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AUXILIARY PRINCIPLE TECHNIQUE FOR SOLVING
TRIFUNCTION HARMONIC VARIATIONAL INEQUALITIES

Muhammad Aslam Noor and Khalida Inayat Noor

Abstract. In this paper, we introduce and investigate some new
classes of trifunction harmonic variational inequalities. Several important
new problems are obtained as special cases. Some new harmonic Bregman
distance functions are derived for the Shannon entropy and Burg entropy
harmonic convex functions. The auxiliary principle technique involving
the harmonic Bregman distance function is applied to suggest and analyze
some hybrid inertial iterative methods for solving the trifunction harmonic
variational inequality. The convergence analysis of these iterative methods
is also considered under some mild conditions. Some special cases are also
pointed out. Results proved in this paper can be viewed as a refinement
and improvement of the known results.

1. Introduction

Variational inequalities theory introduced in 1964 has emerged as a pow-
erful tool to investigate and study a wide class of unrelated problems aris-
ing in industrial, regional, physical, pure and applied sciences in a uni-
fied and general framework. The ideas and techniques of the variational
inequalities are being applied in a variety of diverse areas and prove to
be productive and innovative. Variational inequalities have been extended
and generalized in several direction using novel and new techniques, see
[11–15, 19–26, 28, 29, 31–33, 35, 36, 38–40, 43–46, 48–50, 52, 54, 55]. There are
significant developments of variational inequalities related with multivalued,
nonmonotone, nonconvex optimization and structural analysis. An important
and useful generalization of variational inequalities is harmonic variational in-
equality. Anderson et al. [6] studied the properties of the harmonic functions.
Al-Azemi et al. [2] explored the applications harmonic means in asian options
and stock exchange. For the applications, generalizations and properties of
the harmonic functions, see [32–34, 37, 39–43, 45]. The harmonic variational
inequalities were introduced and investigated by Noor et. al [32,33,35,38] by
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262 M. A. NOOR AND K. I. NOOR

using the concept of the differentiable harmonic convex. In particular, if the
functions is a locally Lipschitz continuous harmonic function, then the mini-
mum of the harmonic function can be characterized by harmonic directional
variational inequality.

Noor and Oettli [47] introduced and studied the problem of trifunction
equilibrium problem. It have been shown that variational inequalities, fixed-
point problems, Nash equilibrium problems and saddle-point problems can be
studied in the framework of equilibrium problems. For applications, motiva-
tion, numerical techniques and other aspects of trifunction variational inequal-
ities and related optimization problems, see [28,31] and the references therein.
Motivated and inspired by these facts, we consider another class of harmonic
variational inequalities, which is called the trifunction harmonic variational
inequality. This class includes the harmonic variational inequalities, com-
plementarity problems, absolute value harmonic variational inequalities and
optimization problems as special cases.

Variational inequalities problems have witnessed an explosive growth in
theoretical advances, algorithmic developments and applications across al-
most all disciplines of engineering, pure and applied sciences. Analysis of
these problems requires a blend of techniques and ideas from convex analy-
sis, functional analysis, numerical analysis and nonsmooth analysis. There
are several methods for solving variational inequalities and equilibrium prob-
lems. Due to the nature of the harmonic variational inequalities, projection
and resolvent methods can not be applied for solving these problems. In
such cases, the auxiliary principle technique is being used to suggest and
analyze some iterative methods for solving harmonic variational inequalities
and their variants forms. Glowinski et. al [12] used this technique to study
the existence problem for mixed variational inequalities, the origin of which
can be traced back to Lions et al. [15]. Noor [19, 22, 24–26, 31] and Noor
et al. [14, 32, 33, 35, 38, 39, 43, 45, 46] has used this technique to suggest and
analyze some iterative methods for solving various classes of variational in-
equalities and equilibrium problems. We have also introduce the harmonic
Bregman distance functions for differentiable harmonic functions. We apply
the auxiliary principle principle technique involving the harmonic Bregman
distance function to suggest some classes of hybrid inertial iterative schemes
for trifunction harmonic variational inequalities. We also prove that the con-
vergence of these methods pseudomonotonicity, which is a weaker conditions
than monotonicity. As special cases, we obtain new iterative schemes for
solving various classes of harmonic variational inequalities and related opti-
mization problems. The comparison of these methods with other methods is
a subject of future research. We have only investigated the theoretical as-
pects of the results. The development of efficient numerical aspects of these
methods is a significant open problem.
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2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted
by ⟨., .⟩ and ∥.∥ respectively. Let K be a nonempty closed convex set in H.
Let f : H −→ R be a locally Lipschitz continuous function. Let Ω be an open
bounded subset of Rn.

First of all, we recall the following concepts and results from nonsmooth
analysis [6] and nonconvex analysis [4, 8–10,18,51].

Definition 2.1. Let f be locally Lipschitz continuous at a given point
x ∈ H and v be any other vector in H. The Clarke’s generalized directional
derivative of f at x in the direction v, denoted by f0(x, v), is defined as

f0(x, v) = lim
t→0+

sup
h→0

f(x+ h+ tv) − f(x+ h)
t

.

