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CHARACTERIZING STRONG INFINITE-DIMENSION,
WEAK INFINITE-DIMENSION, AND DIMENSION IN

INVERSE SYSTEMS

Matthew Lynam and Leonard R. Rubin

Abstract. We present internal characterizations for an inverse
system of compact Hausdorff spaces that show when its limit will be
strongly infinite-dimensional, weakly infinite-dimensional, or have its di-
mension dim ∈ N≥0. The technique involves essential families.

1. Introduction

Essential families provide a useful tool for the study of dimension theory
([RSW], [Ru1], [Ru2], [Ru3], [Ru4], [Wa], [Sa]). On the other hand, inverse
systems are fundamental for the study of compact Hausdorff spaces, and in
the case of dimension theory, sometimes a condition on an inverse system can
be used to place an upper bound on the dimension dim of its limit. But as
for strong and weak infinite-dimension, there are no such results.

In Section 2 we will review the definitions of an essential family, weak
and strong infinite-dimensionality, and inverse systems. Our new concepts
of n-essential and ω-essential families in an inverse system will appear in
Section 3. The objective is to lift the notions of essential families in spaces
into parallel concepts for inverse systems. Then in Theorems 4.1–4.4, which
are the main results of this paper, we shall use these and ideas spawned from
them to provide characterizations of strong infinite-dimension, weak infinite-
dimension, and dim of the limit of an inverse system of nonempty compact
Hausdorff spaces strictly in terms of the system itself.

We have structured this paper so that the new definitions and the four
main theorems can be stated in Sections 2–4. Examples that illustrate ap-
plications of our main theorems will be provided in the final section, Section
11, which is accessible to the reader if desired immediately after Section 4.
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Sections 5–9 are relegated to developing the theory necessary to obtain short
proofs of the four main theorems in Section 10.

2. Basic definitions

We review here the concept of an essential family (see p. 261 of [Sa]) in a
space, avoiding the classical but cumbersome notation involving indexing. We
shall recall (Theorem 2.4) that essential families are useful in characterizing
finite dimension dim, and are necessary for defining both strong and weak
infinite-dimension (Definition 2.6). Although our definitions generally apply
to arbitrary classes of spaces, our main results will be only about the class of
compact Hausdorff spaces. The term “map” will always refer to “continuous
function.”

Let C = (A,B) be an ordered pair of sets. We call C a disjoint pair if
A ∩ B = ∅. If X is a set with A ∪ B ⊂ X, then we say that C is an ordered
pair in X. Whenever X and Y are sets, f : X → Y is a function, and C is an
ordered pair in X, then f(C) is defined to be the ordered pair (f(A), f(B))
in Y . In case C is a collection of ordered pairs in X, then f(C) will denote
{f(C) |C ∈ C}. Similarly if C is an ordered pair in Y , then f−1(C) is defined
to be the ordered pair (f−1(A), f−1(B)) in X. If C is a collection of ordered
pairs in Y, then f−1(C) = {f−1(C) |C ∈ C}.

Definition 2.1. Let X be a space and C = (A,B) an ordered pair in X.
We say that C is a closed (respectively open) pair in X if each of A and B is
closed (respectively open) in X.

Definition 2.2. If X is a space and C = (A,B) is a closed pair in X,
then a closed subset P of X is called a partition1 of C in X if there exists an
open disjoint pair (U, V ) in X such that X \ P = U ∪ V, A ⊂ U, and B ⊂ V .

Let us remark that partitions can be empty.

Definition 2.3. An essential family in a space X is a nonempty collec-
tion C of closed disjoint pairs in X such that for each collection {PC |C ∈ C}
of respective partitions PC of C in X,

⋂
{PC |C ∈ C} ̸= ∅. An inessen-

tial family in a space X is a nonempty collection C of closed disjoint pairs
in X that is not an essential family in X, that is, there exists a collection
{PC |C ∈ C} of respective partitions PC of C such that

⋂
{PC |C ∈ C} = ∅.

The following is a rewording of Theorem 5.2.17 of [Sa]:

Theorem 2.4. Let X be a nonempty normal2 T2-space and n ∈ N. Then
dimX = n if and only if there exists an essential family C in X with card(C) =
n and for every essential family C0 in X, card(C0) ≤ n.

1also called a separator
2We do not assume that normal spaces are T2.
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For dim = −1 or dim = 0, we make the following definition.

Definition 2.5. Let X be a space. Then dimX = −1 if and only if
X = ∅. If X ̸= ∅, then we say that dimX = 0 if there is no essential family
in X.

Definition 2.6. Let X be a space. We say that X is
1. infinite-dimensional if for all n ∈ N there exists an essential family

C in X with card(C) = n;
2. strongly infinite-dimensional (SID) if there exists a countably in-

finite essential family in X; and
3. weakly infinite-dimensional (WID) if it is infinite-dimensional and

not strongly infinite-dimensional.

In order to prepare for stating the main theorems in Section 4, we now
refresh the reader with the definition of inverse system and delineate the
conventions that we shall use concerning its projections and bonding maps.

Definition 2.7. An inverse system X = {Xγ , pγγ′ , (Γ,⪯)} consists of
the following: a pre-ordered, directed set (Γ,⪯); for each γ ∈ Γ, a space Xγ ;
for each pair γ ⪯ γ′ from Γ, a bonding map pγγ′ : Xγ′ → Xγ . The bonding
maps must satisfy the following two conditions:

1. pγγ = idXγ , and
2. if γ ⪯ γ′ ⪯ γ′′, then pγγ′′ = pγγ′pγ′γ′′ .

