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OPTIMAL CONTROL OF A FRICTIONAL CONTACT
PROBLEM FOR LOCKING MATERIALS

Rachid Guettaf and Arezki Touzaline

Abstract. In this paper, we consider a bilateral contact with Tresca’s
friction law between a locking material and a rigid foundation. The goal
is to study an optimal control problem which consists of leading the stress
tensor as close as possible to a given target, by acting with a control on the
boundary of the body. We state an optimal control problem that admits at
least one solution. We also introduce the penalized and regularized optimal
control problem for which we study the convergence when the penalization
and regularization parameter tends to zero.

1. Introduction

A locking material is a material which is characterized by the fact that it
is deformed under the effect of an external force, but the deformation cannot
continue when it reaches a certain value ”ML”. After that, for any external
force, the material cannot be deformed. The material is elastic if the defor-
mation remains bounded. It returns back to its initial shape if we stop to
exercise any external force on it. Locking materials are part of a class of
hyperelastic materials in which the strain tensor is constrained to stay in a
given convex set. The study of elastic materials with locking effects was first
introduced in [19, 20, 21]. There, the constitutive law of such materials was
derived and different mechanical interpretations have been presented. The
theoretical study of variational problems of locking materials was introduced
in [6, 7]. Optimal control governed by variational inequalities has been stud-
ied in several articles, see for instance [2, 3, 4, 8, 9, 11, 13, 16, 17, 22]. Recall
that the optimal control of contact problems for elastic materials was studied
in [1, 5, 12, 14, 15, 26, 27] and the references therein.

In this paper, we study the optimal control of a contact problem for non-
linear elastic locking materials. The contact is assumed to be static and it is
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described by Tresca’s friction law between a locking body and a rigid founda-
tion. Our control problem concerns the acting of a surface load in a part of the
boundary in order to approach a given target by the stress tensor. First, we
derive a variational formulation of the problem and establish the existence and
uniqueness result (Problem P2). Next, we define the optimal control problem
related to this model (Problem C1), which consists of minimizing a cost func-
tional. We prove the existence of a solution of problem C1, and we define a
penalized and regularized problem (Problem Pδ), whose solution converges to
the solution of Problem P2. Finally, we introduce a penalized and regularized
optimal control problem (Problem C2), and we prove its convergence to the
optimal control problem C1 when δ tends to zero.

The rest of this document is structured as follows. In Section 2 we in-
troduce some notation, describe the mechanical problem, and prove its weak
solvability, Theorem 2.1. In Section 3, we state the optimal control C1 and
prove that it has at least one solution, Theorem 3.1. In Section 4, we prove
that the solution of the penalized and regularized problem converges strongly
to the solution of Problem P2 (Theorem 4.3). In Section 5, we prove a con-
vergence result of the penalized and regularized optimal control problem C2,
Theorem 5.2.

2. The contact problem and its weak solvability

We consider a locking body which initially occupies a domain Ω ⊂ Rd,
d = 2, 3 with a sufficiently smooth boundary ∂Ω = Γ partitioned into three
disjoint measurable parts Γ1,Γ2,Γ3 such that meas (Γ1) > 0. The body is
clamped on Γ1 and then the displacement vanishes there. It is acted upon by
a volume force of density φ0 in Ω and a surface traction of density φ on Γ2.
On Γ3 the body is in bilateral contact following Tresca’s friction law with a
rigid foundation.Thus, the classical formulation of the mechanical problem is
written as follows.

Problem P1. Find a displacement field u : Ω → Rd such that

(2.1) divσ (u) + φ0 = 0 in Ω,

(2.2) σ (u) ∈ Fε (u) + ∂IB (ε (u)) in Ω,

(2.3) u = 0 on Γ1,

(2.4) σ (u) ν = φ on Γ2,

(2.5)

uν = 0
|στ (u)| ≤ g
|στ (u)| < g =⇒ uτ = 0
|στ (u)| = g =⇒ ∃λ ≥ 0 such that στ (u) = −λuτ

 on Γ3.
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Here, we denote by σ = σ (u) the stress field and ε (u) the strain tensor.
Equation (2.1) represents the equilibrium equation. Equation (2.2) represents
the elastic constitutive law where F is a given nonlinear function and IB is
the indicator function of the set defined by

B = {ξ ∈ Sd; |ξ| ≤ ML}

such that {
IB (ξ) = 0, if ξ ∈ B,
IB (ξ) = +∞, if ξ /∈ B

for ξ ∈ Sd.

where Sd is the space of second order symmetric tensors on Rd (d = 2, 3).
Recall that the inner products and the corresponding norms on Rd and Sd
are given by

u.v = uivi, |v| = (v.v)
1
2 ∀u, v ∈ Rd,

σ.τ = σijτij , |τ | = (τ.τ)
1
2 ∀σ, τ ∈ Sd,

Here and below, the indices i and j run between 1 and d, and the summation
convention over repeated indices is adopted.

Equations (2.3) and (2.4) are the displacement and traction boundary
conditions, respectively, in which ν denotes the unit outward normal vector
on Γ and σ (u) ν represents the normal stress vector. Finally, (2.5) represents
the bilateral contact with Tresca’s friction, law where g is a given friction
bound.