The generalized gradient of f at x, denoted ∂f(x), is defined to be subd-
ifferential of the function f0(x; v) at 0. That is

∂f(x) = {w ∈ H : ⟨w, v⟩ ≤ f0(x; v), ∀v ∈ H.}.
If f is convex on K and locally Lipschitz continuous at x ∈ K, then ∂f(x)
coincides with the subdifferential f ′(x) of f at x in the sense of convex analysis,
and f0(x; v) coincides with the directional derivative f ′(x; v) for each v ∈ H,
that is, f0(x; v) = ⟨f ′(x), v⟩, ∀v ∈ H.

Definition 2.2 ([4]). The set Kh is said to be a harmonic convex set if
uv

v + λ(u− v) ∈ Kh, ∀u, v ∈ Kh, λ ∈ [0, 1].

Definition 2.3 ([4]). The function ϕ on the harmonic convex set Kh is
said to be harmonic convex if

ϕ( uv

v + λ(u− v) ) ≤ (1 − λ)ϕ(u) + λϕ(v), ∀u, v ∈ Kh λ ∈ [0, 1].

The function ϕ is said to be harmonic concave function if and only if −ϕ
is harmonic convex function.

We recall that the minimum of a locally Lipschitz continuous harmonic
convex function on the harmonic convex set Kh can be characterized by an
harmonic variational inequality.

Theorem 2.4. Let ϕ be a locally Lipschitz continuous harmonic convex
function on the harmonic convex set Kh. Then u ∈ Ch is a minimum of ϕ if
and only if u ∈ Kh satisfies the inequality

ϕ′(u; uv

u− v
) ≥ 0, ∀v ∈ Kh.(2.1)

The inequality of type (2.1) is called the bifunction harmonic variational in-
equality.
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Proof. Let u ∈ Kh is a minimum of locally Lipschitz continuous har-
monic convex function ϕ. Then

ϕ(u) ≤ ϕ(v), ∀v ∈ Kh.(2.2)

Since Kh is a harmonic convex set, so ∀u, v ∈ Kh, vλ = uv
u+λ(u−v) ∈ Kh.

Replacing v by vλ in (2.2) and diving by λ and taking limit as λ → 0, we have

0 ≤ lim
λ→0

ϕ( uv
u+λ(u−v) ) − ϕ(u)

λ
= ϕ′(u; uv

u− v
)

the required result (2.1). Conversely, let the function ϕ be locally Lipschitz
continuous harmonic convex function on the harmonic convex set Kh. Then

uv

v + λ(u− v) ≤ (1 − λ)ϕ(u) + λϕ(v) = ϕ(u) + λ(ϕ(v) − ϕ(u)),

which implies that

ϕ(v) − ϕ(u) ≥ lim
λ→0

ϕ( uv
v+λ(u−v) ) − ϕ(u)

λ
= ϕ′(u; uv

u− v
) ≥ 0, using (2.1).

Consequently, it follows that

ϕ(u) ≤ ϕ(v), ∀v ∈ Kh.

This shows that u ∈ Kh is the minimum of a locally Lipschitz continuous
harmonic convex function.

We would like to mention that Theorem 2.4 implies that harmonic optimiza-
tion programming problem can be studied via the harmonic variational in-
equality (2.1).

For strongly harmonic convex functions f, we define the harmonic Breg-
man distance function as

B(v, u) = f(v) − f(u) − ⟨f ′(u), uv

u− v
⟩

≥ α∥v − u∥2,∀u, v ∈ Kh.(2.3)

It is important to emphasize that various types of function f give different
harmonic Bregman distance function. We give the following important ex-
amples of some practical important types of harmonic convex function f and
their corresponding Bregman distance functions.

Examples
1. For convex function f(v) = ∥v∥2,

B(v, u) = ∥v − u∥2, ∀u, v ∈ H,

is the squared Euclidean Bregman distance function (SE).
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2. If the Shannon entropy [53] f(v) =
∑n
i=1 vi log vi is a differentiable

harmonic convex function, then its corresponding harmonic Bregman
distance function is given as

B(v, u) =
n∑
i=1

(
vi{log vi − log ui} + (vi − ui + viui

ui − vi
) log ui − viui

ui − vi
)
)

=
n∑
i=1

(
vi log( vi

ui
) + (vi − ui + viui

ui − vi
) log ui − viui

ui − vi
)
)
.

This distance is called the harmonic Kullback-Leibler distance (KL),
which may play a very important tool in several areas of applied math-
ematics such as information, data analysis and machine learning.

3. If the Burg entropy f(v) = −
∑n
I=1 log vi is a differentiable harmonic

functions, then its corresponding harmonic Bregman distance function
given as

B(v, u) =
n∑
i=1

(
− log vi

ui
+ vi
ui − vi

)
,

is called the harmonic Itakura-Saito distance (IS) and appears to be
new one. It is not symmetric, that is, B(v, u) ̸= B(u, v). One of the
advantages of the Itakura-Saito divergence is its scale invariance which
means that B(λv, λu) = B(u, v), for any number λ. This makes it a
very suitable measure for the comparison of audio spectra. One can
explore the applications of this Bregman distance harmonic function
in data analysis, the information theory, and machine learning. These
harmonic Bregman distance functions inspire further research and ap-
plications in various branches of risk analysis, transportation and other
related optimization programming problems.