A thread of X is an element x ∈
∏

{Xγ | γ ∈ Γ} such that whenever γ ⪯ γ′,
then pγ(x) = pγγ′pγ′(x). Here, for each γ0 ∈ Γ, pγ0 :

∏
{Xγ | γ ∈ Γ} → Xγ0

is the coordinate projection. The inverse limit of X, denoted lim X, is the set
of threads of X endowed with the topology it inherits from

∏
{Xγ | γ ∈ Γ}.

Conventions. We shall use pγ : X = lim X → pγ(X) to denote the
(surjective) restriction of the coordinate projection. Similarly, if γ ⪯ γ′, then
the surjective map pγγ′ : pγ′(X) → pγ(X) will denote the restriction of the
bonding map.

3. Essentiality in a system

The purpose of this section is to provide the definitions of n-essential and
ω-essential families in an inverse system and some lemmas and definitions
related to them. The definitions are precisely the concepts that will be needed
in order to state our characterization theorems in Section 4.

Definition 3.1. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of
nonempty compact Hausdorff spaces, X = lim X, and (µ,D) a pair such that
µ ∈ Γ and D is a nonempty family of closed disjoint pairs in pµ(X). We shall
say that (µ,D) is an essential pair in X, or more briefly, is essential in
X, if for all γ ∈ Γ with µ ⪯ γ, p−1

µγ (D) is an essential family in pγ(X).
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Lemma 3.2. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of nonempty
compact Hausdorff spaces, X = lim X, and (µ,D) be essential in X. Then for
all γ ∈ Γ with µ ⪯ γ, p−1

µγ (D) is a nonempty family of closed disjoint pairs
in pγ(X). In particular, D is a nonempty family of closed disjoint pairs in
pµ(X).

Proof. This follows from Definitions 3.1 and 2.3.

Definition 3.3. Let A be a set with a relation ⪯ and B be a set with a
relation ⪯1. We shall say that f : (A,⪯) → (B,⪯1) is relation preserving
if f : A → B is a function having the property that a ⪯ b ⇒ f(a) ⪯1 f(b).

Definition 3.4. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of
nonempty compact Hausdorff spaces, X = lim X, and n ∈ N. An n-essential
sequence in X consists of a pair (µ, (Dk)) where µ : ({1, . . . , n},≤) → (Γ,⪯)
is a relation preserving function, and (Dk), k = 1, . . . , n, is a finite sequence
such that for each 1 ≤ k ≤ n,

1. Dk is a nonempty family of closed disjoint pairs in pµ(k)(X),
2. card(Dk) = k,
3. (µ(k),Dk) is essential in X, and
4. if k < n, then p−1

µ(k)µ(k+1)(Dk) ⊂ Dk+1.

Definition 3.5. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of
nonempty compact Hausdorff spaces and X = lim X. An ω-essential se-
quence in X consists of a pair (µ, (Dn)) where µ : (N,≤) → (Γ,⪯) is a
relation preserving function, and (Dn) is a sequence such that for each n ∈ N,

1. Dn is a nonempty family of closed disjoint pairs in pµ(n)(X),
2. card(Dn) = n,
3. (µ(n),Dn) is essential in X, and
4. p−1

µ(n)µ(n+1)(Dn) ⊂ Dn+1.

Lemma 3.6. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of nonempty
compact Hausdorff spaces.

1. If n ∈ N and there exists an n-essential sequence in X, then for all
n0 ∈ N with n0 < n, there exists an n0-essential sequence in X.

2. If there exists an ω-essential sequence in X, then for all n ∈ N, there
exists an n-essential sequence in X.

4. Main theorems

We now state our main results; their proofs will be given in Section 10.
Theorem 4.1 provides a characterization of SID for the limit of an inverse
system of nonempty compact Hausdorff spaces strictly in terms internal to it;
Theorem 4.2 does this for WID, and Theorems 4.3 and 4.4 accomplish this
for dim = n ∈ N, and dim = 0 respectively.
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Theorem 4.1. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of
nonempty compact Hausdorff spaces and X = lim X. Then the following
are equivalent:

1. X is SID.
2. There exists an ω-essential sequence in X.

Theorem 4.2. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of
nonempty compact Hausdorff spaces and X = lim X. Then the following
are equivalent:

1. X is WID.
2. There is no ω-essential sequence in X, but for each n ∈ N, there exists

an n-essential sequence in X.

Theorem 4.3. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of
nonempty compact Hausdorff spaces, X = lim X, and n ∈ N. Then the fol-
lowing are equivalent:

1. dimX = n.
2. There exists an n-essential sequence in X, but for all n0 ∈ N with

n0 > n, there is no n0-essential sequence in X.

Theorem 4.4. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of
nonempty compact Hausdorff spaces and X = lim X. Then the following
are equivalent:

1. dimX = 0.
2. There exists no 1-essential sequence in X.

5. Basics of essential families

We reviewed the idea of an essential family in Section 2. In the current
section we are going to provide the reader with the most fundamental “point-
set” notions needed to facilitate our use of essential families.

Lemma 5.1. Let X and Y be sets, f : X → Y a function, and C an
ordered pair in f(X). If f−1(C) is a disjoint pair in X, then C is a disjoint
pair in f(X).

Lemma 5.2. If a closed pair C in a space X has a partition in X, then
C is a closed disjoint pair in X.

