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GENERALIZED HARDY-TYPE INEQUALITY VIA
LIDSTONE INTERPOLATING POLYNOMIAL AND NEW

GREEN FUNCTIONS

Dora Pokaz

Abstract. For a given general setting, involving measure spaces with
positive σ-finite measures, we present new results regarding Hardy-type
inequality. We established a connection between the difference operator
obtained from Hardy-type inequality and the expression that includes Lid-
stone interpolating polynomial and four new Green functions. We discuss
about 2n convexity of the function and consider the main result depending
on the parity of the part of exponent and index n. Applying Hölder in-
equality for conjugate exponents p and q we get some consequential results.
Finally, we derived bounds for the identity using Čebyšev functional and
Ostrowski-type bound for the generalized Hardy’s inequality.

1. Preliminaries

The Lidstone series is a generalization of Taylor’s series. It approximates
a given function in the neighborhood of two points instead of one. In the
beginning such series have been studied by G. J. Lidstone (1929), H. Poritsky
(1932) and J. M. Wittaker (1934). It was continued by many others. It should
be emphasized that Boas made a complete characterization, which was very
important from a practical point of view. Apart from approximation theory,
applications of this interpolating polynomial can be found in many branches
of physical sciences. We start with the definition of the Lidstone series by
Lidstone polynomial.

Definition 1.1. Let f ∈ C∞([0, 1]), then the Lidstone series has the
form

∞∑
k=0

(
f (2k)(0)Λk(1 − x) + f (2k)(1)Λk(x)

)
,
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where Λn is a polynomial of degree 2n+ 1 defined by the relations

Λ0(t) = t,

Λ′′
n(t) = Λn−1(t),(1.1)

Λn(0) = Λn(1) = 0, n ≥ 1.

Other explicit representations of the Lidstone polynomial are given in [1]
and [15]:

Λn(t) = (−1)n 2
π2n+1

∞∑
k=1

(−1)k+1

k2n+1 sin kπt,

Λn(t) = 1
6

[
6t2n+1

(2n+ 1)! − t2n−1

(2n− 1)!

]
−
n−2∑
k=0

2(22k+3 − 1)
(2k + 4)! B2k+4

t2n−2k−3

(2n− 2k − 3)! , n = 1, 2, . . . ,

Λn(t) = 22n+1

(2n+ 1)!B2n+1

(
1 + t

2

)
, n = 1, 2 . . . ,

where B2k+4 is the (2k + 4)-th Bernoulli number and B2n+1
( 1+t

2
)

is the
Bernoulli polynomial.

In [16], Widder proved the fundamental lemma:

Lemma 1.2. If f ∈ C(2n)([0, 1]), then

f(t) =
n−1∑
k=0

[
f (2k)(0)Λk(1 − t) + f (2k)(1)Λk(t)

]
+
∫ 1

0
Gn(t, s)f (2n)(s)ds,

where

(1.2) G1(t, s) = G(t, s) =
{

(t− 1)s, if s ≤ t,
(s− 1)t, if t ≤ s,

is homogeneous Green’s function of the differential operator d2

ds2 on [0, 1], and
with the successive iterates of G(t, s)

(1.3) Gn(t, s) =
∫ 1

0
G1(t, p)Gn−1(p, s)dp, n ≥ 2.

The Lidstone polynomial can be expressed in terms of Gn(t, s) as

Λn(t) =
∫ 1

0
Gn(t, s)s ds.
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Based on the article [10] throughout the paper, G̃γ , γ = 1, 2, 3, 4, will
denote the following Green functions defined on [α, β] × [α, β] with

(1.4) G̃1(t, s) =
{
α− s , α ≤ s ≤ t;
α− t, t ≤ s ≤ β;

(1.5) G̃2(t, s) =
{
t− β , α ≤ s ≤ t;
s− β, t ≤ s ≤ β;

(1.6) G̃3(t, s) =
{
t− α , α ≤ s ≤ t;
s− α, t ≤ s ≤ β;

(1.7) G̃4(t, s) =
{
β − s , α ≤ s ≤ t;
β − t, t ≤ s ≤ β.

Note that all these functions are continuous and convex with respect to
both variables.

