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ASYMPTOTIC BEHAVIOUR OF THE QUASI-ARITHMETIC
MEANS

Neven Elezović and Lenka Mihoković

Abstract. In this paper we study the asymptotic behaviour of
the quasi-arithmetic means Mφ, for large values of its arguments. We
extend and simplify known results form the literature. Asymptotic expan-
sions of these means are derived under very weak assumptions on a given
function φ. The coefficients in the asymptotic expansions are defined by
recursive formulas, and the general algorithms for their calculation are then
demonstrated on some interesting examples of means.

1. Introduction

Let a = (a1, a2, . . . , an) be an n-tuple of positive real numbers, and e =
(1, 1, . . . , 1). For a positive strictly monotone function φ, quasi-arithmetic or
φ-mean is defined by

(1.1) Mφ(a) = φ−1

(
n∑
k=1

qkφ(ak)
)
,

where weights q1, q2, . . . , qn are non-negative real numbers with sum equal
to 1.

The most important example of φ-mean is the power mean, obtained
for φ = xr, which we will denote by Mr. In particular, this class of means
covers quadratic (Q = M2), arithmetic (A = M1), geometric (G = M0) and
harmonic (H = M−1) mean.

The asymptotic behaviour of the quasi-arithmetic mean Mφ was studied
by Boas and Brenner. They proved the following result.

Theorem A ([3]). Suppose φ satisfies the following conditions
(i) φ is positive and strictly monotonic.

(ii) If φ increases to ∞ as x → ∞, then φ′(x)/φ(x) = o(1).
(iii) φ′(x+y)/φ′(x) → 1 as x → ∞, uniformly on finite positive y interval.
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(iv) Inverse function φ−1 has the same properties as φ.
Moreover, if φ(x) decreases to 0 as x → ∞, then φ has the same properties as
before, but ψ ≡ φ−1 (which decreases to 0) should satisfy ψ′(x+y)/ψ′(x) → 1
and that

ψ′(x) ◦ [φ(x)(1 + ε)] = ψ′ ◦ [φ(x)](1 + η).
Under this assumptions, it holds

Mφ(xe + a) − x → M1(a).

The conditions of this theorem were constructed to cover the case of power
means, where φ = xr and r ̸= 0. Therefore, Theorem A improves the result
of Hoehn and Niven [17] on power means, but it does not cover such a simple
example as the geometric mean, for which one should take φ(x) = log x.
Namely, the inverse function does not satisfy assumptions of Theorem A.

In this paper we will discuss the existence of a complete asymptotic ex-
pansion of the quasi-arithmetic mean, in the form

(1.2) Mφ(xe + a) ∼ x

∞∑
k=0

dkx
−k.

A detailed analysis of bivariate means through their asymptotic expan-
sions was given in a series of papers [4–6, 8–10, 12–15]. This approach was
generalized to n-variable means in [11], where, in contrast to the expansion in
terms of Bell polynomials by Abel and Ivan ([1]), the asymptotic expansion
of the power mean Mr was obtained using a simple recursive algorithm.

Let
mk := q1a

k
1 + q2a

k
2 + . . .+ qna

k
n, k ∈ N0.

Theorem B ([11]). General power mean has the following asymptotic
expansion

Mr(xe + a) = x ·
∞∑
k=0

ck(r)x−k,

where c0(r) = 1 and

(1.3) ck(r) = 1
k

k∑
j=1

[
j

(
1 + 1

r

)
− k

](
r

j

)
mjck−j(r), k ∈ N.

Then the asymptotic expansions of the quadratic, arithmetic, geometric
and harmonic mean are

Q(xe + a) = x+A(a) + 1
2 (−A(a)2 +Q(a)2)x−1 + O(x−2),

A(xe + a) = x+A(a),
G(xe + a) = x+A(a) + 1

2 (A(a)2 −Q(a)2)x−1 + O(x−2),
H(xe + a) = x+A(a) −Q(a)2x−1 + O(x−2),
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and in general
Mr(xe + a) = x+A(a) − 1

2 (r − 1)(A(a)2 −Q(a)2)x−1 + O(x−2).
The results of this paper are as follows. First, we will extend and simplify

the theorem of Boas and Brenner, so that it also covers the geometric mean.
In the main part, we will prove that the general quasi-arithmetic mean has
a complete asymptotic expansion, if this is the case with the function φ.
Consequently, we will also provide an efficient algorithm for computing the
coefficients in the asymptotic expansion of the quasi-arithmetic mean. General
results will be presented on some well-known examples of means and also
applied to a function whose inverse is not known by an explicit formula.

