1) ≥ l(2m) and L(2m+1) ≤ L(2m).

Hence, applying Theorem 3.8, Corollary 3.2 and above inequalities, we get
(3.13).

If h( 1
2 ) ≤ 1

2 and
∫ 1

0 h(t) dt ≤ 1
2 , then 8h2

(
1
2

) ∫ 1
0 h(t)dt ≤ 1 and (3.14)

follows from (3.12). The sequence (l(2m))m is a non-decreasing sequence,
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bounded from above with 1
φ(b) − φ(a)

∫ b

a

ψ(f(x))φ′(x) dx, so, it is conver-

gent. Similarly, (L(2m))m is convergent and from (3.14) and from inequality

l(2m) ≤ 1
φ(b) − φ(a)

∫ b

a

ψ(f(x))φ′(x) dx ≤ L(2m)

we get (3.15).

Under assumptions of Corollary 3.10 we conclude that the larger m makes
l(2m) and L(2m) closer to the integral mean of ψ ◦ f ◦ φ−1. The behavior of
convex functions involving dyadic partition is studied in [12]. Here we extend
those results to a more general function class.

Conclusion. In this paper, we study Hermite-Hadamard-type inequali-
ties for MφMψ-h-convex functions. Until now we have found similar results
only for particular subclasses of the class of MφMψ-h-convex functions. The
connection between h-convex function and MφMψ-h-convex function which
is described in Proposition 2.1 has a crucial role in the proofs and the use of
it makes proofs more elegant. It would be interesting to see how this method
impacts the study of other properties of MφMψ-h-convex functions.
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Hermite-Hadamardova nejednakost za MφMψ-h-konveksne funkcije
i odgovarajuće interpolacije

Sanja Varošanec

Sažetak. U članku se promatra Hermite-Hadamardova ne-
jednakost za MφMψ-h-konveksne funkcije. Kao što je poznato,
MφMψ -h-konveksnost generalizira nekoliko klasa funkcija kao što
su harmonijski-h-konveksne funkcije, logaritamski h-konveksne,
(h, p)-konveksne, MpA-h-konveksne, MφMψ konveksne funkcije
i druge. Dokazane su nejednakosti Hermite-Hadamardovog tipa
koje uključuju dva i više čvorova, a posebna je pažnja posvećena
dijadskoj particiji intervala i profinjenju nejednakosti koja se
javlja u tom slučaju.
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