Remark 2.5. It is a challenging problem to explore the applications of
Bregman distance function for other types of nonconvex functions such as bi-
convex, k-convex functions, preinvex functions and harmonic biconvex func-
tions.

Motivated by these facts, we now introduce the trifunction harmonic vari-
ational inequalities and discuss some special cases. To be more precise, for
given nonlinear trifunctions F (., ., .),Φ(., ., .) : Kh × Kh × Kh −→ R and non-
linear continuous operators T,A : Kh −→ H, consider the problem of finding
u ∈ Kh such that

F (u, Tu, uv

u− v
) + Φ(u,A(u), uv

u− v
) ≥ 0, ∀v ∈ Kh.(2.4)

The problem (2.4) is called the trifunction harmonic variational inequality.
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Special Cases.
(I). If Φ(u,A(u), uv

u−v ) = Φ(u,A(u); uv
u−v ), ∀v ∈ Kh, then (2.4) reduces

to finding u ∈ Kh such that

F (u, Tu, uv

u− v
) + Φ(u,A(u); uv

u− v
) ≥ 0, ∀v ∈ Kh.(2.5)

(II). For Φ(u,A(u), uv
u−v ) = f0(u; uv

u−v ), ∀v ∈ Kh, the problem (2.4)
collapses to finding u ∈ Kh such that

F (u, Tu, uv

u− v
) + f0(u; uv

u− v
) ≥ 0, ∀v ∈ Kh.(2.6)

Here f0(u; uv
u−v ) denotes the generalized directional derivative of the function

f(u) at u in the direction uv
u−v . Such type of nonlinear functions f arise in the

structural analysis, see [49,50]. Problem of type (2.6) is called the trifunction
harmonic hemivariational inequality. Panagiotopoulos [49] studied the hemi-
variational inequalities to formulate variational principles connected to energy
functions which are neither convex nor smooth. It is has been shown that the
technique of hemivariational inequalities is very efficient to describe the be-
haviour of complex structure arising in structural and industrial engineering
sciences, see [49,50,52] and the references therein.

(III). Let f be a differentiable harmonic convex function and

Φ(u,A(u), uv

u− v
) = Φ(u, f ′(u), uv

u− v
).

Then problem (2.6) collapses to finding u ∈ Kh such that

F (u, Tu, uv

u− v
) + Φ(u, f ′(u), uv

u− v
⟩ ≥ 0, ∀v ∈ Kh,(2.7)

which is known as the mildly nonlinear trifunction harmonic variational in-
equality and appears to be a new one.

(IV). If Φ(u,A(u), uv
u−v ) = Φ(u,A|u|; uv

u−v ), ∀v ∈ Kh, then (2.4) re-
duces to finding u ∈ Kh such that

F (u, Tu, uv

u− v
) + Φ(u,A|u|, uv

u− v
) ≥ 0, ∀v ∈ Kh,(2.8)

is called the absolute value trifunction harmonic variational inequality. Man-
gasarian et al. [16] studied the systems of absolute value equations and proved
its equivalence with complementarity problems.. It is worth mentioning that
the systems of absolute equations can be obtained as a special case of the vari-
ational inequalities and complementarity problems introduced and studied by
Noor [19,20].

(V). If F (u, Tu, uv
u−v ) = B(Tu, uv

u−v ), Φ(u,A(u), uv
u−v ) = W (A(u), uv

u−v ),
where B(., .) and W (., .) are continuous bifunctions, then problem (2.4) is
equivalent to finding u ∈ Kh such that

B(Tu, uv

u− v
) +W (A(u), uv

u− v
) ≥ 0, ∀v ∈ Kh,(2.9)
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which is called the bifunction harmonic variational inequality, introduced and
studied by AlShejari et al. [1].

(VI). If F (u, Tu, uv
u−v ) = ⟨Tu, uv

u−v ⟩ and Φ(u,A(u), uv
u−v ) = ⟨A(u), uv

u−v ⟩,
then problem (2.4) is equivalent to finding u ∈ Kh such that

⟨Tu, uv

u− v
⟩ + ⟨A(u), uv

u− v
⟩ ≥ 0, ∀v ∈ Kh,(2.10)

which is known as the harmonic variational inequality.
(VII). For Φ(u,A(u), uv

u−v ) = 0, then problem (2.4) reduces to finding
u ∈ Kh such that

F (u, Tu, uv

u− v
) ≥ 0, ∀v ∈ Kh,(2.11)

which is called the trifunction harmonic variational inequality. In brief, for
suitable and appropriate choice of the trifunction, one can obtain several
classes of harmonic variational inequalities. This clear shows that the problem
(2.4) is more general and flexible and includes the previous ones as special
cases.