Lemma 1.3. For ϕ ∈ C2([α, β]), the following identities hold

(1.8) ϕ(t) = ϕ(α) + (t− α)ϕ′(β) +
∫ β

α

G̃1(t, s)ϕ′′(s)ds,

ϕ(t) = ϕ(β) + (t− β)ϕ′(α) +
∫ β

α

G̃2(t, s)ϕ′′(s)ds,(1.9)

ϕ(t) = ϕ(β) + (t− α)ϕ′(α) − (β − α)ϕ′(β) +
∫ β

α

G̃3(t, s)ϕ′′(s)ds,(1.10)

ϕ(t) = ϕ(α) − (β − t)ϕ′(β) + (β − α)ϕ′(α) +
∫ β

α

G̃4(t, s)ϕ′′(s)ds,(1.11)

where the functions G̃γ , γ = 1, . . . , 4, are defined by (1.4)–(1.7).

2. Introduction

The aim of this article is to give a result related to the general Hardy-type
inequality. The classical Hardy inequality from [6] is

(2.1)
∞∫

0

 1
x

x∫
0

f(t) dt

p

dx ≤
(

p

p− 1

)p ∞∫
0

fp(x) dx, p > 1,
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where f is non-negative function such that f ∈ Lp(R+) and R+ = (0,∞). The
constant

(
p
p−1

)p
is sharp. Inequality (2.1) was generalized in many ways, see

[8], [12] and [13]. Here we refer to settings and generalization from [9].
We begin by defining the settings that we continue to work with. Let

(Σ1,Ω1, µ1) and (Σ2,Ω2, µ2) be measure spaces with positive σ-finite measures
and Ak be an integral operator defined by

(2.2) Akf(x) := 1
K(x)

∫
Ω2

k(x, t)f(t)dµ2(t),

where k : Ω1 × Ω2 → R is measurable and non-negative kernel, f : Ω2 → R is
measurable function and

(2.3) 0 < K(x) :=
∫

Ω2

k(x, t)dµ2(t), x ∈ Ω1.

Throughout the article we will denote the open interval in R with I. The
following result was given in [9].

Theorem 2.1. Let u be a weight function, k(x, y) ≥ 0. Assume that
k(x,y)
K(x) u(x) is locally integrable on Ω1 for each fixed y ∈ Ω2. Define v by

(2.4) v(y) :=
∫

Ω1

k(x, y)
K(x) u(x)dµ1(x) < ∞.

If Φ is a convex function on the interval I ⊆ R, then the inequality

(2.5)
∫

Ω1

Φ(Akf(x))u(x)dµ1(x) ≤
∫

Ω2

Φ(f(y))v(y)dµ2(y)

holds for all measurable functions f : Ω2 → R, such that Imf ⊆ I, where Ak
is defined by (2.2) - (2.3).

Now, we start with the generalized Hardy-type inequality (2.5). In the
settings where Ak is as in (2.2), a weight function u with v given by (2.4) and
for γ ∈ {1, 2, 3, 4}, we consider G̃γ to be as in (1.4)–(1.7). In addition, for
ϕ ∈ C2([α, β]), identities (1.8)–(1.11) and some simple calculations yield the
following statements from [10]:∫

Ω2

ϕ(f(y))v(y)dµ2(y) −
∫

Ω1

ϕ(Akf(x))u(x)dµ1(x)

=
∫ β

α

∫
Ω2

G̃γ(f(y), s)v(y)dµ2(y) −
∫

Ω1

G̃γ(Akf(x), s)u(x)dµ1(x)

ϕ′′(s)ds.

(2.6)
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Additionally, if ϕ is convex, then ϕ′′(s) ≥ 0 for s ∈ [α, β].
In this article, we consider Lidstone series representation of Φ ∈

C(2n)([α, β]) as:

Φ(x) =
n−1∑
m=0

(β − α)2m
[
Φ(2m)(α)Λm

(
β − x

β − α

)
+ Φ(2m)(β)Λm

(
x− α

β − α

)]

+(β − α)2n−1
β∫
α

Gn

(
x− α

β − α
,
s− α

β − α

)
Φ(2n)(s)ds.(2.7)

Further in the article, we will state our results for the class of n-convex
functions, a more general class of functions that contains convex functions as
a special case. We recall the basic definition and some properties of n-convex
functions.