Now, to proceed with the variational formulation, we need the following
function spaces:

H =
(
L2 (Ω)

)d , H1 =
(
H1 (Ω)

)d , Q =
{
τ = (τij) ; τij = τji ∈ L2 (Ω)

}
.

Note that H and Q are real Hilbert spaces endowed with the respective canon-
ical inner products:

(u, v)H =
∫

Ω
uividx, (σ, τ)Q =

∫
Ω
σijτijdx.

The strain tensor is

ε (u) = (εij (u)) , where εij (u) = 1
2 (ui,j + uj,i) and ui,j = ∂ui

∂xj
;

divσ = (σij,j) is the divergence of σ. For every element v ∈ H1, we denote by
vν and vτ the normal and the tangential components of v on the boundary Γ
given by

vν = v.ν, vτ = v − vνν.

Also, for a regular function (say C1) σ ∈ Q, we define its normal and tangential
components by

σν = (σν) .ν, στ = σν − σνν
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and we recall that the following Green’s formula holds:

(σ, ε (v))Q + (divσ, v)H =
∫

Γ
σν.vda ∀v ∈ H1,

where da is the surface measure element.
Let V be the closed subspace of H1 defined by

V = {v ∈ H1; v = 0 on Γ1, vν = 0 on Γ3} ,

and the closed convex subset of V

K = {v ∈ V ; ε (v (x)) ∈ B a.e. x ∈ Ω} .

Also, we define by ⟨., .⟩ the duality pairing between V ′ and V. Next, since
meas (Γ1) > 0, the following Korn’s inequality holds [10],

(2.6) ∥ε (v)∥Q ≥ cΩ ∥v∥H1
∀v ∈ V,

where the constant cΩ > 0 depends only on Ω and Γ1. We equip V with the
inner product

(u, v)V = (ε (u) , ε (v))Q

and ∥.∥V is the associated norm. It follows from Korn’s inequality (2.6) that
the norms ∥.∥H1

and ∥.∥V are equivalent on V. Then (V, ∥.∥V ) is a real Hilbert
space. Moreover, by Sobolev’s trace theorem, there exists dΩ > 0 which
depends only on the domain Ω, Γ1 and Γ3 such that

(2.7) ∥v∥(L2(Γ3))d ≤ dΩ ∥v∥V ∀v ∈ V.

We assume that the body forces and surface tractions have the regularity

(2.8) φ0 ∈ H, φ ∈
(
L2 (Γ2)

)d
and we define the functional j : V → R+ by

j (v) =
∫

Γ3

g |vτ | da,

where g is assumed to satisfy

(2.9) g ∈ L∞ (Γ3) and g ≥ 0 a.e. on Γ3.
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Next, in the study of Problem P1 we assume that the nonlinear elasticity
operator F satisfies

(2.10)



(a) F : Ω × Sd → Sd;
(b) there exists M > 0 such that
|F (x, ε1) − F (x, ε2)| ≤ M |ε1 − ε2| , ∀ε1, ε2 ∈ Sd,

a.e. x ∈ Ω;
(c) there exists m > 0 such that

(F (x, ε1) − F (x, ε2)) . (ε1 − ε2) ≥ m |ε1 − ε2|2 ,
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(d) the mapping x → F (x, ε) is Lebesgue measurable on Ω,
for any ε ∈ Sd;

(e) F (x, 0) = 0 for a.e. x ∈ Ω.

Examples of nonlinear constitutive law that satisfy (2.10) can be found
in [18, 25].

Now, we derive the variational formulation of Problem P1. To this end,
let (u, σ (u)) be a pair of smooth functions which satisfies (2.1) − (2.5). Let
v ∈ V. Multiplying the equilibrium equation (2.1) by v − u and using the
Green formula, we deduce that

(σ (u) , ε (v) − ε (u))Q = (φ0, v − u)H +
∫

Γ
σ (u) ν. (v − u) da.

Using the boundary conditions (2.3) and (2.4), we have

(2.11) (σ (u) , ε (v) − ε (u))Q
= (φ0, v − u)H + (φ, v − u)(L2(Γ2))d +

∫
Γ3
στ (u) . (vτ − uτ ) da.

On the other hand, condition (2.5) implies

(2.12)
∫

Γ3

στ (u) . (vτ − uτ ) da ≥
∫

Γ3

g (|uτ | − |vτ |) da.

From the constitutive law (2.2), we have

σ (u) = Fε (u) + ς (u) and ς (u) ∈ ∂IB (ε (u)) in Ω.

The latter, for v, u ∈ K, implies

ς (u) . (ε (v) − ε (u)) ≤ IB (ε (v)) − IB (ε (u)) = 0 in Ω.

Hence, we obtain

(2.13) (σ (u) , ε (v) − ε (u))Q ≤ (Fε (u) , ε (v) − ε (u))Q.

We define the operator A : V → V by

(2.14) (Au, v)V = (Fε (u) , ε (v))Q, ∀u, v ∈ V.

Inserting (2.13) and (2.12) in (2.11) and taking into account (2.14), we obtain
the following variational formulation of Problem P1.
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Problem P2. Find u ∈ K such that

(2.15) (Au, v − u)V + j (v) − j (u)
≥ (φ0, v − u)H + (φ, v − u)(L2(Γ2))d ∀v ∈ K.