Lemma 5.3. Let C = (A,B) be a closed pair in a space X. If either A = ∅
or B = ∅, then ∅ is a partition of C in X, and C is a closed disjoint pair in
X.

Lemma 5.4. Let X and Y be spaces, f : X → Y a map, and C a collection
of closed disjoint pairs in f(X). Then the following statements are true:

1. f−1(C) is a collection of closed disjoint pairs in X, and card(C) =
card(f−1(C)).
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2. If C ∈ C and P is a partition of C in f(X), then f−1(P ) is a partition
of f−1(C) in X.

3. If C is an inessential family in f(X), then f−1(C) is an inessential
family in X. More strongly, if for each C ∈ C, PC is a partition of C
in f(X) and

⋂
{PC |C ∈ C} = ∅, then

⋂
{f−1(PC) |C ∈ C} = ∅.

4. If f−1(C) is an essential family in X, then C is an essential family in
f(X).

In Lemma 5.7 we get a type of “squeezing” phenomenon. To introduce
it, we need a definition and a lemma.

Definition 5.5. If C = (A,B) is an ordered pair of sets, then a thick-
ening of C is an ordered pair C∗ = (A∗, B∗) of sets such that A ⊂ A∗ and
B ⊂ B∗, and we call C∗ a thickening into disjoint pairs if C∗ is a disjoint
pair. If X is a set and A∗∪B∗ ⊂ X, then we call C∗ a thickening of C in X. If
C is a collection of ordered pairs of sets, then a collection C∗ = {C∗ |C ∈ C}
is called a thickening of C (into disjoint pairs) if for each C ∈ C, C∗ is a
thickening of C (into disjoint pairs). It is a thickening in a set X if for each
C ∈ C, C∗ is a thickening of C in X. In case X is a space, then we say
that a thickening C∗ of C in X is closed (respectively open) if C∗ is closed
(respectively open) in X. We shall apply the same language to a collection C
of ordered pairs of sets in a set X or a space X, speaking of a thickening C∗

of C in X, and open or closed thickenings in X where appropriate. In case it
is true that for each C ∈ C, C∗ is a disjoint pair in X, then we shall say that
C∗ is a thickening of C into disjoint pairs in X.

Lemma 5.6. Let C be a closed pair in a space X and C∗ a closed thick-
ening of C in X. If P is a partition of C∗ in X, then P is also a partition of
C in X.

Lemma 5.7. Let X be a space and C, C∗ be collections of closed disjoint
pairs in X such that C∗ is a closed thickening of C. If C∗ is an inessential
family in X, then so is C.

An application of Urysohn’s Lemma shows the following.
Lemma 5.8. Let C = (A,B) be a closed disjoint pair in a normal space

X. Then either there exists a map f : X → [0, 1] such that f(A) = {0},
f(B) = {1}, and f(X) ⊂ {0, 1} or there exists a surjective map f : X → [0, 1]
such that f(A) = {0}, and f(B) = {1}. In the former case, ∅ is a partition
of C in X; in the latter case there exist two partitions P, P ′ of C in X such
that P ∩ P ′ = ∅. In either case, there exists a partition of C in X.

Lemma 5.9. Let C be an essential family in a normal space X. Then for
each nonempty subset C0 ⊂ C, C0 is an essential family in X.

Proof. Suppose that C0 ⊂ C is nonempty and C0 is an inessential family
in X. Then there exist a collection {PC |C ∈ C0}, each PC being a partition
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of C in X, such that
⋂

{PC |C ∈ C0} = ∅. For each C ∈ C \ C0, use the
last part of Lemma 5.8 to find a partition PC of C in X. It follows that⋂

{PC |C ∈ C0} = ∅, which contradicts the fact that C is an essential family
in X.

Lemmas 5.10 and 5.11 will provide convenient ways of organizing essential
families in spaces. We ask the reader to provide proofs of them, making use
of Lemma 5.9.

Lemma 5.10. Let n ∈ N, X be a normal space, and C be an essential family
in X with card(C) = n. Then there exists a finite sequence (Ck), k = 1, . . . , n,
of essential families in X such that Cn = C, and for all 1 ≤ k ≤ n,

1. card(Ck) = k, and
2. if k < n, then Ck ⊂ Ck+1.

Lemma 5.11. Let X be a normal space and C be a countably infinite
essential family in X. Then there exists a sequence (Cn) of essential families
in X such that

⋃
{Cn |n ∈ N} = C, and for all n ∈ N,

1. card(Cn) = n, and
2. Cn ⊂ Cn+1.

Lemma 5.12 shows that thickening a finite essential family in a normal
space into closed disjoint pairs does not change the cardinality.

Lemma 5.12. Let n ∈ N and C be an essential family in a normal space
X with card(C) = n. Suppose that C∗ = {C∗ |C ∈ C} is a closed thickening
of C in X into disjoint pairs. Then card(C∗) = n.

Proof. The lemma is surely true for every normal space X and n = 1.
So let us suppose that n ∈ N and it is true that for every normal space X and
every essential family C in X with card(C) = n, and every closed thickening
C∗ = {C∗ |C ∈ C} of C into disjoint pairs in X, card(C∗) = n. Let X be a
normal space and C an essential family in X with card(C) = n + 1. Suppose
that C∗ = {C∗ |C ∈ C} is a closed thickening of C in X into disjoint pairs.
We must prove that card(C∗) = n+ 1.