2. Asymptotic behaviour

In this section, we give an improvement of Boas and Brenner’s Theorem A.

Theorem 2.1. Let φ be continuous, strictly monotone function such that
1. φ′(x+ L)/φ′(x) → 1 as x → ∞, for any fixed L > 0,
2. φ′ is strictly monotone on some interval ⟨b,∞⟩.

Then
Mφ(xe + a) − x → m1, as x → ∞.

Proof. We shall prove some auxiliary results first. For a fixed L, let ξ
be defined by
(2.1) φ(x+ L) = φ(x) + Lφ′(x)(1 + ξ).
By the mean value theorem we have

φ(x+ L) = φ(x) + Lφ′(x+ γ), 0 < γ < L.

Combining these two equalities, we obtain

1 + ξ = φ′(x+ γ)
φ′(x)

which lies between φ′(x)
φ′(x) and φ′(x+L)

φ′(x) proving ξ → 0 as x → ∞.
Denote

J =
n∑
k=1

qkφ(x+ ak).

Now we have

J =
n∑
k=1

qk [φ(x) + akφ
′(x)(1 + ξk)] , ξk → 0

= φ(x) + φ′(x)
[
m1 +

n∑
k=1

qkakξk

]
= φ(x) + φ′(x)m1(1 + ε), ε → 0.
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On the other side, by the mean value theorem we can define η to be such that
J = φ(x+m1(1 + η)) = φ(x) +m1φ

′(x)(1 + ε).
The mean Mφ now equals

Mφ(xe + a) = φ−1

(
n∑
k=1

qkφ(x+ ak)
)

= φ−1(J) = x+m1(1 + η).

We want to prove that η → 0 as x → ∞.
Using the mean value theorem again and then the inverse function rule

we obtain

(2.2)

x+m1(1 + η) = φ−1 (φ(x) +m1φ
′(x)(1 + ε))

= φ−1(φ(x)) +m1φ
′(x)(1 + ε)[φ−1]′(φ(x) +m1φ

′(x)(1 + ε)ϑ)

= x+m1(1 + ε) φ′(x)
φ′(φ−1(φ(x) +m1φ′(x)(1 + ε)ϑ))

where |ϑ| < 1.
We claim that for x large enough and some L > m1 following bounds

hold
(2.3) x− L ≤ φ−1(φ(x) +m1φ

′(x)(1 + ε)ϑ) ≤ x+ L.

Since φ is monotone, (2.3) is equivalent with one set of the inequalities
(2.4) φ(x− L) ≤

(≥)
φ(x) +m1φ

′(x)(1 + ε)ϑ ≤
(≥)

φ(x+ L).

With similar reasoning as in (2.1), there exist ξ+ and ξ− such that
(2.5) φ(x± L) = φ(x) ± Lφ′(x)(1 + ξ±), ξ± → 0 as x → ∞.

By combining (2.4) with (2.5) we obtain
−L(1 + ξ−) ≤ m1(1 + ε)ϑ ≤ L(1 + ξ+)

which is true for x large enough.
Returning to (2.2) with inequalities (2.3) and using conditions (1) and (2)

we see that η → 0 and therefore theorem is proved.

Remark 2.2. A similar result in a more general setting was obtained in
[16] where uniform convergence in (1) was required.