Definition 2.2. The n-th order divided difference, n ∈ N0, of a function
ϕ : [α, β] → R at mutually distinct points x0, x1, ..., xn ∈ [α, β] is defined
recursively by

[xi;ϕ] = ϕ(xi), i = 0, ..., n

[x0, ..., xn;ϕ] = [x1, ..., xn;ϕ] − [x0, ..., xn−1;ϕ]
xn − x0

.

The value [x0, ..., xn;ϕ] is independent of the order of the points x0, ..., xn.
A function f : [α, β] → R is n-convex if all its n-th order divided differences are
non-negative, i. e. [x0, ..., xn; f ] ≥ 0 for all choices xi ∈ [α, β]. Thus, 0-convex
functions are non-negative and 1-convex functions are non-decreasing, while
2-convex functions are convex in the classical sense. An n times differentiable
is n-convex if and only if its n-derivative is non-negative (see [14]).

3. Main result

For settings given in the Introduction we start with our main result in-
volving the Lidstone polynomial.

Theorem 3.1. Let n ∈ N, n ≥ 2 and ϕ : I → R be such that ϕ(2(n−1))

is absolutely continuous and α, β ∈ I, α < β. Further, let Ak be as in (2.2),
γ ∈ {1, 2, 3, 4}, G̃γ as in (1.4)-(1.7), Λn as in (1.1) and u a weight function
with v given by (2.4). Then
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∫
Ω2

ϕ(f(y))v(y)dµ2(y) −
∫

Ω1

ϕ(Akf(x))u(x)dµ1(x)

=
∫ β

α

∫
Ω2

G̃γ(f(y), t)v(y)dµ2(y) −
∫

Ω1

G̃γ(Akf(x), t)u(x)dµ1(x)


×
n−1∑
k=1

(β − α)2k−2
[
ϕ(2k)(α)Λk−1

(
β − t

β − α

)
+ ϕ(2k)(β)Λk−1

(
t− α

β − α

)]
dt

+ (β − α)2n−3 ×
∫ β

α

ϕ(2n)(s)

∫ β

α

∫
Ω2

G̃γ(f(y), t)v(y)dµ2(y)

−
∫

Ω1

G̃γ(Akf(x), t)u(x)dµ1(x)

 × Gn−1

(
t− α

β − α
,
s− α

β − α

)
dt

]
ds.

(3.1)

Proof. If we substitute Φ with Φ′′ and n with n− 1, then a function Φ
defined by (2.7) becomes

ϕ′′(t) =
n−2∑
k=0

(β − α)2k
[
ϕ(2k+2)(α)Λk

(
β − t

β − α

)
+ ϕ(2k+2)(β)Λk

(
t− α

β − α

)]

+ (β − α)2n−3
∫ β

α

Gn−1

(
t− α

β − α
,
s− α

β − α

)
ϕ(2n)(s)ds

which with a little calculation leads to

ϕ′′(t) =
n−1∑
k=1

(β − α)2k−2
[
ϕ(2k)(α)Λk−1

(
β − t

β − α

)
+ ϕ(2k)(β)Λk−1

(
t− α

β − α

)]

+ (β − α)2n−3
∫ β

α

Gn−1

(
t− α

β − α
,
s− α

β − α

)
ϕ(2n)(s)ds.(3.2)

Finally, if we include Φ′′ calculated in (3.2) into (2.6) we get the required
result.

Starting from the result of the Theorem 3.1, depending on parity of n we
have the following inequalities.

Theorem 3.2. Suppose that u, v Ak ,G̃γ , γ ∈ {1, 2, 3, 4} and Λn be as
in Theorem 3.1. If ϕ : I → R is 2n-convex, and
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(i) n is odd number, then the inequality

∫
Ω2

ϕ(f(y))v(y)dµ2(y) −
∫

Ω1

ϕ(Akf(x))u(x)dµ1(x)

≥
∫ β

α

∫
Ω2

G̃γ(f(y), t)v(y)dµ2(y) −
∫

Ω1

G̃γ(Akf(x), t)u(x)dµ1(x)



×
n−1∑
k=1

(β − α)2k−2
[
ϕ(2k)(α)Λk−1

(
β − t

β − α

)
+ ϕ(2k)(β)Λk−1

(
t− α

β − α

)]
dt

(3.3)

holds.
(ii) n is even number, then the inequality

∫
Ω2

ϕ(f(y))v(y)dµ2(y) −
∫

Ω1

ϕ(Akf(x))u(x)dµ1(x)

≤
∫ β

α

∫
Ω2

G̃γ(f(y), t)v(y)dµ2(y) −
∫

Ω1

G̃γ(Akf(x), t)u(x)dµ1(x)



×
n−1∑
k=1

(β − α)2k−2
[
ϕ(2k)(α)Λk−1

(
β − t

β − α

)
+ ϕ(2k)(β)Λk−1

(
t− α

β − α

)]
dt

(3.4)

holds.

