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GENERALIZED HARDY-TYPE INEQUALITY VIA
LIDSTONE INTERPOLATING POLYNOMIAL AND NEW
GREEN FUNCTIONS

DoRrA PokAz

ABSTRACT. For a given general setting, involving measure spaces with
positive o-finite measures, we present new results regarding Hardy-type
inequality. We established a connection between the difference operator
obtained from Hardy-type inequality and the expression that includes Lid-
stone interpolating polynomial and four new Green functions. We discuss
about 2n convexity of the function and consider the main result depending
on the parity of the part of exponent and index n. Applying Hoélder in-
equality for conjugate exponents p and ¢ we get some consequential results.
Finally, we derived bounds for the identity using CebySev functional and
Ostrowski-type bound for the generalized Hardy’s inequality.

1. PRELIMINARIES

The Lidstone series is a generalization of Taylor’s series. It approximates
a given function in the neighborhood of two points instead of one. In the
beginning such series have been studied by G. J. Lidstone (1929), H. Poritsky
(1932) and J. M. Wittaker (1934). It was continued by many others. It should
be emphasized that Boas made a complete characterization, which was very
important from a practical point of view. Apart from approximation theory,
applications of this interpolating polynomial can be found in many branches
of physical sciences. We start with the definition of the Lidstone series by
Lidstone polynomial.

DEFINITION 1.1. Let f € C*°([0,1]), then the Lidstone series has the

form
o0

> (FPOA =)+ FHMA())

k=0
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where A, is a polynomial of degree 2n + 1 defined by the relations

Ao(t) =
(1.1) AL (t) = Ana(t),
An(0) = Ap(1) =0, n > 1.

Other explicit representations of the Lidstone polynomial are given in [1]
and [15]:

9 0 (71)k+1

An(t) = (=1)" 03 o sk,
k=1
1[ 6ttt 2t
At) = = —
®) 6 {(Qn—l-l)! (2n—1)!}
n-2 2(22k+3 _ 1) $2n—2k—3
1 2k+4 ',n:1,2,...,

= (2k+4)! (2n — 2k — 3)!

22n+1 1 +t
An(t) = manﬂ <2> ,n=12...,

where Bogyg is the (2k + 4)-th Bernoulli number and BQn+1( +i ) is the
Bernoulli polynomial.

n [16], Widder proved the fundamental lemma:

LemMA 1.2. If f € C®™([0,1]), then

Z {f(%) — 1) 4 £ () / Gt 5) £ (5)ds

x>~

where

(1.2) Gilt,s) = G(t, ) :{ Ei:ll); Z h

is homogeneous Green’s function of the differential operator j—; on [0,1], and
with the successive iterates of G(t, s)

(1.3) Gn(t,s) :/0 G1(t,p)Gr—1(p, s)dp, n > 2.

The Lidstone polynomial can be expressed in terms of G, (t, s) as

1
= / Gn(t,s)sds.
0
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Based on the article [10] throughout the paper, (?A,, v =1,2,3,4, will
denote the following Green functions defined on [a, 8] X [«, 5] with

- a— s a<s<t;

14 Gi(t,s) = ’ -7
(1.4) 1(t.9) {a_t’ s
- t— <s<t

(1.5) GQ(t,s):{ f. assst
S_B7 t<s< )

~ t—« a<s<t

1.6 Gs(t,s) = ’ -7
(1.6) o(t, ) {S_a’ s
~ — <s<t:

(1.7) Galt,s) =P 75, assst

Note that all these functions are continuous and convex with respect to
both variables.

LEMMA 1.3. For ¢ € C?([a, B]), the following identities hold

B
(18)  (t) = éa) + (t — ) (8) + / G (t, 5)"(s)ds,
B _
(19)  6(t) = $(8) + (t — B)d'(a) + / Galt, 5)"()ds,
B
(110) (1) = 6(8) + (t — a)¢'(a) — (B — ) (B) + / Ga(t, )¢ (s)ds,

B
(L1 6(t) = oe) = (8= 06/ (8) + (- o' (@) + [ Cult, )0 ()i
where the functions C~¥7, v =1,...,4, are defined by (1.4)—(1.7).