3. Complete asymptotic expansion of Quasi-arithmetic mean

For a given function φ in the definition of the quasi-arithmetic mean (1.1),
our aim is to find the asymptotic expansion (1.2). This problem is equivalent
with solving the equation

(3.1) φ

(
x

∞∑
k=0

dkx
−k

)
=

n∑
i=1

qiφ(x+ ai)
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in terms of coefficients (dk). A general problem of this type, i.e. solving
the equation B(A(x)) = C(x) for known functions B and C in terms of
asymptotic series, was studied in [14]. It was shown that such equations can
be solved in the form of recursive relations, for a wide class of functions φ.
It is sufficient to require that φ possesses an asymptotic expansion, but the
algorithm depends on the assumed form of that asymptotic representation.
More precisely, depending on whether it contains a logarithm or not, we will
observe two cases.

3.1. Ordinary case. Let φ have the asymptotic expansion of the form

(3.2) φ(x) ∼ xu
∞∑
k=0

bkx
−k,

where b0 ̸= 0. Since the quasi-arithmetic mean Mφ is invariant on non-trivial
affine transformation of function φ, we may assume that b0 = 1.

Regarding the expansion on the right side of (3.1), with rearranging of
sums we obtain

C(x) =
n∑
i=1

qiφ(x + ai) ∼
n∑
i=1

qi

∞∑
j=0

bj(x + ai)u−j =
n∑
i=1

qi

∞∑
j=0

bjx
u−j
(

1 + ai
x

)u−j

= xu
n∑
i=1

qi

∞∑
j=0

bj

∞∑
k=0

(
u − j

k

)
aki x−(j+k) = xu

∞∑
j=0

∞∑
k=0

(
u − j

k

)
bjmkx−(j+k)

= xu
∞∑
k=0

[
k∑
j=0

(
u − j

k − j

)
bjmk−j

]
x−k.

It can easily be seen that all assumptions of Theorem 2.3 from [14] are
satisfied which provides recursive formula for dk.

Theorem 3.1. Let the mean Mφ be defined by (1.1) and let φ have the
asymptotic expansion (3.2) with u ̸= 0. Then the coefficients dk in the as-
ymptotic expansion (1.2) of the mean Mφ are given by the expression

d0 = 1,

dk = − 1
u

[
k∑
j=1

bjPk−j(u− j) + 1
k

k−1∑
j=1

[j(1 + u) − k]djPk−j(u)

−
k∑
j=0

(
u− j

k − j

)
bjmk−j

]
, k ∈ N,

where coefficients Pk(u) are defined by formula (3.3) in Lemma 3.2.

The coefficients in the asymptotic representation of the r-th power of the
asymptotic series whose coefficients are given by the sequence d = (dk)k∈N0
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can be obtained by the recursive formula. The following lemma about such
functional transformation was used to obtain the main result.

Lemma 3.2 ([8]). Let d0 ̸= 0 and D(x) be a function with asymptotic
expansion (as x → ∞)

D(x) ∼
∞∑
k=0

dkx
−k.

Then for all real numbers r it holds

[D(x)]r ∼
∞∑
k=0

Pk(r)x−k,

where

(3.3)

P0(r) = dr0,

Pk(r) = 1
kd0

k∑
j=1

[j(1 + r) − k]ajPk−j(r), k ∈ N.

By the Theorem 3.1 we obtain first few coefficients dk:
d0 = 1,

d1 = m1,

d2 = 1
2 (u − 1)(m2 − m2

1),

d3 = −u − 1
2u

(m2 − m2
1)b1 + 1

6 (u − 1)
(
(2u − 1)m3

1 − 3(u − 1)m1m2 + (u − 2)m3
)
,

d4 = (u − 1)2

2u2 (m2 − m2
1)b2

1 − u − 2
2 (m2 − m2

1)b2

− u − 1
3u

(
(2u − 1)m3

1 − 3(u − 1)m1m2 + (u − 2)m3
)
b1

− 1
24 (u − 1)

(
(2u − 1)(3u − 1)m4

1 − 6(u − 1)(2u − 1)m2
1m2

+ 4(u − 1)(u − 2)m1m3 + 3(u − 1)2m2
2 − (u − 2)(u − 3)m4

)
.

Example 3.3. One of the special cases of this mean is the power mean
obtained for f(x) = xr. In this case u is equal to r, b0 = 1 and bk = 0 for all
k ≥ 1. Expression in the Theorem 3.1 reduces to

(3.4) d0 = 1, dk = − 1
k

k−1∑
j=1

[
j

(
1 + 1

r

)
− k

]
djPk−j(r) +

(
r

k

)
mk.