Theorem 2.1. Assume (2.8), (2.9) and (2.10). Then, there exists a
unique solution of Problem P2.

Proof. By (2.10), the operator A is Lipschitz continuous and strongly
monotone; using (2.9), the functional j is proper, convex and lower semicon-
tinuous. Then, by using (2.8), since K is a non-empty closed convex, it follows
(see [23]) that the inequality (2.15) has a unique solution.

3. The optimal control problem

We now suppose that φ0 ∈ H is fixed and consider the following state
variational problem.

Problem Q1. For φ ∈
(
L2 (Γ2)

)d (called control), find u ∈ K such that

(3.1) (Au, v − u)V + j (v) − j (u)
≥ (φ0, v − u)H + (φ, v − u)(L2(Γ2))d ∀v ∈ K.

Following the existence and uniqueness of Problem P2, we deduce that for
every control φ ∈

(
L2 (Γ2)

)d, the state variational problem Q1 has a unique
solution u ∈ K.

For α, β > 0 and ud ∈ K, we define the cost functional

L : V ×
(
L2 (Γ2)

)d → R+,

by

(3.2) L (u, φ) = α ∥u− ud∥2
V + β ∥φ∥2

(L2(Γ2))d ,

We have that σd = σ (ud) = Fε (ud), then for u ∈ K, we have σ (u) =
Fε (u), and ∥σ (u) − σ (ud)∥Q ≤ M ∥u− ud∥V ; so σ (u) is a close to σ (ud) .

Next, we define the set of admissible pairs Uad as

Uad =
{

(u, φ) ∈ K ×
(
L2 (Γ2)

)d , such that (3.1) is satisfied
}
,

and we consider the optimal control problem below.
Problem C1. Find (u∗, φ∗) ∈ Uad such that

L (u∗, φ∗) = min
(u,φ)∈Uad

L (u, φ) .

Theorem 3.1. Assume (2.8), (2.9) and (2.10) (c). Then Problem C1 has
at least one solution.
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Proof. Take v = 0V in (3.1), using (2.7) and (2.10) (c), we deduce that
the solution u of Problem Q1 is bounded in V as

∥u∥V ≤ c0

m

(
∥φ0∥H + dΩ ∥φ∥(L2(Γ2))d

)
,

where c0 > 0. This inequality implies that

0 ≤ inf
(u,φ)∈Uad

L (u, φ) < +∞.

Then, there exists a sequence (un, φn) ⊂ Uad such that

L (un, φn) → inf
(u,φ)∈Uad

L (u, φ) as n → +∞.

The sequence (un, φn) is bounded in V ×
(
L2 (Γ2)

)d, so there exists an element

(u∗, φ∗) ∈ V ×
(
L2 (Γ2)

)d
such that passing to a subsequence still denoted by (un, φn), we have

(3.3)
{ (a) un → u∗ weakly in V, as n → +∞,

(b) φn → φ∗ weakly in
(
L2 (Γ2)

)d as n → +∞, .

But for the remainder of the proof, we had to show that

(3.4) un → u∗ strongly in V as n → +∞.

In fact, as (un, φn) ∈ Uad, un satisfies the inequality:

(3.5) (Aun, v − un)V + j (v) − j (un)
≥ (φ0, v − un)H + (φn, v − un)(L2(Γ2))d ∀v ∈ K.

Using (2.10) (c) and (3.5), we deduce that

(3.6)


m ∥un − u∗∥2

V ≤ (Aun −Au∗, un − u∗)V
≤ (Aun, un − u∗)V − (Au∗, un − u∗)V
≤ (Au∗, u∗ − un)V + j (u∗) − j (un)
+ (φ0, u

n − u∗)H + (φn, un − u∗)(L2(Γ2))d .

Now from (3.3) (a), we have that (Au∗, un − u∗)V → 0 as n → +∞. Next,
using that un → u∗ weakly in V implies that un → u∗ strongly in

(
L2 (Γ2)

)d
and as (φn) is bounded in

(
L2 (Γ2)

)d, then

j (u∗) − j (un) + (φ0, u
n − u∗)H + (φn, un − u∗)(L2(Γ2))d → 0 as n → +∞.

This suggests that the last member on the right side of the last inequality
tends to be zero. Hence, from (3.6), we get (3.4) . On the other hand, K is
closed convex of V , then u∗ ∈ K.Moreover, using (3.3) (b), (3.4) and passing
to the limit as n → +∞ in (3.5), we get that (u∗, φ∗) ∈ Uad and then this is
a solution to problem C1.
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4. The penalized and regularized problem

In this part we consider the regularized problem that can be exploited
numerically. The interest is to approximate the nondifferentiable term by a
sequence of differentiable ones. This regularization is obtained by substituting
the functional j with a regularized function jδ : V → R defined by

jδ (v) =
∫

Γ3

g
√
v2
τ + δ2da,

where δ > 0 is a small parameter.
Recall (see [1]) that the functional jδ is proper, convex, lower semicon-

tinuous and satisfies jδ ∈ C2 (V ). Indeed, denoting by Djδ (u) the differential
of jδ at the point u, we have

(Djδ (u) , v)V =
∫

Γ3

g
uτvτ√
u2
τ + δ2

da ∀v ∈ V

and (
D2jδ (u, v) , w

)
V

=
∫

Γ3

g
δ2vτwτ

(u2
τ + δ2)

√
u2
τ + δ2

da ∀v, w ∈ V.