Proof. (i) Since G̃γ(·, t) is continuous and convex with respect to the
first variable for each γ ∈ {1, 2, 3, 4} and t ∈ [α, β], according to Theorem 3.1,∫

Ω2

G̃γ(f(y), t)v(y)dµ2(y) −
∫

Ω1

G̃γ(Akf(x), t)u(x)dµ1(x) ≥ 0,

holds for every t ∈ [α, β]. On the other hand G̃γ given by (1.4) - (1.7) are
non-negative and so is ϕ2n since ϕ is 2n-convex. By definition (1.2) and (1.3)
of the function Gn, we can see that if n is odd, then Gn is not positive. On
the other hand, if n is positive, then Gn is non-negative. In (3.1) we have
expression containing Gn−1. So, if n−1 is even, then n is odd and the required
inequality (3.3) follows from the statement of Theorem 3.1.

(ii) Similarly, if n− 1 is odd, then n is even so the inequality (3.4) holds.
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Remark 3.3. If we consider the functional

ξ(Φ) =
∫

Ω2

ϕ(f(y))v(y)dµ2(y) −
∫

Ω1

ϕ(Akf(x))u(x)dµ1(x),

then for 2n-convex function ϕ

ξ(G̃γ(·, t) ≥ 0, t ∈ [α, β]

holds.

In the next result we consider Hölder inequality for conjugate exponents
p and q. As usual we suppose that 1 ≤ p, q ≤ ∞ and 1

p + 1
q = 1. The symbol

∥ · ∥p denotes the standard Lp([α, β]) norm of a function, i. e.

∥ g ∥p=
(∫ β

α

|g(s)|pds
) 1
p

for 1 ≤ p < ∞, while ∥g∥∞ is the essential supremum of g.

Theorem 3.4. Let n ∈ N, n ≥ 2 and ϕ : I → R be such that ϕ(2(n−1)) is
absolutely continuous and ϕ(2n) ∈ Lp[α, β] for α, β ∈ I, α < β. Further,let
Ak be as in (2.2), γ ∈ {1, 2, 3, 4}, G̃γ as in (1.4)-(1.7), Λn as in (1.1) and u a
weight function with v given by (2.4). If (p, q) is a pair of conjugate exponents,
then

|Sk(ϕ)| ≤ (β − α)2n−3 × ∥ϕ(2n)∥p×∫ β

α

∣∣∣∣∣∣
∫ β

α

∫
Ω2

G̃γ(f(y), t)v(y)dµ2(y) −
∫

Ω1

G̃γ(Akf(x), t)u(x)dµ1(x)



× Gn−1

(
t− α

β − α
,
s− α

β − α

)
dt

∣∣∣∣q ds)
1
q

,

(3.5)

holds, where
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Sk(ϕ) =
∫

Ω2

ϕ(f(y))v(y)dµ2(y) −
∫

Ω1

ϕ(Akf(x))u(x)dµ1(x)

−
∫ β

α

∫
Ω2

G̃γ(f(y), t)v(y)dµ2(y) −
∫

Ω1

G̃γ(Akf(x), t)u(x)dµ1(x)



×
n−1∑
k=1

(β − α)2k−2
[
ϕ(2k)(α)Λk−1

(
β − t

β − α

)
+ ϕ(2k)(β)Λk−1

(
t− α

β − α

)]
dt.

(3.6)

Proof. Applying the Hölder inequality on (3.1) considering the notation
(3.6), we get

|Sk(ϕ)| = (β − α)2n−3×∣∣∣∣∣∣
∫ β

α

ϕ(2n)

∫ β

α

∫
Ω2

G̃γ(f(y), t)v(y)dµ2(y) −
∫

Ω1

G̃γ(Akf(x), t)u(x)dµ1(x)


× Gn−1

(
t − α

β − α
,

s − α

β − α

)
dt

)
ds

∣∣∣∣
≤ (β − α)2n−3 × ∥ϕ(2n)∥p×∫ β

α

∣∣∣∣∣∣
∫ β

α

∫
Ω2

G̃γ(f(y), t)v(y)dµ2(y) −
∫

Ω1

G̃γ(Akf(x), t)u(x)dµ1(x)


× Gn−1

(
t − α

β − α
,

s − α

β − α

)
dt

∣∣∣∣q ds

) 1
q

and obtain the required inequality.