Of course card(C∗) ≤ n+ 1. Fix C0 ∈ C, let C0 = C \ {C0}, and put C∗
0 =

{C∗ |C ∈ C0}. Then C∗
0 is a closed thickening of C0 in X into disjoint pairs.

By Lemma 5.9, C0 is an essential family in X, and surely card(C0) = n; so the
inductive assumption yields that card(C∗

0 ) = n. Hence if card(C∗) < n+ 1, it
would be true that for some C ∈ C0, C

∗ = C∗
0 . Using Lemma 5.8, we have

two possibilities for C∗. One is that ∅ is a partition of C∗ in X. But then
by Lemma 5.6, ∅ is a partition of C in X, so {C} is an inessential family in
X. This contradicts Lemma 5.9. In the other case we find two partitions PC
and P0 of C∗ = C∗

0 in X so that PC ∩ P0 = ∅. Then by Lemma 5.6, PC is a
partition of C in X and P0 is a partition of C0 in X. Using this and Lemma
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5.6, one sees that {C,C0} is an inessential family in X, again contradicting
Lemma 5.9.

Lemma 5.13. Let X be a compact Hausdorff space and C a nonempty
collection of closed disjoint pairs in X. If {PC |C ∈ C} is a collection of
respective partitions PC of C in X, and

⋂
{PC |C ∈ C} = ∅, then there exists

a nonempty finite subset C0 ⊂ C such that
⋂

{PC |C ∈ C0} = ∅. Therefore if
C is an inessential family in X, then it has a nonempty finite subset that is
an inessential family in X.

6. Inverse systems, essential families

In this section we are going to gather some facts about inverse systems
of compact Hausdorff spaces that rely on the commutativity of diagrams in
them or the fact that the coordinate projections are closed maps. Before that
we state a well-known proposition.

Proposition 6.1. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of
compact Hausdorff spaces. Then lim X is compact and Hausdorff; moreover,
lim X ̸= ∅ if and only if for each γ ∈ Γ, Xγ ̸= ∅.

Lemma 6.2. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system. Then
whenever γ ⪯ γ′, A ⊂ lim X, and B ⊂ pγ(X),

1. pγ′(A) ⊂ p−1
γγ′(pγ(A)), and

2. p−1
γ (B) = p−1

γ′ (p−1
γγ′(B)).

Proof. For (1), let x ∈ A. We need to show that pγ′(x) ∈ p−1
γγ′(pγ(A)),

that is, that pγγ′pγ′(x) ∈ pγ(A). But, pγγ′pγ′(x) = pγ(x) ∈ pγ(A). Item (2)
follows from the fact that pγ = pγγ′pγ′ .

Lemma 6.3. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of compact
Hausdorff spaces and X = lim X. Then the following are true:

1. If A is a closed subspace of X and U an open neighborhood of A
in X, then there exists β ∈ Γ such that for all γ ∈ Γ with β ⪯ γ,
p−1
γ (pγ(A)) ⊂ U .

2. If C is a closed disjoint pair in X, then there exists β ∈ Γ such that
for all γ ∈ Γ with β ⪯ γ, pγ(C) is a closed disjoint pair in pγ(X), and
hence p−1

γ (pγ(C)) is a disjoint pair which is a closed thickening of C
in X.

3. If C is a finite and non-empty family of closed disjoint pairs in X,
then there exists β ∈ Γ such that for all γ ∈ Γ with β ⪯ γ, pγ(C) is a
family of closed disjoint pairs in pγ(X), and hence C∗ = p−1

γ (pγ(C)) is
a closed thickening of C in X into disjoint pairs.

4. If C is a closed disjoint pair in X, β ∈ Γ, and pβ(C) is a disjoint pair
in pβ(X), then for all γ ∈ Γ with β ⪯ γ, p−1

βγ (pβ(C)) is a disjoint pair
in pγ(X) which is a closed thickening of pγ(C) in pγ(X).
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5. If C is a finite essential family in X, then there exists β ∈ Γ such that
for all γ ∈ Γ with β ⪯ γ, pγ(C) is a family of closed disjoint pairs
in pγ(X), card(pγ(C)) = card(C), and pγ(C) is an essential family in
pγ(X).

Proof. Let us prove (1). In case A = ∅, then any choice of β will suffice,
so assume that A ̸= ∅. Using Proposition 2.5.5 of [En], for each x ∈ A,
there exists γx ∈ Γ and an open neighborhood Vx of pγx(x) in Xγx with
x ∈ p−1

γx (Vx) ⊂ U . Since A is compact there exists a finite subset B ⊂ A such
that {p−1

γx (Vx) |x ∈ B} covers A. Now (Γ,⪯) is a directed set and B is finite,
so there exists β ∈ Γ having the property that for all x ∈ B, γx ⪯ β.