Definition 2.6. The trifunction F (., ., .) and the operator T is said to
be:
(a) jointly monotone with respect to Φ(., ., .), if

F (u, Tu, uv

u− v
) + F (v, Tv, uv

v − u
) ≤ 0, ∀u, v ∈ Kh.

(b) jointly pseudomonotone with respect to Φ(., ., .), if

F (u, Tu, uv

u− v
) + Φ(u,A(u), uv

u− v
) ≥ 0

=⇒
F (v, Tv, uv

v − u
) + Φ(v,A(v), uv

v − u
) ≥ 0, ∀u, v ∈ Kh.

(c) partially relaxed strongly jointly monotone with respect to Φ(., ., .), if there
exists a constant γ > 0 such that

F (u, Tu, uv

u− v
) + F (v, Tv, vz

z − v
) ≤ γ∥u− z∥2, ∀u, v, z ∈ Kh.

Note that for z = u partially relaxed strongly jointly monotonicity reduces
to jointly monotonicity. This shows that partially relaxed strongly jointly
monotonicity implies jointly monotonicity, but the converse is not true

Lemma 2.7. ∀u, v ∈ H,

2⟨u, v⟩ = ∥u+ v∥2 − ∥u∥2 − ∥v∥2.(2.12)
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3. Iterative methods and convergence analysis

In this section, we suggest and analyze some iterative methods for solving
trifunction harmonic variational inequality (2.4) using the auxiliary principle
technique of Glowinski et al. [12] involving Bregman distance harmonic func-
tion.

For a given u ∈ Kh satisfying (2.4), consider the auxiliary problem of
finding w ∈ h such that

ρF (w, Tw, vw

v − w
) + ⟨E′(w) − E′(v), vw

v − w
⟩

+ ρΦ(w,A(w), vw

v − w
) ≥ 0, ∀v ∈ Kh,(3.1)

where ρ > 0 is a constant and E′(u) is the differential of a differentiable
harmonic convex function E(u) at u ∈ Kh. Since E(u) is a strongly convex
function, problem (3.1) has a unique solution. We note that, if w = u, then
clearly w is solution of the problem (2.4). This observation enables us to
suggest and analyze the following iterative method for solving (2.4).

Algorithm 3.1. For a given u0 ∈ H, compute the approximate solu-
tion un+1 by the iterative scheme

ρF (un+1, Tun+1,
vun+1

v − un+1
) + ⟨E′(un+1) − E′(un), vun+1

v − un+1
⟩

+ ρΦ(un+1, A(un+1), vun+1

v − un+1
) ≥ 0, ∀v ∈ Kh,(3.2)

where ρ > 0 is a constant.

Algorithm 3.1 is called the proximal method for solving problem (2.4).
In passing we remark that the proximal point method was suggested by Mar-
tinet [8] in the context of convex programming problems as regularization
technique. For the recent developments and applications of the proximal
point algorithms, see the references.

(I). For Φ(u,Au, uv
u−v ) = Φ(u,Au; uv

u−v ), Algorithm 3.1 collapses to:

Algorithm 3.2. For a given u0 ∈ H, compute the approximate solu-
tion un+1 by the iterative scheme

ρF (un+1, Tun+1,
vun+1

v − un+1
) + ⟨E′(un+1) − E′(un), vun+1

v − un+1
⟩

+ ρΦ(un+1, A(un+1); vun+1

v − un+1
) ≥ 0, ∀v ∈ Kh,(3.3)

for solving trifunction harmnoic hemivariational inequalities (2.5).
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(II). If F (u, Tu, uv
u−v ) = B(Tu, uv

u−vv − u) and Φ(u,Au, uv
u−v ) =

W (Au, uv
u−v ) then Algorithm 3.1 collapses to the following method.

Algorithm 3.3. For a given u0 ∈ H, compute the approximate solu-
tion un+1 by the iterative scheme

ρB(Tun+1,
vun+1

v − un+1
) + ⟨E′(un+1) − E′(un), vun+1

v − un+1
⟩

+ ρW (A(un+1), vun+1

v − un+1
) ≥ 0, ∀v ∈ Kh.

It is called the proximal point method for solving bifunction harmonic varia-
tional inequalities (2.6) and appears to be a new one.

(III). If Φ(u,A(u), uv
u−v ) = 0, then Algorithm 3.1 collapses to:

Algorithm 3.4. For a given u0 ∈ H, compute the approximate solu-
tion un+1 by the iterative scheme

ρF (un+1, Tun+1,
vun+1

v − un+1
)

+ ⟨E′(un+1) − E′(un), vun+1

v − un+1
⟩ ≥ 0, ∀v ∈ Kh,(3.4)

for solving trifunction harmonic variational inequality.

(IV). For W (Tu, uv
u−v ) = 0, Algorithm 3.3 reduces to:

Algorithm 3.5. For a given u0 ∈ H, compute the approximate solu-
tion un+1 by the iterative scheme

ρB(Tun+1,
vun+1

v − un+1
) + ⟨E′(un+1) − E′(un), vun+1

v − un+1
⟩ ≥ 0, ∀v ∈ Kh.