Remark 3.5. As special cases for boundary values p and q, from the
inequality (3.5) we get the following inequalities:

|Sk(ϕ)| ≤ (β − α)2n−3 × max |ϕ(2n)(s)|×∣∣∣∣∣∣
∫ β

α

∫ β

α

∫
Ω2

G̃γ(f(y), t)v(y)dµ2(y) −
∫

Ω1

G̃γ(Akf(x), t)u(x)dµ1(x)


× Gn−1

(
t− α

β − α
,
s− α

β − α

)
dt ds

∣∣∣∣
and
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|Sk(ϕ)| ≤ (β − α)2n−3×

max

∣∣∣∣∣∣
∫ β

α

∫ β

α

∫
Ω2

G̃γ(f(y), t)v(y)dµ2(y) −
∫

Ω1

G̃γ(Akf(x), t)u(x)dµ1(x)


× Gn−1

(
t− α

β − α
,
s− α

β − α

)
dt ds

∣∣∣∣×

∣∣∣∣∣
∫ β

α

ϕ(2n)(s)ds

∣∣∣∣∣ .
4. Applications to the Čebyšev functional

Consider the Čebyšev functional,

T (h, g) := 1
β − α

∫ β

α

h(t)g(t)dt− 1
β − α

∫ β

α

h(t)dt · 1
β − α

∫ β

α

g(t)dt

for Lebesgue integrable functions h, g : [α, β] → R. Examples with upper
bound obtained using Čebyšev functional can be found in [7]. The next two
theorems from [5] provide Grüss and Ostrowski type inequalities involving the
above functional.

Theorem 4.1. Let h, g : [α, β] → R be two absolutely continuous func-
tions with (· − α)(β − ·)(h′)2, (· − α)(β − ·)(g′)2 ∈ L([α, β]). Then

(4.1) |T (h, g)| ≤ 1√
2

|T (h, h)| 1
2

1√
β − α

(∫ β

α

(s− α)(β − s)[g′(s)]2ds
) 1

2

.

The constant 1√
2 is the best possible in (4.1).

Theorem 4.2. Assume that g : [α, β] → R is monotonic non-decreasing
and h : [α, β] → R is absolutely continuous with h′ ∈ L∞([α, β]). Then

(4.2) |T (h, g)| ≤ 1
2(β − α) ∥h′∥∞

∫ β

α

(s− α)(β − s)dg(s).

The constant 1
2 is the best possible in (4.2) .

To simplify notation, for γ ∈ {1, 2, 3, 4} we introduce the abbreviation
Rγ : [α, β] → R in the form:

Rγ(s) =
∫ β

α

∫
Ω2

G̃γ(f(y), t)v(y)dµ2(y) −
∫

Ω1

G̃γ(Akf(x), t)u(x)dµ1(x)


×Gn−1

(
t− α

β − α
,
s− α

β − α

)
dt,(4.3)

where we assume that all the terms appearing in Rγ satisfy the assumptions
of Theorem 3.1.
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Theorem 4.3. Let n ∈ N, n ≥ 2, Rγ be as in (4.3) and ϕ : [α, β] → R be
such that ϕ(2n) is absolutely continuous with (·−α)(β−·)(ϕ(2n+1))2 ∈ L([α, β]).
If (· − α)(β − ·)(R′

γ)2 ∈ L([α, β]), then the remainder

ϱ(ϕ;α, β) =
∫

Ω2

ϕ(f(y))v(y)dµ2(y) −
∫

Ω1

ϕ(Akf(x))u(x)dµ1(x)

−
∫ β

α

∫
Ω2

G̃γ(f(y), t)v(y)dµ2(y) −
∫

Ω1

G̃γ(Akf(x), t)u(x)dµ1(x)


×
n−1∑
k=1

(β−α)2k−2
[
ϕ(2k)(α)Λk−1

(
β−t
β−α

)
+ ϕ(2k)(β)Λk−1

(
t−α
β−α

)]
dt

−(β − α)2n−4
[
ϕ(2n−1)(β) − ϕ(2n−1)(α)

] ∫ β

α

Rγ(s)ds(4.4)

is bounded by

(4.5)

|ϱ(ϕ;α, β)| ≤ (β−α)(2n− 7
2 )

√
2

|T (Rγ , Rγ)|
1
2

(∫ β

α

(s−α)(β−s)[ϕ(2n+1)(s)]2ds
) 1

2

.