Suppose that γ ∈ Γ, β ⪯ γ, and a ∈ A. It will be sufficient to prove
that p−1

γ (pγ(a)) ⊂ U . Choose x ∈ B with a ∈ p−1
γx (Vx). Now γx ⪯ β ⪯ γ,

so by Lemma 6.2(2), p−1
γx (Vx) = p−1

γ (p−1
γxγ(Vx)). Hence a ∈ p−1

γ (p−1
γxγ(Vx)), so

pγ(a) ∈ p−1
γxγ(Vx), and it follows from this and Lemma 6.2(2) that p−1

γ (pγ(a))
⊂ p−1

γ (p−1
γxγ(Vx)) = p−1

γx (Vx) ⊂ U . This completes our proof of (1).
Let C = (A,B) be a closed disjoint pair in X. Since X and all our spaces

Xγ are compact and Hausdorff, one has that for all γ ∈ Γ, pγ(C) is a closed
pair in pγ(X). Select a disjoint pair (UA, UB) in X such that UA is an open
neighborhood of A and UB is an open neighborhood of B. Using (1), find
βA ∈ Γ such that for all γ ∈ Γ with βA ⪯ γ, p−1

γ (pγ(A)) ⊂ UA. Similarly, find
βB ∈ Γ such that for all γ ∈ Γ with βB ⪯ γ, p−1

γ (pγ(B)) ⊂ UB . Now choose
β ∈ Γ with βA ⪯ β and βB ⪯ β and suppose that γ ∈ Γ with β ⪯ γ. Then
both βA ⪯ γ and βB ⪯ γ. Hence p−1

γ (pγ(A)) ⊂ UA, p−1
γ (pγ(B)) ⊂ UB , and

UA ∩ UB = ∅. Moreover, A ⊂ p−1
γ (pγ(A)) and B ⊂ p−1

γ (pγ(B)). Since both
p−1
γ (pγ(A)) and p−1

γ (pγ(B)) are closed in X, our proof of (2) is complete.
Item (3) follows from (2). One proves (4) as follows. Surely pβ(C) is

a closed disjoint pair in pβ(X). Suppose that γ ∈ Γ and β ⪯ γ. Applying
Lemma 5.4(1), one sees that p−1

βγ (pβ(C)) is a closed disjoint pair in pγ(X).
Lemma 6.2(1) can now be applied to each coordinate of the pair C.

To prove (5), first get β that satisfies (3); let γ ∈ Γ with β ⪯ γ. By
(3), C∗ = p−1

γ (pγ(C)) is a closed thickening of C in X into disjoint pairs.
From Lemma 5.12, card(C∗) = card(C). Of course, card(C∗) ≤ card(pγ(C)) ≤
card(C). Hence card(pγ(C)) = card(C). From (3) again, one sees that pγ(C) is
a family of closed disjoint pairs in pγ(X). Suppose that pγ(C) is an inessential
family in pγ(X). Lemma 5.4(3) then yields that C∗ is an inessential family
in X. In turn, Lemma 5.7 shows that C is an inessential family in X, a
contradiction. This proves (5).

Definition 6.4. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of
nonempty compact Hausdorff spaces and X = lim X. If C is a nonempty
family of closed pairs in X and β ∈ Γ, then we say that (C, β) satisfies the
projection criterion in X if for all γ ∈ Γ with β ⪯ γ,
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1. pγ(C) is an essential family in pγ(X),
2. card(pγ(C)) = card(C),
3. p−1

βγ (pβ(C)) is a closed thickening of pγ(C) in pγ(X) into disjoint pairs,
4. p−1

βγ (pβ(C)) is an essential family in pγ(X), and
5. card(p−1

βγ (pβ(C))) = card(pγ(C)).

Lemma 6.5. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of nonempty
compact Hausdorff spaces and X = lim X. If C is a nonempty finite essential
family in X, then there exists β ∈ Γ such that for all β0 ∈ Γ with β ⪯ β0,
(C, β0) satisfies the projection criterion in X.

Proof. Take β as in Lemma 6.3(5), and let β0 ∈ Γ be chosen so that
β ⪯ β0. Suppose that γ ∈ Γ with β0 ⪯ γ. Then β ⪯ γ, so from Lemma 6.3(5),
we get (1) and (2) of Definition 6.4. Item (3) results from Lemma 6.3(4). We
get (4) using (1), (3), and Lemma 5.7. Finally apply Lemma 5.12 and (3) to
see that (5) obtains.

Lemma 6.6. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of nonempty
compact Hausdorff spaces, X = lim X, C be a finite essential family in X,
µ ∈ Γ, and (C, µ) satisfy the projection criterion in X. Let C∗ be a finite
essential family in X with C ⊂ C∗. Then there exists µ∗ ∈ Γ with µ ⪯ µ∗ such
that (C∗, µ∗) satisfies the projection criterion in X.

Proof. Apply Lemma 6.5 to the finite essential family C∗ in X to obtain
β as indicated there. Select µ∗ ∈ Γ so that both β ⪯ µ∗ and µ ⪯ µ∗. According
to Lemma 6.5, (C∗, µ∗) satisfies the projection criterion in X.

Corollary 6.7. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of
nonempty compact Hausdorff spaces and X = lim X. Suppose that (Cn) is a
sequence of nonempty finite essential families in X such that for each n ∈ N,
Cn ⊂ Cn+1. Then there exists a relation preserving function µ : (N,≤) →
(Γ,⪯) such that for each k ∈ N, (Ck, µ(k)) satisfies the projection criterion
in X.

Proof. Apply Lemma 6.5 to find µ(1) ∈ Γ such that (C1, µ(1)) satisfies
the projection criterion in X. Then apply Lemma 6.6 recursively to find the
function µ as requested.

Corollary 6.8. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of
nonempty compact Hausdorff spaces, X = lim X, and n ∈ N. Suppose that
(Ck), k = 1, . . . , n, is a finite sequence of nonempty finite essential families
in X such that for each 1 ≤ k < n, Ck ⊂ Ck+1. Then there exists a relation
preserving function µ : ({1, . . . , n},≤) → (Γ,⪯) such that for each 1 ≤ k ≤ n,
(Ck, µ(k)) satisfies the projection criterion in X.
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Proof. For each k ∈ N with n < k, put Ck = Cn, apply Corollary
6.7 to the sequence (Ck), let µ∗ be the relation preserving function obtained
therefrom, and define the function µ = µ∗|{1, . . . , n}.