Next, we denote

(4.1) Pδ (τ) = 2
δ

[(|τ | − 1)+] τ
|τ |
, ∀τ ∈ Sd,

where (|τ | − 1)+ = max{0, |τ | − 1}.
We define the operator Aδ as

(Aδu, v)V = (Pδ (ε (u)) , ε (v))Q , ∀u, v ∈ V.

Then, we have the lemma below.

Lemma 4.1. Operator Aδ verifies the following properties:
(1) Aδ is monotone:

(4.2) (Aδu−Aδv, u− v)V ≥ 0, ∀u, v ∈ V.

(2) Aδ is Lipschitz continuous:

(4.3) |(Aδu−Aδv, w)V | ≤ 4
δ

∥u− v∥V ∥w∥V , ∀u, v, w ∈ V.

Proof. The mapping Ψδ : Sd → R+; ξ 7−→ 1
δ

(
(|ξ| −ML)+

)2 is a convex
function and continuously differentiable and

(Ψ′

δ (ξ) ; τ) = lim
λ→0

Ψδ (ξ + λτ) − Ψδ (ξ)
λ

= 2
δ

(|ξ| −ML)+
ξ

|ξ|
.τ = Pδ (ξ) .τ, ∀ξ, τ ∈ Sd.
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Then, the mapping G : V → R; u 7−→ Ψδ (ε (u)) is also a convex function and
continuously differentiable and〈

G
′ (u) , v

〉
= (Ψ′

δ (ε (u)) ; ε (v)) = 2
δ (|ε (u)| −ML)+

ε(u)
|ε(u)| .ε (v)

= Pδ (ε (u)) .ε (v) , ∀u, v ∈ V .

The property of convexity of G implies that G′ is monotone, then〈
G

′
(u) −G

′
(v) , u− v

〉
≥ 0, ∀u, v ∈ V.

By integrating the two sides of the previous inequality on Ω, one gets inequal-
ity (4.2). Now, to prove (2), we have

(Aδu−Aδv, w)V =
2
δ

∫
Ω

( (|ε (u)| −ML)+ε (u) |ε (v)| − (|ε (u)| −ML)+ε (v) |ε (u)|
|ε (u)| |ε (v)| )ε (w) dx.

We see that there are three cases. The first case: if |ε (u)| ≤ ML, |ε (v)| ≤ ML,
then (Tδu − Tδv, w)V = 0. (Aδu − Aδv, w)V = 0. The second case: if
|ε (u)| > ML, |ε (v)| ≤ ML, then

|(Aδu−Aδv, w)V | = 2
δ

∣∣∣∫Ω (|ε (u)| −ML) ε(u)
|ε(u)|ε (w) dx

∣∣∣
≤ 2

δ

∫
Ω |ε (u) − ε (v)| |ε (w)| dx

≤ 2
δ ∥u− v∥V ∥w∥V .

The third case: if |ε (u)| > ML, |ε (v)| > ML, we have

|(Aδu−Aδv, w)V | = 2
δ

∣∣∣∫Ω((ε (u) − ε (v)) −ML( ε(u)
|ε(u)| − ε(v)

|ε(v)| ))ε (w) dx
∣∣∣

≤ 2
δ

∫
Ω |ε (u) − ε (v)| |ε (w)| dx+ 2

δ

∣∣∣∫Ω ML

(
ε(v)

|ε(v)| − ε(u)
|ε(u)|

)
ε (w) dx

∣∣∣
≤ 2

δ

∫
Ω |ε (u) − ε (v)| |ε (w)| dx+ 2

δ

∫
Ω

∣∣∣ML

(
ε(v)

|ε(v)| − ε(u)
|ε(u)|

)∣∣∣ |ε (w)| dx

≤ 4
δ

∫
Ω |ε (u) − ε (v)| |ε (w)| dx.

≤ 4
δ ∥u− v∥V ∥w∥V .

Then, it follows that in all the cases, (4.3) is satisfied. Hence, we end the
proof of Lemma 4.1.

We now consider the penalized and regularized problem below.
Problem Pδ. Find uδ ∈ V such that

(4.4)
(
Auδ, v

)
V

+
(
Djδ

(
uδ
)
, v
)
V

+
(
Pδ
(
ε
(
uδ
))
, ε (v)

)
Q

= (φ0, v)H + (φ, v)(L2(Γ2))d ∀v ∈ V.
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Theorem 4.2. Let (2.8), (2.9), (2.10), (4.2) and (4.3) hold. Then, Prob-
lem Pδ has a unique solution.

Proof. We define the operator Bδ : V → V by
(Bδu, v)V = (Au, v)V + (Djδ (u) , v)V + (Pδ (ε (u)) , ε (v))Q , ∀u, v ∈ V.

Using (2.8), (2.10) (b) and (4.3), we have that for all u, v, w ∈ V

|(Bδu−Bδv, w)V | ≤ (M + 4
δ

) ∥u− v∥V ∥w∥V + |(Djδ (u) −Djδ (v) , w)V | .