It is called the proximal point method for solving bifunction harmonic varia-
tional inequalities (2.6) and appears to be a new one.

In brief, for suitable and appropriate choice of the operators and the
spaces, one can obtain a number of known and new algorithms for solving
variational-like inequalities and related problems.

Theorem 3.1. Let F (., ., .) and the operator T be jointly pseudomono-
tone with respect to Φ(., ., .). Let E be a locally Lipchitz continuous strongly
harmonic convex function with module β > 0. Then the approximate solution
un+1 obtained from Algorithm 3.1 converges to a solution u ∈ Kh satisfying
(2.4).

Proof. Let u ∈ Kh be a solution of (2.4). Then

F (u, Tu, uv

u− v
) + Φ(u,A(u), uv

u− v
) ≥ 0, ∀v ∈ Kh,
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implies that

F (v, Tv, uv

u− v
) + Φ(v,A(v), uv

u− v
) ≥ 0, ∀v ∈ Kh,(3.5)

since F (., ., .) is jointly pseudomonotone with respect to Φ(., ., .).
Taking v = u in (3.2) and v = un+1 in (3.5), we have

ρF (un+1, Tun+1,
uun+1

u− un+1
) + ⟨E′(un+1) − E′(un), uun+1

u− un+1
⟩

≥ −ρρΦ(un+1, A(un+1), uun+1

u− un+1
).(3.6)

and

−F (un+1, Tun+1,
uun+1

u−un+1
) − ρF (un+1, Tun+1,

uun+1

u−un+1
) ≥ 0.(3.7)

We now consider the Bregman distance function

B(u,w) = E(u) − E(w) − ⟨E′(w), uw

w − u
⟩ ≥ β∥u− w∥2,(3.8)

by using the strongly harmonic convexity of E.
Now combining (3.6) and (3.7), we have

B(u, un) − B(u, un+1) = E(un+1) − E(un) − ⟨E′(un+1), unun+1

un+1 − un
⟩

+ ⟨E′(un+1) − E′(un), uun+1

u− un+1
⟩

≥ β∥un+1 − un∥2 + ⟨E′(un+1) − E′(un), uun+1

u− un+1
⟩

≥ β∥un+1 − un∥2 − ρF (un+1, Tun+1,
uun+1

u− un+1
)

− ρΦ((un+1, A(un+1,
uun+1

u− un+1
),

≥ β∥un+1 − un∥2,

where we have used (3.7).
If un+1 = un, then clearly un is a solution of the trifunction hemivari-

ational inequality (2.4). Otherwise, it follows that B(u, un) − B(u, un+1) is
nonnegative and we must have

lim
n→∞

∥un+1 − un∥ = 0.

Now using the technique of Zhu and Marcotte [55], it can be shown that the
entire sequence {un} converges to the cluster point u satisfying the trifunction
harmonic variational inequality (2.4).

It is well-known that to implement the proximal point methods, one has
to find the approximate solution implicitly, which is itself a difficult problem.
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To overcome this drawback, we now consider another method for solving (2.4)
using the auxiliary principle technique.

For a given u ∈ Kh satisfying (2.4), find w ∈ Kh such that

ρF (u, Tu, vw

w − v
) + ⟨E′(w) − E′(u), v − w⟩

+ ρΦ(u,A(u), wv

w − v
) ≥ 0, ∀v ∈ Kh,(3.9)

where E′(u) is the differential of a strongly harmonic convex function E(u)
at u ∈ Kh. Note that problems (3.1) and (3.9) are quite different problems.

It is clear that for w = u, w is a solution of (2.4). This fact allows us to
suggest and analyze another iterative method for solving trifunction harmonic
variational inequality (2.4).

Algorithm 3.6. For a given u0 ∈ H, compute the approximate solu-
tion un+1 by the iterative scheme

ρF (un, Tun,
vun+1

un+1 − v
) + ⟨E′(un+1) − E′(un), vun+1

v − un+1
⟩

+ ρΦ(un, A(un), un+1v

un+1 − v
) ≥ 0, ∀v ∈ Kh,(3.10)

which is called the implicit iterative method for solving the problem (2.4).
To implement Algorithm 3.6, we use the predictor corrector technique to

suggest the following two step method for solving the problem (2.4).

Algorithm 3.7. For a given u0 ∈ H, compute the approximate solu-
tion un+1 by the iterative scheme

ρF (wn, Twn,
wnv

v − un+1
) + ⟨E′(un+1) − E′(wn), wnv

v − un+1
⟩

≥ −ρΦ(wn, Awn,
wnv

v − un+1
), ∀v ∈ Kh,

µF (un, Tun,
vwn
v − wn

) + ⟨E′(wn) − E′(un), vwn
v − wn

⟩

≥ −ρΦ(un, Aun,
wnv

v − wn+1
), ∀v ∈ Kh.