Lemma 6.9 will provide the first step in an inductive argument in the
proof of Lemma 9.2.

Lemma 6.9. Let C1 be a family of closed pairs in X with card(C1)
= 1. Suppose that β ∈ Γ and that (C1, β) satisfies the projection criterion
in X. Define µ : {1} → Γ by µ(1) = β and put D1 = pµ(1)(C1). Then
(µ, (D1)) is a 1-essential sequence in X.

Proof. We have to show that the four conditions in Definition 3.4 are
satisfied by the pair (µ, (D1)). By Definition 6.4(1), D1 is an essential family
in pµ(1)(X) = pβ(X), so by Definition 2.3, we get (1) of Definition 3.4. Plainly
card(D1) = 1, so we also get (2). To show that Definition 3.4(3) is operational,
i.e., that (µ(1),D1)) is essential in X, suppose that γ ∈ Γ and µ(1) ⪯ γ.
According to Definition 3.1, we are required to show that p−1

µ(1)γ(D1) is an
essential family in pγ(X). By Definition 6.4(1), pγ(C1) is an essential family
in pγ(X), and by Definition 6.4(3), p−1

µ(1)γ(D1) = p−1
µ(1)γ(pµ(1)(C1)) is a closed

thickening of pγ(C1) in pγ(X) into disjoint closed pairs. Apply Lemma 5.7 to
conclude that p−1

µ(1)γ(D1) is an essential family in pγ(X). Finally, Definition
3.4(4) is true vacuously.

7. Finite inessential families in inverse limits

Lemma 7.3 might be thought of as providing the “fundamental” step in
the process of relating a nonempty finite inessential family in the limit of an
inverse system of nonempty Hausdorff compacta to the system itself. It will
be critical in our proof of Lemma 8.1. For use in our proof of this lemma, we
provide the definition of a swelling (p. 472 of [En]) and cite the “swelling”
Theorem, Theorem 7.1.4 of [En], in the form needed here.

Definition 7.1. A swelling of a family {As | s ∈ S} of subsets of a space
X is a family {Bs | s ∈ S} such that As ⊂ Bs for all s ∈ S and for every finite
nonempty subset S0 ⊂ S,

⋂
{As | s ∈ S0} = ∅ if and only if

⋂
{Bs | s ∈ S0} = ∅.

Theorem 7.2. Let Γ0 be a nonempty finite set and {Fγ | γ ∈ Γ0} be a
family of closed subsets of a normal Hausdorff space X. Then {Fγ | γ ∈ Γ0}
has a swelling {Uγ | γ ∈ Γ0} into open subsets Uγ of X.

Lemma 7.3. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of compact
Hausdorff spaces and X = lim X. If Γ0 ⊂ Γ is finite and nonempty and
{Cγ | γ ∈ Γ0} is an inessential family in X, then there exists a common suc-
cessor γ0 of Γ0 in Γ such that for all β ∈ Γ with γ0 ⪯ β, {pβ(Cγ) | γ ∈ Γ0} is
an inessential family in pβ(X).
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Proof. Since {Cγ | γ ∈ Γ0} is an inessential family in X, then there
exists a collection {Pγ | γ ∈ Γ0} such that for each γ ∈ Γ0, Pγ is a partition
of Cγ in X, and

⋂
{Pγ | γ ∈ Γ0} = ∅. For each γ ∈ Γ0, denote Cγ = (Aγ , Bγ).

The definition of partition gives us a disjoint open pair (Uγ , Vγ) in X such
that,

Aγ ⊂ Uγ and Bγ ⊂ Vγ ,(7.1)
X \ Pγ = Uγ ∪ Vγ .(7.2)

Making use of Theorem 7.2, choose a collection {Qγ | γ ∈ Γ0} of open subsets
of X with the following properties:

for each γ ∈ Γ0, Pγ ⊂ Qγ ,(7.3) ⋂
{Qγ | γ ∈ Γ0} = ∅, and(7.4)

for each γ ∈ Γ0, Qγ ⊆ X \ (Aγ ∪Bγ).(7.5)

Then set

Gγ = Uγ ∩ (X \Qγ) and Hγ = V γ ∩ (X \Qγ).

Thus we have that for all γ ∈ Γ0,

Gγ and Hγ are both closed in X,

X \Qγ = Gγ ∪Hγ , and
Aγ ⊂ Gγ ⊂ Uγ and Bγ ⊂ Hγ ⊂ Vγ .

Employing Lemma 6.3(1), for each γ ∈ Γ0, choose βγ ∈ Γ so that γ ⪯ βγ
and for all β ∈ Γ with βγ ⪯ β, the following inclusions hold:

(†) p−1
β (pβ(Gγ)) ⊂ Uγ and p−1

β (pβ(Hγ)) ⊂ Vγ .

Let γ0 be a common successor to {βγ | γ ∈ Γ0}; then of course, γ0 is also a
common successor to Γ0. Moreover, for each β ∈ Γ with γ0 ⪯ β, and for all
γ ∈ Γ0, (†) holds true. Applying Lemma 6.3(2) if necessary, we may assume
in addition that for each β ∈ Γ with γ0 ⪯ β and each γ ∈ Γ0, pβ(Cγ) is a
closed disjoint pair in pβ(X).