On the other hand, we have
(Djδ (u) −Djδ (v) , w)V =∫

Γ3

gδ2 (uτ − vτ )wτ(
(vτ + θ (uτ − vτ ))2 + δ2

)√(
(vτ + θ (uτ − vτ ))2 + δ2

)da,
where θ ∈ (0, 1) .

We have

|(Djδ (u) −Djδ (v) , w)V | ≤
∥g∥L∞(Γ3) ∥uτ − vτ∥(L2(Γ3))d ∥wτ∥(L2(Γ3))d

δ
.

Then, using (2.8), we deduce

|(Djδ (u) −Djδ (v) , w)V | ≤
d2

Ω ∥g∥L∞(Γ3) ∥u− v∥V ∥w∥V
δ

.

Hence

∥Bδu−Bδv∥V ≤

(
M +

4 + d2
Ω ∥g∥L∞(Γ3)

δ

)
∥u− v∥V .

Then, the operator Bδ is Lipschitz continuous. Now, we prove that Bδ is
strongly monotone. Indeed, using (2.10) (c) and (4.2), we have for all u, v ∈ V

(Bδu−Bδv, u− v)V ≥ m ∥u− v∥2
V +∫

Γ3

gδ2 (uτ − vτ )2(
(vτ + θ (uτ − vτ ))2 + δ2

)√(
(vτ + θ (uτ − vτ ))2 + δ2

)da
≥ m ∥u− v∥2

V .

Moreover, using (2.7) , we deduce that Problem Pδ has a unique solution.

The next convergence is demonstrated below.

Theorem 4.3. The following convergence holds:
(4.5) uδ → u strongly in V as δ → 0,
where u is a solution of Problem P2.
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Proof. We take v = uδ in (4.4), then as
(
Djδ

(
uδ
)
, uδ
)
V

≥ 0,(
Pδ
(
ε
(
uδ
))
, ε
(
uδ
))
Q

≥ 0, we deduce that(
Auδ, uδ

)
V

≤
(
φ0, u

δ
)
H

+
(
φ, uδ

)
(L2(Γ2))d .

Thus, by (2.7) and (2.10) (c), we get

(4.6)
∥∥uδ∥∥

V
≤ c0

m

(
∥φ0∥H + dΩ ∥φ∥((L2(Γ2))d)

)
.

This estimate implies that there exists an element ū such that

(4.7) uδ → ū weakly in V.

Moreover, we take v ∈ K in (4.4), thus we deduce(
Auδ, v − uδ

)
V

+
(
Djδ

(
uδ
)
, v − uδ

)
V

+
(
Pδ
(
ε
(
uδ
))
, ε (v) − ε

(
uδ
))
Q

=
(
φ0, v − uδ

)
H

+
(
φ, v − uδ

)
(L2(Γ2))d ∀v ∈ K.

As we have (
Pδ
(
ε
(
uδ
))

− Pδ (ε (v)) , ε (v) − ε
(
uδ
))
Q

≤ 0,

thus (
Pδ
(
ε
(
uδ
))
, ε (v) − ε

(
uδ
))
Q

≤
(
Pδ (ε (v)) , ε (v) − ε

(
uδ
))
Q

= 0.

On the other hand, we have(
Djδ

(
uδ
)
, v − uδ

)
V

≤ jδ (v) − jδ
(
uδ
)
,

Then, it follows that
(4.8)(

Auδ, v − uδ
)
V

+ jδ (v) − jδ
(
uδ
)

≥
(
φ0, v − uδ

)
H

+
(
φ, v − uδ

)
(L2(Γ2))d .

Taking now v = ū in (4.8), we see that(
Auδ, uδ − ū

)
V

≤ jδ (ū) − jδ
(
uδ
)

+
(
φ0, u

δ − ū
)
H

+
(
φ, uδ − ū

)
(L2(Γ2))d .

As the right hand side of the above inequality tends to zero when δ → 0, then
we get

lim
δ→0

sup
(
Auδ, uδ − ū

)
V

≤ 0.

Thus, using the pseudomonotonicity of A, we deduce that

(Aū, ū− v)V ≤ lim
δ→0

inf
(
Auδ, uδ − v

)
V
,∀v ∈ K.

Keeping in mind (4.7) and passing to the limit as δ → 0 in (4.8), we get

jδ (v) =
∫

Γ3
g
√
v2
τ + δ2da → j (v) ,

jδ
(
uδ
)

=
∫

Γ3
g(
√

(uδτ )2 + δ2 − |ūτ |)da+
∫

Γ3
g |ūτ | da →

∫
Γ3
g |ūτ | da = j (ū) ,
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since ∣∣∣∣∫
Γ3

g(
√

(uδτ )2 + δ2 − |ūτ |)da
∣∣∣∣ ≤ ∥g∥L∞(Γ3)

∥∥uδτ − ūτ
∥∥

(L2(Γ2))d

+ ∥g∥L∞(Γ3) δmes (Γ3) → 0.

Also, using (4.6) and uδ → u strongly in
(
L2 (Γ2)

)d, we have(
φ0, v − uδ

)
H

+
(
φ, v − uδ

)
(L2(Γ2))d → (φ0, v − ū)H + (φ, v − ū)(L2(Γ2))d ,

thus we get

(Aū, v − ū)V + j (v) − j (ū) ≥ (φ0, v − ū)H + (φ, v − ū)(L2(Γ2))d .