Note that, for F (., ., .) = B(., .) and Φ(., ., .) = W (., .),, where B(., .),W (., .)
are bifunctions, Algorithm 3.7 reduces to:
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Algorithm 3.8. For a given u0 ∈ H, compute the approximate solu-
tion un+1 by the iterative scheme

ρF (Twn,
wnv

v − un+1
) + ⟨E′(un+1) − E′(wn), wnv

v − un+1
⟩

≥ −ρΦ(Awn,
wnv

v − un+1
), ∀v ∈ Kh,

µF (Tun,
vwn
v − wn

) + ⟨E′(wn) − E′(un), vwn
v − wn

⟩

≥ −ρΦ(Aun,
wnv

v − wn+1
), ∀v ∈ Kh.

which is called the predictor-corrector method for solving the bifunction har-
monic variational inequality (2.6).

If F (Tu, uv
u−v ) = ⟨Tu, uv

u−v ⟩ and W (Au, uv
u−v ) = ⟨Au, uv

u−v ⟩, then Algo-
rithm 3.8 collapses to the method for solving the harmonic variational in-
equalities (2.5).

Algorithm 3.9. For a given u0 ∈ H, compute the approximate solu-
tion un+1 by the iterative scheme

ρ⟨Twn,
wnv

v − un+1
⟩ + ⟨E′(un+1) − E′(wn), wnv

v − un+1
⟩

≥ −ρ⟨Awn,
wnv

v − un+1
⟩, ∀v ∈ Kh,

µ⟨Tun,
vwn
v − wn

⟩ + ⟨E′(wn) − E′(un), vwn
v − wn

⟩

≥ −ρ⟨Aun,
wnv

v − wn+1
⟩, ∀v ∈ Kh.

If Φ(u,A(u), uv
u−v ) = 0, then Algorithm 3.6 reduces to the following iter-

ative method for solving with trifunction harmonic variational (2.11).
Algorithm 3.10. For a given u0 ∈ H, compute the approximate solu-

tion un+1 by the iterative scheme

ρF (un, Tun,
vun+1

un+1 − v
)

+ ⟨E′(un+1) − E′(un), vun+1

v − un+1
⟩ ≥ 0, ∀v ∈ Kh,(3.11)

Similarly for suitable and appropriate choice of the operators and the
spaces, one can obtain various known and new algorithms for solving equilib-
rium problems and variational inequalities.

Using the technique of Theorem 3.1, one can consider the convergence
criteria of Algorithm 3.6.

We again apply the approach of auxiliary principle without the Bregman
distance function to suggest some implicit for approximate schemes for solving
the problem (2.4).
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For a given u ∈ Kh satisfying (2.4), consider the problem of finding w ∈
Kh such that

ρF (w + η(u− w), T (w + η(u− w)), vw

v − w
+ ⟨w − u, v − w⟩ ≥

− ρΦ(w + η(u− w), A(w), vw

v − w
) ≥ 0, ∀v ∈ Kh,(3.12)

where ρ > 0, η ∈ [0, 1] are constants.
Inequality of type (3.12) is called the auxiliary trifunction harmonic vari-

ational inequality.
If w = u, then w is a solution of (2.4). This simple observation enables

us to suggest the following iterative method for solving (2.4).

Algorithm 3.11. For a given u0 ∈ H, compute the approximate solu-
tion un+1 by the iterative scheme

F (un+1 + η(un − un+1), T (un+1 + η(un − un+1)), vun+1

v − un+1
)

+ ⟨un+1 − un, v − un+1⟩ ≥

− ρΦ(un+1+η(un−un+1), A(un+1 + η(un−un+1)), vun+1

v − un+1
),∀v ∈ Kh.

Algorithm 3.11 is called the hybrid proximal point algorithm for solving tri-
function harmonic variational inequalities(2.4).

Special Cases

We now consider some cases of Algorithm 3.11.

(I). For η = 0, Algorithm 3.11 reduces to:

Algorithm 3.12. For a given u0 ∈ H compute the approximate solu-
tion un+1 by the iterative scheme

ρF (un+1, T (un+1), vun+1

v − un+1
) + ⟨un+1 − un, v − un+1⟩

+ Φ(un+1, A(un+1), vun+1

v − un+1
) ≥ 0,∀v ∈ Kh.(3.13)

(II). If η = 1, then Algorithm 3.11 reduces to:

Algorithm 3.13. For a given u0 ∈ H, compute the approximate solu-
tion un+1 by the iterative scheme

⟨ρF (un, Tun,
unun+1

v − un+1
) + ⟨un+1 − un, v − un+1⟩

+ ρΦ(un, A(un), vun+1

v − un+1
⟩ ≥ 0,∀v ∈ Kh.

(III). If η = 1
2 , then Algorithm 3.11 collapses to:
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Algorithm 3.14. For a given u0 ∈ H, compute the approximate solu-
tion un+1 by the iterative scheme

ρF (un+1 + un
2 , T (un+1 + un

2 ), vun+1

v − un+1
) + ⟨un+1 − un, v − un+1⟩

+ρΦ(un+1 + un
2 , A(un+1 + un

2 ), vun+1

v − un+1
) ≥ 0,∀v ∈ Kh,

which is called the mid-point proximal method for solving the problem (2.4).