To see that γ0 satisfies the hypothesis, fix β ∈ Γ with γ0 ⪯ β. We
must demonstrate that {pβ(Cγ) | γ ∈ Γ0} is an inessential family in pβ(X).
Since each pβ is a closed map, then for each γ ∈ Γ0, we can choose open
neighborhoods Kγ of pβ(Gγ) and Lγ of pβ(Hγ) in pβ(X) such that

p−1
β (pβ(Gγ)) ⊂ p−1

β (Kγ) ⊂ Uγ and p−1
β (pβ(Hγ)) ⊂ p−1

β (Lγ) ⊂ Vγ .

Note that since (Uγ , Vγ) is a disjoint pair in X, then we have that p−1
β (Kγ , Lγ)

is a disjoint pair in X as well.
For each γ ∈ Γ0 we now set

(∗) Rγ = pβ(X) \ (Kγ ∪ Lγ).
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We claim that Rγ is a partition of pβ(Aγ , Bγ) in pβ(X). Indeed, we have that
pβ(Aγ) ⊂ pβ(Gγ) ⊂ Kγ , pβ(Bγ) ⊂ pβ(Hγ) ⊂ Lγ , pβ(X) \Rγ = Kγ ∪Lγ . But
Kγ ∩ Lγ = ∅ for the following reasons. If x ∈ Kγ ∩ Lγ ⊂ pβ(X), then the
surjectivity of pβ : X → pβ(X) shows that ∅ ̸= p−1

β (x) ⊂ p−1
β (Kγ) ∩ p−1

β (Lγ).
However, we showed above that p−1

β (Kγ , Lγ) is a disjoint pair in X.
We will now demonstrate that

⋂
{Rγ | γ ∈ Γ0} = ∅. Of course

⋂
{Rγ | γ ∈

Γ0} ⊂ pβ(X). Note that for each γ ∈ Γ0,

X \Qγ = Gγ ∪Hγ

⊂ p−1
β (pβ(Gγ)) ∪ p−1

β (pβ(Hγ))
⊂ p−1

β (Kγ) ∪ p−1
β (Lγ).

It follows from this and (∗) that

p−1
β (Rγ) = p−1

β (pβ(X) \ (Kγ ∪ Lγ))
= X \ (p−1

β (Kγ) ∪ p−1
β (Lγ))

⊂ Qγ .

From (4) we have that
⋂

{Qγ | γ ∈ Γ0} = ∅, and so
⋂

{p−1
β (Rγ) | γ ∈ Γ0} =

p−1
β (
⋂

{Rγ | γ ∈ Γ0}) = ∅. Since pβ : X → pβ(X) is surjective, then⋂
{Rγ | γ ∈ Γ0} = ∅.

And so {pβ(Cγ) | γ ∈ Γ0} is an inessential family in pβ(X).

8. Induced essential families

Lemma 8.1 will show that if (µ,D) is essential in an inverse system X (see
Definition 3.1), then it will induce an essential family in lim X of precisely
the same cardinality as that of D. Lemma 8.2 will show how, under certain
conditions, a nonempty collection of closed disjoint pairs in a coordinate space
Xµ1 can be “pulled up” to a coordinate space Xµ2 , µ1 ⪯ µ2, so that it is a
subset of another collection of closed disjoint pairs in Xµ2 .

Lemma 8.1. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of nonempty
compact Hausdorff spaces and X = lim X. Suppose that (µ,D) is essential
in X. Put C = p−1

µ (D). Then C is an essential family in X with card(C) =
card(D).

Proof. Using Definition 3.1 with γ = µ, we have that D is a family of
closed disjoint pairs in pµ(X). An application of Lemma 5.4(1) yields that C
is a collection of closed disjoint pairs in X with card(C) = card(D). Suppose,
however, that C is not an essential family in X. Applying Lemma 5.13, we
find a nonempty finite subset D0 ⊂ D such that C0 = p−1

µ (D0) is an inessential
family in X.
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Apply Lemma 7.3 to find γ ∈ Γ with µ ⪯ γ such that pγ(C0) is an inessen-
tial family in pγ(X). From Lemma 6.2(2) one sees that C0 = p−1

γ (p−1
µγ (D0)).

It follows that pγ(C0) = p−1
µγ (D0) ⊂ p−1

µγ (D) which is an essential family in
pγ(X) by Definition 3.1. By virtue of Lemma 5.9, pγ(C0) is also an essential
family in pγ(X). Thus we arrive at a contradiction.

Lemma 8.2. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of nonempty
compact Hausdorff spaces and X = lim X. Suppose that

1. {µ1, µ2} ⊂ Γ with µ1 ⪯ µ2,
2. D1 is a nonempty collection of closed disjoint pairs in pµ1(X),
3. D2 is a nonempty collection of closed disjoint pairs in pµ2(X), and
4. p−1

µ1µ2
(D1) ⊂ D2.

Define C1 = p−1
µ1

(D1) and C2 = p−1
µ2

(D2). Then C1 and C2 are collections
of closed disjoint pairs in X with C1 ⊂ C2. If in addition, both (µ1,D1) and
(µ2,D2) are essential in X, then both C1 and C2 are essential families in X,
card(C1) = card(D1), and card(C2) = card(D2).