2. INTRODUCTION

The aim of this article is to give a result related to the general Hardy-type
inequality. The classical Hardy inequality from [6] is

(2.1) 7 (i/xf(t) dt)pd:c < (pf1>p7fp(g;) do, p > 1,
0 0 0
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where f is non-negative function such that f € LP(R;) and Ry = (0,00). The

I
[8], [12] and [13]. Here we refer to settings and generalization from [9].

We begin by defining the settings that we continue to work with. Let
(31,924, 11) and (X2, Qo, o) be measure spaces with positive o-finite measures
and Ay be an integral operator defined by

(2.2) AS@) = g [ bl Fda0),

Qo

p
constant (p%) is sharp. Inequality (2.1) was generalized in many ways, see

where k : 7 X Q5 — R is measurable and non-negative kernel, f : Qs — R is
measurable function and

(2.3) 0< K(x /ijtd,ug r € Q.

Throughout the article we W111 denote the open interval in R with I. The
following result was given in [9].

THEOREM 2.1. Let u be a weight function, k(x,y) > 0. Assume that

%u(x) 1s locally integrable on 0y for each fized y € Qs. Define v by

k(z,y)

(2.4) oly) ==

Q1

u(z)dp (z) < oo.

If ® is a convexr function on the interval I C R, then the inequality

(25) [es@)u@dn) < [ o))

Q1 Qo
holds for all measurable functions f : Qs — R, such that Imf C I, where Ay
is defined by (2.2) - (2.3).

Now, we start with the generalized Hardy-type inequality (2.5). In the
settings where Ay, is as in (2.2), a weight function u with v given by (2.4) and
for v € {1,2,3,4}, we consider G, to be as in (1.4)~(1.7). In addition, for
¢ € C?*([e, B]), identities (1.8)—(1.11) and some simple calculations yield the
following statements from [10]:

/ 6/ ()0 () dus (y / B A f(2))u(z)dpus (2)
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Additionally, if ¢ is convex, then ¢”(s) > 0 for s € [«, (]
In this article, we consider Lidstone series representation of ® &

0(2")([o¢, A]) as:

n—1

o) = S ap [uean, (222) caran, (22

m=0

B-—a'f—a

(2.7) +(8 - a)Q"_l/ﬂGn (H o O‘) B (5)ds.

Further in the article, we will state our results for the class of n-convex
functions, a more general class of functions that contains convex functions as
a special case. We recall the basic definition and some properties of n-convex
functions.

DEFINITION 2.2. The n-th order divided difference, n € Ny, of a function
¢ o, B] = R at mutually distinct points xg,x1,...,2n € [a, B] is defined
recursively by

[zi; 0] = d(xs), i=0,..,n

[1‘0, ...,gjn;d)] _ [Ila ...,.Tn§¢] - [Io,...7xn_1;¢] '
Ty — T

The value [zg, ..., ,; @] is independent of the order of the points xq, ..., .
A function f : [a, 8] = R is n-convex if all its n-th order divided differences are
non-negative, i. e. [xq, ..., Zn; f] > 0 for all choices z; € [, 8]. Thus, 0-convex
functions are non-negative and 1-convex functions are non-decreasing, while
2-convex functions are convex in the classical sense. An n times differentiable
is n-convex if and only if its n-derivative is non-negative (see [14]).

3. MAIN RESULT

For settings given in the Introduction we start with our main result in-
volving the Lidstone polynomial.