We obtained a recursive formula for the coefficients in the asymptotic expan-
sion of the weighted power mean. Although it seems different from (1.3), it
leads to the same coefficients.

Example 3.4. Let φ(x) = x+ e−x. Then the corresponding asymptotic
expansion equals φ(x) ∼ x. Therefore, u = 1, b0 = 1 and bk = 0 for k ≥ 1.
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We obtain a formula similar to (3.4) with r = 1 which by direct computation
leads to

Mφ(xe + a) ∼ x+m1.

This is not the coincidence since φ has the same asymptotic expansion as the
identity function.

Example 3.5. Let φ(x) = x2 − x. Then using Theorem 3.1 we have

Mφ(xe + a) ∼ x+m1 + 1
2
(
m2 −m2

1
)
x−1 − 1

4
(
m2 −m2

1
)

(2m1 − 1)x−2

+ 1
8
(
m2 −m2

1
)

(m1 (5m1 − 4) −m2 + 1)x−3

− 1
16
(
m2 −m2

1
)

(2m1 − 1) (m1 (7m1 − 4) − 3m2 + 1)x−4 + · · ·

Based on the fact the mean of identical numbers is equal to their common
value, i.e. x+a = Mφ(xe+ae), and recursion from the Theorem 3.1, we obtain
the result analogous to Theorem 2.2. from [11].

Theorem 3.6. The coefficient dk (k ≥ 2), can be considered as polynomial
in the variables (b0, . . . , bk−2) whose coefficients have the following form:∑

α1,α2,...,αj≥0
α1+2α2+···+jαj=j

qα1,...,αj (u)mα1
1 · · ·mαj

j ,

where ∑
α1,α2,...,αj≥0

α1+2α2+···+jαj=j

qα1,...,αj (u) = 0, 2 ≤ j ≤ k.

The aforementioned Theorem 2.2. from [11] was later used in [7] for com-
puting the expectations of coefficients in the asymptotic expansion of the large
data power means.

3.2. Logarithmic case. Consider the geometric mean G(a) = Πn
i=1a

qi
i . It is

the limit case of the r-th power mean as r → 0 but also the quasi-arithmetic
mean for φ(x) = log x. We will now cover this case as well. First, we recall
the following result about the logarithm of an asymptotic series.

Lemma 3.7 ([8]). Let d0 ̸= 0 and

D(x) ∼
∞∑
k=0

dkx
−k

be a given asymptotic expansion. Then its logarithm has the asymptotic ex-
pansion of the following form

ln(D(x)) ∼
∞∑
k=1

Lkx
−k
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where

(3.5) Lk = dk
d0

− 1
kd0

k−1∑
j=1

jLjdk−j , k ≥ 1.

Theorem 3.8. Let φ have the asymptotic expansion

(3.6) φ(x) ∼ log x+ x−1
∞∑
k=0

bkx
−k.

Then the quasi-arithmetic mean Mφ defined by (1.1) has the asymptotic ex-
pansion (1.2) in which d0 = 1 and for k ≥ 1 the coefficients dk are calculated
by following recursive formula:

dk =
k−1∑
j=0

bk−1−j

[(
j − k

j

)
mj − Pj(j − k)

]
+ (−1)k+1

k
mk + 1

k

k−1∑
j=1

jLjdk−j ,

where Pk and Lk are given by (3.3) and (3.5) respectively.

Proof. On the left hand side of (3.1) we have

φ

(
x

∞∑
k=0

dkx
−k

)
= log

(
x

∞∑
k=0

dkx
−k

)
+

∞∑
k=0

bk

x ∞∑
j=0

djx
−j

−1−k

= log x+ log
( ∞∑
k=0

dkx
−k

)
+

∞∑
k=0

bkx
−1−k

 ∞∑
j=0

djx
−j

−1−k

= log x+
∞∑
k=1

Lkx
−k +

∞∑
k=0

bkx
−1−k

∞∑
j=0

Pj(−1 − k)x−j

= log x+
∞∑
k=1

Lkx
−k +

∞∑
k=1

k−1∑
j=0

bk−1−jPj(−k + j)x−k.