Now we claim to prove that u ∈ K. Indeed, take v = uδ in (4.4), we get(
Pδ
(
ε
(
uδ
))
, ε
(
uδ
))
Q

≤
(
φ0, u

δ
)
H

+
(
φ, uδ

)
(L2(Γ2))d .

This inequality with (4.6) implies that

(4.9)
∫

Ω

(∣∣ε (uδ)∣∣−ML

)
+

∣∣ε (uδ)∣∣ dx ≤ δc0

m

(
∥φ0∥H + dΩ ∥φ∥((L2(Γ2))d)

)2
.

Thus, from the inequality (4.9), we deduce that

lim sup
δ→0

∫
Ω

(∣∣ε (uδ)∣∣−ML

)
+

∣∣ε (uδ)∣∣ dx = 0.

Then, by (4.6), passing to a subsequence still denoted by
(
uδ
)
, we have that

(|ε (ū)| −ML)+ |ε (u)| ≤ lim inf
ε→0

(∣∣ε (uδ)∣∣−ML

)
+

∣∣ε (uδ)∣∣ .
Thus, by Lemma’s Fatou, we deduce∫

Ω
(|ε (ū)| −ML)+ |ε (ū)| dx ≤

∫
Ω

lim inf
δ→0

(∣∣ε (uδ)∣∣−ML

)
+

∣∣ε (uδ)∣∣ dx
≤ lim inf

δ→0

∫
Ω

(∣∣ε (uδ)∣∣−ML

)
+

∣∣ε (uδ)∣∣ dx
≤ lim sup

δ→0

∫
Ω

(∣∣ε (uδ)∣∣−ML

)
+

∣∣ε (uδ)∣∣ dx = 0.

Thus, we get ∫
Ω

(|ε (ū)| −ML)+ |ε (ū)| dx = 0.

Then, we deduce that (|ε (ū)| −ML)+ = 0 a.e. in Ω, i.e. |ε (ū)| ≤ ML a.e. in
Ω, i.e. ū ∈ K. Hence, we deduce that ū is a solution of Problem P2. Then by
the uniqueness part of Theorem 2.1, we obtain that ū = u.
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Now, we claim to prove the strong convergence. Indeed, we have by using
(4.8) :

(4.10)

m ∥uδ − u∥2
V ≤ (Auδ −Au, uδ − u)V

= (Auδ, uδ − u)V − (Au, uδ − u)V
≤ (Au, u− uδ)V + jδ (u) − jδ (uδ)

+ (φ0, uδ − u)H + (φ0, uδ − u)(L2(Γ2))d .

Then, using (4.6), and that uδ → u strongly in
(
L2 (Γ)

)d, we have, as δ → 0,
(Au, u− uδ)V + jδ (u) − jδ (uδ) + (φ0, uδ − u)H + (φ0, uδ − u)(L2(Γ2))d → 0,

then, from (4.10), we obtain (4.5) .

5. The penalized and regularized optimal control problem

For δ > 0 and a fixed φ0 ∈ H, we introduce the following penalized and
regularized state problem.

Problem Q2. For φ ∈
(
L2 (Γ2)

)d (called control), find uδ ∈ V such that

(5.1)

(
Auδ, v

)
V

+
(
Djδ

(
uδ
)
, v
)
V

+
(
Pδ
(
ε
(
uδ
))
, ε (v)

)
Q

= (φ0, v)H + (φ, v)(L2(Γ2))d ∀v ∈ V.

According to Theorem 4.2, the state problem Q2 has a unique solution.
Next, we define the set Uδad as

U δad =
{

(u, φ) ∈ V ×
(
L2 (Γ2)

)d , such that (5.11) is satisfied
}
.

Hence, we introduce the optimal control problem below.
Problem C2. Find

(
ũδ, φ̃δ

)
∈ U δad such that

L
(
ũδ, φ̃δ

)
= min

(u,φ)∈Uδ
ad

L (u, φ) .

We have the following result.

Theorem 5.1. Let (2.8), (2.9) and (2.10) (c) hold. Then, Problem C2
has at least one solution.

Proof. We refer the reader to the arguments used in the proof of The-
orem 3.1.

Next, to show the convergence results concerning the solutions of Prob-
lems C1 and C2. For thus we have the theorem below.

Theorem 5.2. We have
lim
δ→0

L
(
ũδ, φ̃δ

)
= L (u∗, φ∗) .



256 R. GUETTAF AND A. TOUZALINE

The proof of this theorem is carried out in several steps. First, we prove
the following lemma.

Lemma 5.3. Let
(
ũδ, φ̃δ

)
be a solution of Problem C2. Then, there exists a

solution (ũ, φ̃) of Problem C1, such that passing to a subsequence still denoted(
ũδ, φ̃δ

)
, we have as δ → 0, the following convergences:

(5.2)
{ (a) ũδ → ũ strongly in V,

(b) φ̃δ → φ̃ weakly in
(
L2 (Γ2)

)d
.