Proof. From (3.1) and (4.4) we conclude

ϱ(ϕ;α, β) = (β − α)2n−3
∫ β

α

Rγ(s)ϕ(2n)(s)ds

− (β − α)(2n−4)
[
ϕ(2n−1)(β) − ϕ(2n−1)(α)

] ∫ β

α

Rγ(s)ds.(4.6)

Assumptions of Theorem 4.1 are satisfied for h = Rγ and g = ϕ(2n), so∣∣∣∣∣ 1
β − α

∫ β

α

Rγ(s)ϕ(2n)(s)ds− 1
β − α

∫ β

α

Rγ(s)ds · 1
β − α

∫ β

α

ϕ(2n)(s)ds

∣∣∣∣∣
≤ 1√

2
|T (Rγ , Rγ)|

1
2

1√
β − α

(∫ β

α

(s− α)(β − s)[ϕ(2n+1)(s)]2ds
) 1

2

.(4.7)

Therefore from (4.6) and (4.7) we get (4.5).

Theorem 4.4. Let n ∈ N, n ≥ 2, Rγ be as in (4.3) and ϕ : [α, β] → R be
such that ϕ(2n) is monotonic non-decreasing. If Rγ is absolutely continuous
with R′

γ ∈ L∞([α, β]), then the remainder ϱ(ϕ;α, β) given by (4.4) is bounded
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by
|ϱ(ϕ;α, β)| ≤

(β − α)(2n−3)∥R′
γ∥∞

[
(β − α)

(
ϕ(2n−1)(β) + ϕ(2n−1)(α)

)
2

−
{
ϕ(2n−2)(β) − ϕ(2n−2)(α)

}]
.(4.8)

Proof. Assumptions of Theorem 4.2 are satisfied for h = Rγ and g =
ϕ(2n), so, taking into account (4.6), we have∣∣∣∣∣ 1

β−α

∫ β

α

Rγ(s)ϕ(2n)(s)ds− 1
β−α

∫ β

α

Rγ(s)ds · 1
β−α

∫ β

α

ϕ(2n)(s)ds

∣∣∣∣∣
≤ 1

2(β − α)
∥∥R′

γ

∥∥
∞

∫ β

α

(s− α)(β − s)ϕ(2n+1)(s)ds.

(4.9)

Simple calculation yields∫ β

α

(s− α)(β − s)ϕ(2n+1)(s)ds =
∫ β

α

[2s− (α+ β)]ϕ(2n)(s)ds

= (β − α)
[
ϕ(2n−1)(β) + ϕ(2n−1)(α)

]
− 2

[
ϕ(2n−2)(β) − ϕ(2n−2)(α)

]
.

Finally, inserting the last expression in (4.9) and taking into account (4.6) we
get (4.8).

The last theorem gives Ostrowski-type bound for the generalized Hardy’s
inequality. About Ostrowski-type inequalities can be found i.e. in [3] and [11].

Theorem 4.5. Let n ∈ N, n ≥ 2, Rγ be as in (4.3), 1 ≤ p, q ≤ ∞,
1
p + 1

q = 1 and ϕ : [α, β] → R be such that ∥ϕ(2n)∥p < ∞. Then∣∣∣∣∣
∫

Ω2

ϕ(f(y))v(y)dµ2(y) −
∫

Ω1

ϕ(Akf(x))u(x)dµ1(x)

−
∫ β

α

∫
Ω2

G̃γ(f(y), t)v(y)dµ2(y) −
∫

Ω1

G̃γ(Akf(x), t)u(x)dµ1(x)


×
n−1∑
k=1

(β − α)2k−2
[
ϕ(2k)(α)Λk−1

(
β − t

β − α

)
+ ϕ(2k)(β)Λk−1

(
t− α

β − α

)]
dt

∣∣∣∣∣
≤ (β − α)2n−3

∥∥∥ϕ(2n)
∥∥∥
p

∥Rγ∥q .