THEOREM 3.1. Letn € N, n > 2 and ¢ : I — R be such that $2(»=1)
is absolutely continuous and «, 8 € I, a < B. Further, let Ay be as in (2.2),
v €{1,2,3,4}, G, as in (1.4)-(1.7), A, as in (1.1) and u a weight function
with v given by (2.4). Then
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/¢ W)y /¢ Ay f(2))ule)dpu (o)
:/j L/G‘V(f(y) y)dps(y /G (Ar f(x (w)d,ul(x)]

2

n—1

x ;w -0 6 @ (521 ) + 0 s (;_z)} i
# - [ 6 [ [ (ﬁ/ (v)dpz(o)
(3.1)

/@,Y(Akf(x),t)u(m)dul(x)) X Go1 <;__‘; ;__Z) dt} ds.

Q

PRrROOF. If we substitute ® with ®” and n with n — 1, then a function ®
defined by (2.7) becomes

R N I (=)

B _ _
+ (B- 04)2”73/ Gn-1 <;_Z, ; _Z) ¢(2")(s)ds

which with a little calculation leads to

&) = nil(ﬁia)zkfz {éf) 20) (@) Ajp_1 (B_t> + ¢R) () Ap_q (t—a)]

k=1 f-a -
(3.2) + (8- )23 /B Gn1 (ta o O‘) 6™ (s)ds.
«a ﬁ - B -«
Finally, if we include ®” calculated in (3.2) into (2.6) we get the required
result. O

Starting from the result of the Theorem 3.1, depending on parity of n we
have the following inequalities.

THEOREM 3.2. Suppose that u, v Ay ;éw v € {1,2,3,4} and A,, be as
in Theorem 3.1. If ¢ : I — R is 2n-convezx, and
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(i) n is odd number, then the inequality

/ O(f ()0 () (y / B(Anf(2))u(x)dpn (2)

> /j [ G 0wdsty / Gy (Arf (@), ()i (2)

(3.3)
36— [as@’“(amk_l (g_fy) 4 (B)Ay (;_‘;ﬂ dt

k=1

holds.
(ii) n is even number, then the inequality

/¢ y)dpua(y /¢ Arf(2))u(z)dp (z)

< /j [ () tut)daty / G (A f (@), tyu(e)dpus ()

(3.4)
(5 e @ (G20 o (522 )

k=1

holds.

PROOF. (i) Since G.,(-,t) is continuous and convex with respect to the
first variable for each v € {1,2,3,4} and ¢ € [a, ], according to Theorem 3.1,

/ Gy (F (). £)o(y)dpea(y) — / G (Acf (), Byule)dpn (z) > 0,

Qz Q1

holds for every ¢ € [a,3]. On the other hand G, given by (1.4) - (1.7) are
non-negative and so is ¢2" since ¢ is 2n-convex. By definition (1.2) and (1.3)
of the function G,,, we can see that if n is odd, then G,, is not positive. On
the other hand, if n is positive, then G,, is non-negative. In (3.1) we have
expression containing G,,_1. So, if n—1 is even, then n is odd and the required
inequality (3.3) follows from the statement of Theorem 3.1.
(ii) Similarly, if n — 1 is odd, then n is even so the inequality (3.4) holds.
O
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REMARK 3.3. If we consider the functional

/¢ y)dpa(y /¢> Apf () u(@)dpu (),

then for 2n-convex function ¢

5(67(7” Z Oat € [avﬂ]
holds.
In the next result we consider Holder inequality for conjugate exponents

p and g. As usual we suppose that 1 < p,q¢ < oo and % + % = 1. The symbol
I - |l denotes the standard LP([e, §]) norm of a function, i. e.

: ;
I l= ( / g<s>|Pds>

for 1 < p < oo, while ||g||lo is the essential supremum of g.