Proof. Let uδ0 the solution of Problem Q2 obtained for φ = 0(L2(Γ2))d .
We have

L
(
ũδ, φ̃δ

)
≤ L

(
uδ0, 0(L2(Γ2))d

)
≤ c

(
∥φ0∥2

H + ∥ud∥2
V

)
,

where c > 0. Thus, it follows that the sequence
(
ũδ, φ̃δ

)
is bounded in V ×(

L2 (Γ2)
)d
. Then, there exists an element

(ũ, φ̃) ∈ V ×
(
L2 (Γ2)

)d
such that passing to a subsequence still denoted

(
ũδ, φ̃δ

)
, we have

ũδ → ũ weakly in V,

φ̃δ → φ̃ weakly in
(
L2 (Γ2)

)d (then (5.2) (b) is proved).
Now, to prove that ũ ∈ K, it suffices to sketch the proof of Theorem 4.3.
Moreover, using (2.10) (c), we have
(5.3)

m
∥∥ũδ − ũ

∥∥2
V

≤
(
Aũ−Aũδ, ũ− ũδ

)
V

≤
(
Aũ, ũ− ũδ

)
V

+jδ (ũ)−jδ
(
ũδ
)
+
(
Pδ
(
ε
(
ũδ
))

−Pδ (ε (ũ)) , ε(ũ− ũδ)
)
Q

+
(
Pδ (ε (ũ)) , ε(ũ− ũδ)

)
Q

+
(
φ0, ũ− ũδ

)
H

+
(
φ̃δ, ũ− ũδ

)
(L2(Γ2))d .

Keeping in mind (4.2), we have(
Pδ
(
ε
(
ũδ
))

− Pδ (ε (ũ)) , ε(ũ− ũδ)
)
Q

≤ 0,

and since ũ ∈ K, (
Pδ (ε (ũ)) , ε(ũ− ũδ)

)
Q

= 0.

Then, (5.3) implies
(5.4)
m
∥∥ũδ − ũ

∥∥2
V

≤
(
Aũ, ũ− ũδ

)
V

+jδ (ũ)−jδ
(
ũδ
)
+
(
φ0, ũ− ũδ

)
H

+
(
φ̃δ, ũ− ũδ

)
(L2(Γ2))d .

Hence as ũδ → ũ weakly in V , when δ → 0, implies that ũδ → ũ strongly in(
L2 (Γ2)

)d, then jδ (ũ) − jδ
(
uδ
)

→ 0. Hence we deduce that the right hand
side of the previous inequality (5.4) tends to zero. Then, we obtain (5.2) (a).
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Now, we still have to prove that (ũ, φ̃) ∈ Uad. Indeed, from the inequality
(4.4), we deduce by (4.2)

(5.5)
(
Aũδ, v − ũδ

)
V

+ jδ (v) − jδ
(
ũδ
)

≥
(
φ0, v − ũδ

)
H

+
(
φ̃δ, v − ũδ

)
(L2(Γ2))d , ∀v ∈ K.

Then, using (5.2) (a), it follows that the following convergences hold:
lim
δ→0

(
Aũδ, v − ũδ

)
V

= lim
δ→0

((
Aũδ −Au, v − ũδ

)
V

+
(
Aũ, v − ũδ

)
V

)
= lim
δ→0

(
Aũδ −Au, v − ũδ

)
V

+ lim
δ→0

(
Aũ, v − ũδ

)
V

= (Aũ, v − ũ)V ,
lim
δ→0

(jδ (v) − jδ
(
ũδ
)
) = j (v) − j (ũ) ,

lim
δ→0

(
(
φ0, v − ũδ

)
H

+
(
φ̃δ, v − ũδ

)
(L2(Γ2))d)=(φ0, v − ũ)H+(φ̃, v − ũ)(L2(Γ2))d .

Hence, using these convergences and passing to the limit as δ → 0 in (5.5),
we deduce that (ũ, φ̃) satisfies (3.1). Now,

We shall complete the proof of Theorem 5.2 by proving the following
lemma.

Lemma 5.4. We have that
L (ũ, φ̃) = L (u∗, φ∗) .

Proof. Consider the sequence
(
uδ
)

such that for each δ > 0, uδ is the
unique solution of Problem Q2 written for φ∗ ∈

(
L2 (Γ2)

)d
. Hence, for each

δ > 0,
(
uδ, φ∗) ∈ U δad and by Lemma 5.3, it follows that

(5.6)
(
uδ, φ∗) → (u∗, φ∗) strongly in V ×

(
L2 (Γ2)

)d as δ → 0.
As the functional L is convex and continuous, then
(5.7) L (ũ, φ̃) ≤ lim

δ→0
inf L

(
ũδ, φ̃δ

)
.

We also have, as
(
ũδ, φ̃δ

)
is a solution of Problem C2

(5.8) lim
δ→0

sup L
(
ũδ, φ̃δ

)
≤ lim
δ→0

sup L
(
uδ, φ∗) .

Using (5.6), we have
(5.9) lim

δ→0
sup L(uδ, φ∗) = L (u∗, φ∗)

and as (u∗, φ∗) is a solution of Problem C1, it follows
(5.10) L (u∗, φ∗) ≤ L (ũ, φ̃) .
Also, from (5.8), we deduce
(5.11) lim

δ→0
sup L

(
ũδ, φ̃δ

)
≤ L (u∗, φ∗) .