(IV). If Φ(., .; .) = 0, then Algorithm 3.11 reduces to:

Algorithm 3.15. For a given u0 ∈ H, compute the approximate solu-
tion un+1 by the iterative scheme

ρF (un+1 + η(un − un+1), T (un+1 + η(un − un+1)), vun+1

v − un+1
)

+⟨un+1 − un, v − un+1⟩ ≥ 0, ∀v ∈ Kh

for solving trifunction harmonic variational inequality.
We now consider the convergence criteria of Algorithm 3.12. The anal-

ysis is in the spirit of Theorem 3.1. We include its proof for the sake of
completeness and to convey an idea of the technique involved.

Theorem 3.2. Let F (., ., .) be jointly pseudomonotone with respect to
Φ(., ., .). Then the approximate solution un+1 obtained from Algorithm 3.12
converges to a solution u ∈ Kh satisfying (2.4), if

∥un+1 − u∥2 ≤ ∥un − u∥2 − ∥un+1 − un∥2.(3.14)

Proof. Let u ∈ Kh be a solution of (2.4). Then

F (u, Tu, uv

u− v
) + Φ(u,A(u), uv

u− v
) ≥ 0, ∀v ∈ Kh,

implies that

F (v, Tv, uv

u− v
) + Φ(v,A(v), uv

u− v
) ≥ 0, ∀v ∈ Kh,(3.15)

since F (., ., .) is jointly pseudomonotone with respect to Φ(., ., .).
Taking v = u in (3.14) and v = un+1 in (3.15), we have

F (un+1, T (un+1), uun+1

u− un+1
)

+ ⟨un+1 − un, u− un+1⟩ ≥ −ρΦ(un+1, A(un+1), uun+1

u− un+1
),∀v ∈ Kh.(3.16)

and

F (un+1, Tun+1,
uun+1

u− un+1
) + F (un+1, Tun+1,

uun+1

u− un+1
) ≥ 0.(3.17)
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Combining (3.16) and (3.17), we obtain

⟨un+1 − un, u− un+1⟩

≥ −F (un+1, T (un+1), uun+1

u− un+1
)

− Φ(un+1, A(un+1), uun+1

u− un+1
) ≥ 0.(3.18)

Setting u = u− un+1 and v = un+1 − un in (2.12), we obtain

2⟨un+1 − un, u− un+1⟩
= ∥u− un∥2 − ∥u− un+1∥2 − ∥un+1 − un∥2.(3.19)

Combining (3.7), (3.18) and (3.19), we have

∥un+1 − u∥2 ≤ ∥un − u∥2 − ∥un+1 − un∥2,

the required result (3.14).

Theorem 3.3. Let H be a finite dimensional space and all the assump-
tions of Theorem 3.2 hold. Then the sequence {un}∞

0
given by Algorithm 3.12

converges to a solution u of (2.4).

Proof. Let u ∈ Kh be a solution of (2.4). From (3.14), it follows that
the sequence {||u− un||} is nonincreasing and consequently {un} is bounded.
Furthermore, we have

∞∑
n=0

∥un+1 − un∥2 ≤ ∥u0 − u∥2,

which implies that

lim
n→∞

∥un+1 − un∥ = 0.(3.20)

Let û be the limit point of {un}∞

0
; a subsequence {unj}

∞

1
of {un}∞

0
converges

to û ∈ Kh. Replacing wn by unj in (3.2), taking the limit nj −→ ∞ and using
(3.20), we have

F (û, T û, ûv

v − û
) + Φ(û, A(û), ûv

v − û
≥ 0, ∀v ∈ Kh,

which implies that û solves the inequality (2.4) and

∥un+1 − u∥2 ≤ ∥un − u∥2.

Thus, it follows from the above inequality that {un}∞

0
has exactly one limit

point û and
lim
n→∞

(un) = û.

the required result.
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We again apply the technique of the auxiliary principle to suggest some
hybrid inertial proximal point methods for solving the problem (2.4). It is
worth mentioning that the inertial type methods were suggested by Polyak
[52] to speed up the convergence criteria. For the applications of the inertial
methods for solving the variational inclusions and inequalities, see [3,24,44,45]
and the references.

For a given u ∈ Kh satisfying (2.4), consider the problem of finding w ∈
Kh such that

ρF (w + η(u− w), T (w + η(u− w)), vw

v − w
)) + ⟨w − u+ α(u− u), v − w⟩

+ Φ(w + η(u− w)), A(w + η(w − u)), vw

v − w
⟩ ≥ 0, ∀v ∈ Kh,(3.21)

where ρ > 0, α, η,∈ [0, 1] are constants.

Clearly, for w = u, w is a solution of (2.4). This fact motivated us
to suggest the following inertial iterative method for solving (2.4), which is
known as the hybrid inertial iterative method.

Algorithm 3.16. For given u0, u1 ∈ H, compute the approximate so-
lution un+1 by the iterative scheme

ρF (un+1 + η(un − un+1, T (un+1 + η(un − un+1)), vun+1

v − un+1
)

+ ⟨un+1 − un + α(un − un−1, v − un+1⟩ ≥

− ρΦ(un+1+η(un−un+1, A((un+1+η(un−un+1)), vun+1

v − un+1
), ∀v ∈ Kh.