THEOREM 3.4. Let n € N, n>2 and ¢ : I — R be such that $2(=1) s
absolutely continuous and ¢*™ € LP[a, f] for o, B € I, o < 3. Further,let
A be as in (2.2), v € {1,2,3,4}, G, as in (1.4)-(1.7), A, as in (1.1) and u a
weight function with v given by (2.4). If (p, q) is a pair of conjugate exponents,
then

1Sk(@)] < (B —a)® 3 x |||, x

/ / / G y)dualy / G (A f (@), £)u(e)dyus ()
qu)i,

(3.5)

t—a s—a«
1| z—— 57— | dt
XG 1<ﬁ—0¢ 6—(1)

holds, where
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/¢ y)dualy /¢ (Apf(a

z)dp (2)
/ L G y)dpiz(y / G (A f (), tyu)dpa (& )]
(3.6)
x gw - a2 [ @ (520 ) w0 e (522

ProOOF. Applying the Holder inequality on (3.1) considering the notation
(3.6), we get
1Sk(8)] = (8 — a)*"?

X

/j e (/B (7/ G (), o)z (y) - / G

W(Akf(w),t)u(x)dm(x))

t—a s—a«

o (1232 Y )
(B —a)> ™ x 6™, x

B
/ (7/ G (F (), )0(y)dpa(y) — / @(Akf(x),t)u(m)dm(x))
« 2 Qq
X Gn-1 (;__Z, ;:Z) dt qu)q

and obtain the required inequality

1951

d

REMARK 3.5. As special cases for boundary values p and ¢, from the
inequality (3.5) we get the following inequalities

Sk (o )23 x max [¢®™) (s)| x

(D G ) dua(y /G (A f (), u()dp (= ))

t—a s
X Gn—l <ﬁ— B—a) dt ds

and
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‘Sk 2n 3

max (ﬂ/ G ( y)dpa(y / Goy(Ag f (), tyu(z)dpn ()

3 2n)
xGn1<B a,ﬁ_ )dtds /¢

4. APPLICATIONS TO THE CEBYSEV FUNCTIONAL

X

Consider the Cebysev functional,

B B B
T(h,g) = ,Bia/ h(t)g(t)dt—ﬁia/ h(t)dt~ﬁia/ g(t)dt

for Lebesgue integrable functions h,g : [o, 8] — R. Examples with upper
bound obtained using Cebysev functional can be found in [7]. The next two
theorems from [5] provide Griiss and Ostrowski type inequalities involving the
above functional.

THEOREM 4.1. Let h,g : [, 8] = R be two absolutely continuous func-

tions with (- — a) (8 — -)(W')2, (- — a)(8 - )(¢)? € L([av, B]). Then

) B
@1 (7)< ST w%( / (s—a)(ﬁ—S)[g’(S)]2d8>

The constant ﬁ is the best possible in (4.1).

1
2

THEOREM 4.2. Assume that g : [a, f] = R is monotonic non-decreasing
and h: [a, 8] = R is absolutely continuous with h' € L (e, B]). Then

8
(4.2) T(h, )I_2( >H Wl /(S*a)(l?*S)dg(S)-

The constant % is the best possible in (4.2) .

To simplify notation, for v € {1,2,3,4} we introduce the abbreviation
R, : [a, ] = R in the form:

/(ﬁ/ G y)dualy / G (A f (@), £yu(e)dyus ()

t—a s—a«
(43) XGn,1 (ﬁ—oﬂ B—Oz) dt,

where we assume that all the terms appearing in R, satisfy the assumptions
of Theorem 3.1.
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THEOREM 4.3. Letn € N, n > 2, R, be as in (4.3) and ¢ : [o, ] = R be
such that ¢®™ is absolutely continuous with (-—a)(B—-)(¢?"+1)2 € L([a, B]).
If (- — a)(B = )(R.)* € L([a, B]), then the remainder

/¢ y)dpa(y /¢ A (@))ula)dps (x)

Q1

8 } N
= / L/ G (f(y), t)v(y)dua(y) — / Gy(Akf(x),t)U(x)dul(x)]

2 Q1

S (B [q%%)(a)Ak_l( . t)w@’“(ﬁm (; f;)}zt

k=1

(4.4) —(B—a)zn_4 |:¢(2n 1) ¢(2n 1) / R (
is bounded by

(4.5)

@D W :
|9(¢;a,6)lé(ﬁ\)@T(Rva)2< / (s—a)(ﬁ—s)[¢(2”+”(8)]2ds> .