Hence, from (5.7) − (5.11), we obtain
L (ũ, φ̃) = L (u∗, φ∗) .
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Finally, we conclude that the solution of the penalized and regularized optimal
control problem C2 converges to the solution of the optimal control problem
C1, which completes the proof of Theorem 5.2.

References
[1] A. Amassad, D. Chenais and C. Fabre, Optimal control of an elastic contact problem

involving Tresca friction law, Nonlinear Anal. 48 (2002), 1107–1135.
[2] V. Barbu, Optimal Control of Variational Inequalities, Pitman Advanced Publishing,

Boston, 1984.
[3] K. Bartosz and P. Kalita, Optimal control for a class of dynamic viscoelastic contact

problems with adhesion, Dynam. Systems Appl. 21 (2012), 269–292.
[4] J. F. Bonnans and D. Tiba, Pontryagin’s principle in the control of semilinear elliptic

variational inequalities, Appl. Math. Optim. 23 (1991) 299–312.
[5] A. Capatina and C. Timofte, Boundary optimal control for quasistatic bilateral fric-

tional contact problems, Nonlinear Anal. 94 (2014), 84–99.
[6] F. Demengel and P. Suquet, On locking materials, Acta Appl. Math. 6 (1986), 185–21.
[7] F. Demengel, Déplacements à déformations bornées et champs de contrainte mesures,

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 243–318.
[8] Z. Denkowski, S. Migórski and A. Ochal, Optimal control for a class of mechanical

thermoviscoelastic frictional contact problems, Control Cybernet. 36 (2007), 611–632.
[9] Z. Denkowski, S. Migórski and A. Ochal, A class of optimal control problems for

piezoelectric frictional contact models, Nonlinear Anal. Real World Appl. 12 (2011),
1883–1895.

[10] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Dunod,
Paris, 1972.

[11] A. Friedman, Optimal control for variational inequalities, SIAM J. Control Optim. 24
(1986), 439–451.

[12] S. J. Kimmerle and R. Moritz, Optimal control of an elastic tyre-damper system with
road contact, Proc. Appl. Math. Mech. 14 (2014), 875–876.

[13] J.-L. Lions, Contrôle optimal des systèmes gouvernés par des équations aux dérivées
partielles. Dunod, Paris, 1968.

[14] A. Matei and S. Micu, Boundary optimal control for a frictional contact problem with
normal compliance, Appl. Math. Optim. 78 (2017), 379–401.

[15] A. Matei and S. Micu, Boundary optimal control for nonlinear antiplane problems,
Nonlinear Anal. 74 (2011), 1641–1652.

[16] R. Mignot, Contrôle dans les inéquations variationnelles elliptiques, J. Func. Anal. 22
(1976), 130–185.

[17] F. Mignot and J.P. Puel, Optimal control in some variational inequalities, SIAM J.
Control Optim. 22 (1984), 466–476.

[18] P. D. Panagiatopoulos, Inequality Problems in Mechanics and Applications,
Birkhäuser, Basel, 1985.

[19] W. Prager, On ideal-locking materials, Trans. Soc. Rheol. 1 (1957), 169–175.
[20] W. Prager, Elastic solids of limited compressibility, Proc. Int. Congr. Appl. Mech.

Brussels 1956 (1956), 205–211.
[21] W. Prager, On elastic, perfectly locking materials, in: Applied Mechanics (ed. H.

Görtler), Springer, Berlin, 1966.
[22] M. Sofonea, A. Benraouda and H. Hechaichi, Optimal control of a two-dimensional

contact problem, Appl. Anal. 97 (2018), 1281–1298.



OPTIMAL CONTROL OF A CONTACT PROBLEM 259

[23] M. Sofonea and A. Matei, Variational Inequalities with Applications. A Study of An-
tiplane Frictional Contact Problems, Advances in Mechanics and Mathematics 18,
Springer, New York, 2009.

[24] M. Sofonea and Y. B. Xiao, Boundary optimal control of a nonsmooth frictionless
contact problem, Comput. Math. Appl. 78 (2019), 152–165, .

[25] R. Temam, Problèmes mathématiques en plasticité, Méthodes mathématiques pour
l’informatique, Gauthiers-Villars, Paris, 1983.

[26] A. Touzaline, Optimal control of a frictional contact problem, Acta Math. Appl. Sin.
Engl. Ser. 31 (2015), 991–1000.

[27] A. Touzaline, Study of an optimal control of a frictionless contact problem, An. Univ.
Oradea Fasc. Mat. 26 (2019), 105–115.

Optimalno upravljanje kontaktnog problema trenja za locking
materijale

Rachid Guettaf i Arezki Touzaline

Sažetak. U ovom radu razmatramo bilateralni kontakt
s Trescinim zakonom trenja izmedu locking materijala i krutog
temelja. Cilj je proučiti problem optimalnog upravljanja koji
se sastoji od dovodenja tenzora naprezanja što je bliže moguće
zadanom cilju, djelovanjem s kontrolom na granici tijela. U
radu formuliramo problem optimalnog upravljanja koji ima barem
jedno rješenje. Takoder uvodimo penalizirani i regularizirani
problem optimalnog upravljanja za koji proučavamo konvergen-
ciju kada penalizacija i parametar regularizacije teže k nuli.
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