The constant (β − α)2n−3 ∥Rγ∥q is sharp when 1 < p ≤ ∞ and the best
possible when p = 1.



GENERALIZED HARDY-TYPE INEQUALITY VIA LIDSTONE 219

In the future work, we will try to further develop the idea and method
using various known functionals.

References
[1] R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and

Their Applications, Kluwer Academic Publishers, Dordrecht, 1993.
[2] R. P. Agarwal and P. J. Y. Wong, Lidstone polynomials and boundary value problems,

Comput. Math. Appl. 17 (1989), 1397–1421
[3] A. Aglić Aljinović, J. Pečarić and A. Vukelić, On some Ostrowski type inequalities via

Montgomery identity and Taylor’s formula. II, Tamkang J. Math. 36 (2005), 279–301.
[4] G. Aras-Gazić, V. Čuljak, J. Pečarić and A. Vukelić, Generalization of Jensen’s in-

equality by Lidstone’s polynomial and related results, Math. Inequal. Appl. 16 (2013),
1243–1267.

[5] P. Cerone and S. S. Dragomir, Some new Ostrowski-type bounds for the Čebyšev func-
tional and applications, J. Math. Inequal. 8 (2014), 159–170.

[6] G. H. Hardy, Notes on some points in the integral calculus LX: An inequality between
integrals, Messenger of Math. 54 (1925), 150–156.

[7] S. Iqbal, K. Krulić Himmelreich, J. Pečarić and D. Pokaz, Hardy type inequalities
involving Lidstone interpolation polynomials, submitted.

[8] S. Kaijser, L. Nikolova, L.-E. Persson and A. Wedestig, Hardy-type inequalities via
convexity, Math. Inequal. Appl. 8 (2005), 403–417.

[9] K. Krulić Himmelreich, J. Pečarić and D. Pokaz, Inequalities of Hardy and Jensen,
Element, Zagreb, 2013.

[10] K. Krulić Himmelreich, J. Pečarić, D. Pokaz and M. Praljak, Generalizations of Hardy-
type inequalities by Montgomery identity and new Green functions, Axioms 12 (2003),
434.

[11] K. Krulić Himmelreich, J. Pečarić, D. Pokaz, D. and M. Praljak, Generalizations of
Hardy type inequalities by Abel-Gontscharoff’s interpolating polynomial, Mathematics
9 (2021), 1724.

[12] A. Kufner, L. Maligranda and L.-E. Persson, The Hardy Inequality. About its History
and Some Related Results, Vydavatelsky Servis Publishing House, Pilsen, 2007.

[13] A. Kufner, L. Maligranda and L.-E. Persson, The prehistory of the Hardy inequality,
Amer. Math. Monthly 113 (2006), 715–732.

[14] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and
Statistical Applications, Mathematics in Science and Engineering 187, Academic Press,
Boston, 1992.

[15] J. M. Whittaker, On Lidstone series and two-point expansions of analytic functions,
Proc. Lond. Math. Soc. (2) 36 (1934), 451–469.

[16] D. V. Widder, Completely convex function and Lidstone series, Trans. Amer. Math.
Soc. 51 (1942), 387–398.



220 D. POKAZ

Poopćenje nejednakosti Hardyjevog tipa putem Lidstonovog
interpolacijskog polinoma i novih Greenovih funkcija

Dora Pokaz

Sažetak. Za poopćeno okruženje, koje uključuje prostore
mjera s pozitivnim σ-konačnim mjerama, predstavili smo rezultat
vezan uz Hardyjevu nejednakost. Uspostavili smo vezu izmedu
operatora razlike dobivene pomoću Hardyjeve nejednakosti te
izraza koji sadrži Lidstonov interpolacijski polinom i četiri nove
Greenove funkcije. Raspravljali smo o 2n konveksnosti funkcije te
dali rezultat u ovisnosti o parnosti dijela eksponenta i indeksa n.
Primjenom Hölderove nejednakosti za konjugirane eksponente p i
q dobili smo daljnje rezultate. Konačno, izveli smo gornje ograde
za naš identitet uz pomoć Čebyševljevog funkcionala te ogradu
tipa Ostrowskog za generaliziranu Hardyjevu nejednakost.
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