PRrROOF. From (3.1) and (4.4) we conclude
B
olgsa ) = (5= " [ Ry (5)0% (5)ds

B
(4.6) = (8= )" [p21(8) — 62"V (a)] / R (s)ds.

Assumptions of Theorem 4.1 are satisfied for h = R, and g = #2") so

/R ¢ ( ds——/ 5ia/j¢(2n)(5)d8

L p_1 s—a s (2"1)525%
S m(/( )8~ )l <>}d> .

Therefore from (4.6) and (4.7) we get (4.5).

(4.7)

d

THEOREM 4.4. Letn € N, n > 2, R, be as in (4.3) and ¢ : [o, f] = R be
such that ™ is monotonic non-decreasing. If R, is absolutely continuous
with R, € L>([a, 8]), then the remainder o(¢; a, B) given by (4.4) is bounded
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by
lo(d;a, B)] <
sy | (B @) (627D (B) + 62"V ()
(8= )|, o ;
(48) = {o®(E) - > D(a)}].

ProOOF. Assumptions of Theorem 4.2 are satisfied for h = R, and g =
#(?™), so, taking into account (4.6), we have

B b ’
6%0[/0 RW(S)qb(Qn)(s)ds_ﬂ%a/a Rv(s)ds- ﬂia/a ¢(271)(s)d8'

sra 1L [ G = 9D s,
Slmple calculatlon yields
B B
/ (s = a)(B = )¢+ (s)ds = / [25 — (o + )] 6" (s)ds
= (8- a) [02"7D(8) + 62" V()] — 2[4 () - 92" ()]

Finally, inserting the last expression in (4.9) and taking into account (4.6) we
get (4.8). |

The last theorem gives Ostrowski-type bound for the generalized Hardy’s
inequality. About Ostrowski-type inequalities can be found i.e. in [3] and [11].

(4.9)

THEOREM 4.5. Let n € N, n > 2, R, be as in (4.3), 1 < p,q < oo,
% + % =1 and ¢ : [a, 8] — R be such that ||¢(2")||p < 00. Then

y)dpa(y / (A S (@))ula)dpu ()

|
Q\m
—
[}

(), t)o(y)dpa(y) — /@v(Akf(x),t)U(w)dul(x)]

2 Q
! Bt t—a
X ;(5 —a)?h? |:¢(2k)(0£)Ak—1 (5 — a) + 6P (B)Ap—1 (5 — a)] dt

k
< (8- )™ o

R, .
B,

The constant (B — «)?"=3 Ryl is sharp when 1 < p < oo and the best
possible when p = 1.
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In the future work, we will try to further develop the idea and method

using various known functionals.
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Poopcéenje nejednakosti Hardyjevog tipa putem Lidstonovog
interpolacijskog polinoma i novih Greenovih funkcija

Dora Pokaz

SAZETAK. Za poopéeno okruzenje, koje ukljucuje prostore
mjera s pozitivnim o-kona¢nim mjerama, predstavili smo rezultat
vezan uz Hardyjevu nejednakost. Uspostavili smo vezu izmedu
operatora razlike dobivene pomocéu Hardyjeve nejednakosti te
izraza koji sadrzi Lidstonov interpolacijski polinom i cetiri nove
Greenove funkcije. Raspravljali smo o 2n konveksnosti funkcije te
dali rezultat u ovisnosti o parnosti dijela eksponenta i indeksa n.
Primjenom Hélderove nejednakosti za konjugirane eksponente p i
q dobili smo daljnje rezultate. Konacno, izveli smo gornje ograde
za nad identitet uz pomoé Cebysevljevog funkcionala te ogradu
tipa Ostrowskog za generaliziranu Hardyjevu nejednakost.
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