On the other side
n∑
i=1

qif(x+ ai) =
n∑
i=1

qi

log(x+ ai) +
∞∑
j=0

bj(x+ ai)−1−j


=

n∑
i=1

qi

log x+ log
(

1 + ai
x

)
+

∞∑
j=0

bjx
−1−j

(
1 + ai

x

)−1−j


= log x+
∞∑
k=1

(−1)k+1

k
mkx

−k +
∞∑
j=0

bjx
−1−j

∞∑
k=0

(
−1 − j

k

)
mkx

−k



ASYMPTOTIC BEHAVIOUR OF THE QUASI-ARITHMETIC MEANS 239

= log x+
∞∑
k=1

(−1)k+1

k
mkx

−k +
∞∑
k=1

k−1∑
j=0

bk−1−j

(
−k + j

j

)
mjx

−k.

By equating the coefficients by xk on both sides, we obtain

Lk +
k−1∑
j=0

bk−1−jPj(−k + j) = (−1)k+1

k
mk +

k−1∑
j=0

bk−1−j

(
−k + j

j

)
mjx

−k.

Coefficient dk appears only in

Lk = dk − 1
k

k−1∑
j=1

jLjdk−j .

Thus we have proved the theorem.

Remark 3.9. If φ(x) ∼ a log x + x−1∑∞
k=0 bkx

−k, a ̸= 0, then coeffi-
cients in the asymptotic expansion of Mφ are obtained form Theorem 3.8
with substitution bk 7→ bk

a .

According to the Theorem 3.8 the first few coefficients dk are:

d0 = 1,
d1 = m1,

d2 = − 1
2 (m2 −m2

1),
d3 = 1

2
(
m2 −m2

1
)
b0 + 1

6
(
m3

1 − 3m2m1 + 2m3
)
,

d4 = 1
2
(
m2 −m2

1
)
b2

0 + 1
3
(
−m3

1 + 3m2m1 − 2m3
)
b0 + 2

(
m2 −m2

1
)
b1

+ 1
24
(
m4

1 − 6m2m
2
1 + 8m3m1 + 3m2

2 − 6m4
)
.

Example 3.10. In the case of the geometric mean, φ(x) = log x and
therefore all coefficients bk in (3.6) are equal to zero. Coefficients dk in the
asymptotic expansion (1.2) of the geometric mean G(xe + a) = Mφ(xe + a)
can be obtained from Theorem 3.8:

d0 = 1,

dk = (−1)k+1

k
mk + 1

k

k−1∑
j=1

jLjdk−j , k ∈ N.

These coefficients are the same as in [11].

Example 3.11. Digamma function has the following asymptotic expan-
sion ([2]):

ψ(x) ∼ log x− 1
2x −

∞∑
k=1

B2k

2k x
−2k,
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where Bk denotes Bernoulli numbers. Then according to the Theorem 3.8 we
have

Mψ(xe + a) ∼ x+m1 + 1
2 (m2

1 −m2)x−1

+ 1
12
(
m1(m1(2m1 + 3) − 6m2) − 3m2 + 4m3

)
x−2

+ 1
24
(
m4

1 + 4m3
1 + (1 − 6m2)m2

1 + (8m3 − 12m2)m1

+m2(3m2 − 1) + 8m3 − 6m4
)
x−3 + . . .
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Asimptotsko ponašanje kvaziaritmetičkih sredina

Neven Elezović i Lenka Mihoković

Sažetak. U ovom radu proučavamo asimptotsko ponašanje
kvaziaritmetičkih sredina Mφ, za velike vrijednosti argumenata.
Proširujemo i pojednostavljujemo poznate rezultate iz literature.
Asimptotski razvoji ovih sredina izvode se pod vrlo slabim pret-
postavkama o danoj funkciji φ. Koeficijenti u asimptotskim
razvojima definirani su rekurzivnim formulama, a općeniti algo-
ritmi za njihov izračun zatim su demonstrirani na nekim zanimlji-
vim primjerima sredina.
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