Note that for α = 1, Algorithm 3.16 is exactly the Algorithm 3.12.

(V). If η = 1, then Algorithm 3.16 reduces to:

Algorithm 3.17. For given u0, u1 ∈ H, compute the approximate so-
lution un+1 by the iterative scheme

ρF (un, Tun,
vun+1

v − un+1
) + ⟨un+1 − un + α(un − un−1, v − un+1⟩

≥ − ρΦ(un, A(un), vun+1

v − un+1
), ∀v ∈ Kh.

which is known as the explicit inertial iterative method.
(VI). For η = 1

2 , Algorithm 3.16 collapses to:
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Algorithm 3.18. For given u0, u1 ∈ H, compute the approximate so-
lution un+1 by the iterative scheme

ρF (un+1 + un
2 , T (un+1 + un

2 ), vun+1

v − un+1
)

+ ⟨un+1 − un + α(un − un−1, v − un+1⟩

≥ − ρΦ(un+1 + un
2 , A(un+1 + un

2 ), vun+1

v − un+1
), ∀v ∈ Kh.

(VII). For η = 0, Algorithm 3.16 reduces to:

Algorithm 3.19. For given u0, u1 ∈ H, compute the approximate so-
lution un+1 by the iterative scheme

ρF (un+1, Tun+1,
vun+1

v − un+1
) + ⟨un+1 − un + α(un − un−1, v − un+1⟩

≥ −ρΦ(un+1, A(un+1), vun+1

v − un+1
), ∀v ∈ Kh.

which is known as the implicit inertial iterative method.
Using essentially the technique of Theorem 3.2, Theorem 3.3 and Noor

[12], one can study the convergence analysis of Algorithm 3.19.

Remark 3.4. For different and appropriate values of the parameters η, α,
bifunctions F (., .),Φ(., .), operators T,A, harmonic convex set Kh and spaces,
we can obtain a wide class of inertial type iterative methods for solving the
harmonic variational inequalities and related optimization problems. This
shows that proposed Algorithms are quite flexible, unified and general ones.

Using essentially the technique of Theorem 3.2 and Theorem 3.3, one can
study the convergence analysis of Algorithm 3.16.

For different and appropriate values of the parameters, η, α, the operators
T,A and spaces, one can obtain a wide class of inertial type iterative meth-
ods for solving the harmonic variational inequalities and related optimization
problems.

Conclusion. We have considered and investigated some new classes of trifunc-
tion harmonic variational inequalities in this paper. It is shown that several
important problems such as harmonic complementarity problems, system of
harmonic absolute value problems and related problems can be obtained as
special cases. The auxiliary principle technique involving the Bregman dis-
tance function is applied to suggest several hybrid inertial type methods for
finding the approximate solution of trifunction harmonic variational inequal-
ities. Convergence criteria of the proposed methods is investigated under
suitable weaker conditions. We note that this technique is independent of the
projection and the resolvent of the operator. Similar approximate schemes can
be suggested for stochastic, random, fuzzy and quantum variational inequal-
ities, which are an interesting and challenging problems for further research.
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To our knowledge, no research has been carried in these fields. The compari-
son of the proposed methods with other techniques needs further efforts and
is itself an open interesting problem. The interested readers are advised to
explore this field further and discover novel and fascinating applications of
the harmonic variational inequality theory in Banach and topological spaces.
The general theory of harmonic variational inequalities is quite technical, so
we shall content ourselves here to give the flavour of the main ideas involved.
The framework chosen should be seen as a model setting for more general
results. It is an interesting open problem to explore the applications of har-
monic variational inequalities in various branches of pure and applied sciences
and develop numerical implementable methods.
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Tehnika pomoćnog principa za rješavanje trifunkcijskih
harmonijskih varijacijskih nejednadžbi

Muhammad Aslam Noor i Khalida Inayat Noor

Sažetak. U ovom članku uvodimo i istražujemo neke
nove klase trifunkcijskih harmonijskih varijacijskih nejednakosti.
Nekoliko važnih novih problema su dobiveni kao posebni sluča-
jevi. Izvedene su neke nove harmonijske funkcije Bregmanove
udaljenosti za Shannonovu entropijsku i Burgovu entropijsku har-
monijsku konveksnu funkciju. Primijenjena je tehnika pomoćnog
principa koja uključuje harmonijsku Bregmanovu funkciju udalje-
nosti kako bi se sugeriralo i analiziralo neke hibridne inercijske it-
erativne metode za rješavanje trifunkcijske harmonijske varijacij-
ske nejednadžbe. Analiza konvergencije ovih iterativnih metoda
takoder je razmatrana pod nekim blagim uvjetima. Neki posebni
slučajevi su takoder istaknuti. Rezultati dokazani u ovom članku
mogu se promatrati kao usavršavanje i poboljšanje poznatih rezul-
tata.
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