Proof. An application of (2), (3), and the first part of Lemma 5.4(1)
yields that C1 and C2 are collections of closed disjoint pairs in X. Use the
inclusion in (4) and the definitions of C1 and C2 in conjunction with Lemma
6.2(2) to get that C1 = p−1

µ1
(D1) = p−1

µ2
(p−1
µ1µ2

(D1)) ⊂ p−1
µ2

(D2) = C2. Finally,
apply Lemma 8.1 to see that both C1 and C2 are essential families in X and
to obtain the cardinality facts.

9. Finite essential families in inverse limits

Important outputs of this section are Lemmas 9.2 and Lemma 9.3. The
former shows that an essential family C in the limit of an inverse system X
of nonempty compact Hausdorff spaces will provide us with an n-essential or
ω-essential family in X, depending on the cardinality of C. The latter does
this in reverse. We need Lemma 9.1 to support our proof of Lemma 9.2.

Lemma 9.1. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of nonempty
compact Hausdorff spaces, X = lim X, n ∈ N, and (Ck), k = 1, . . . , n + 1, be
a finite sequence of essential families in X such that for each 1 ≤ k ≤ n+ 1,
card(Ck) = k. Suppose in addition that µ : ({1, . . . , n + 1},≤) → (Γ,⪯) is
a relation preserving function, for all 1 ≤ k ≤ n + 1, (Ck, µ(k)) satisfies the
projection criterion in X, and for all 1 ≤ k ≤ n, Ck ⊂ Ck+1.

Assume that there exists a finite sequence (Dk), k = 1, . . . , n, such that
D1 = pµ(1)(C1), (µ|{1, . . . , n}, (Dk)) is an n-essential sequence in X, for each
1 ≤ k < n, p−1

µ(k)µ(k+1)(Dk) ⊂ Dk+1, and for each 1 ≤ k ≤ n and γ ∈ Γ with
µ(k) ⪯ γ, p−1

µ(k)γ(Dk) is a closed thickening of pγ(Ck) in pγ(X). Put

(†) Dn+1 = p−1
µ(n)µ(n+1)(Dn) ∪ {pµ(n+1)(Cn+1)},
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where Cn+1 is the unique element of Cn+1 \ Cn. Then:

1. p−1
µ(n)µ(n+1)(Dn) ⊂ Dn+1,

2. for all γ ∈ Γ with µ(n+ 1) ⪯ γ, p−1
µ(n+1)γ(Dn+1) is a closed thickening

of pγ(Cn+1) in pγ(X) into disjoint pairs, and
3. (µ, (Dk)) is an (n+ 1)-essential sequence in X.

Proof. We get (1) from (†); proceed as follows for (2). Fix γ ∈ Γ with
µ(n+1) ⪯ γ. Of course, µ(n) ⪯ µ(n+1) ⪯ γ. By hypothesis, p−1

µ(n)µ(n)(Dn) =
Dn is a closed thickening of pµ(n)(Cn) in pµ(n)(X). This and Lemma 6.3(4)
yield that,

(†1) p−1
µ(n)γ(Dn)=(pµ(n)µ(n+1)pµ(n+1)γ)−1(Dn)=p−1

µ(n+1)γ(p−1
µ(n)µ(n+1)(Dn))

is a closed thickening of pγ(Cn) in pγ(X) into disjoint pairs.
Also by hypothesis, (Cn+1, µ(n + 1)) satisfies the projection criterion in

X. So by Definition 6.4(1),
(†2) pγ(Cn+1) is an essential family in pγ(X).
Applying (†2) and Definition 2.3, one sees that pγ(Cn+1) is a collection of

closed disjoint pairs in pγ(X); as a special case,
(†3) pγ(Cn+1) is a closed disjoint pair in pγ(X) which is trivially a closed

thickening of pγ(Cn+1) in pγ(X).
From (†3), one has,
(†4) pµ(n+1)(Cn+1) is a closed disjoint pair in pµ(n+1)(X).
Moreover, the fact from (†4) that pµ(n+1)(Cn+1) is a closed disjoint pair

in pµ(n+1)(X) along with Lemma 5.4(1), show that p−1
µ(n+1)γ(pµ(n+1)(Cn+1))

is a closed disjoint pair in pγ(X). Apply Lemma 6.2(1) to detect that
(†5) p−1

µ(n+1)γ(pµ(n+1)(Cn+1)) is a closed thickening of pγ(Cn+1) in pγ(X)
into a disjoint pair.

Use (†), (†1), and (†5) to conclude that (2) holds true.
To prove (3) we have to show that (1)–(4) of Definition 3.4 hold true for

µ and the finite sequence (µ(k),Dk), k = 1, . . . , n+1. By assumption, (1)–(4)
of Definition 3.4 hold true for µ|{1, . . . , n} and the finite sequence (µ(k),Dk),
k = 1, . . . , n. So it remains to demonstrate that,

(A1) Dn+1 is a nonempty family of closed disjoint pairs in pµ(n+1)(X),
(B1) card(Dn+1) = n+ 1,
(C1) (µ(n+ 1),Dn+1) is essential in X, and
(D1) p−1

µ(n)µ(n+1)(Dn) ⊂ Dn+1.
Since pµ(n+1)(Cn+1) ∈ Dn+1, then Dn+1 ̸= ∅. Apply (2) with γ = µ(n+1)

to see that Dn+1 is a family of closed disjoint pairs in pµ(n+1)(X). So (A1) is
established. By hypothesis card(Cn+1) = n+ 1, and Definition 6.4(2) obtains
here. Hence we have,

(†6) card(pµ(n+1)(Cn+1)) = card(Cn+1) = n+ 1.
Apply (2) and Lemma 5.12 to obtain (B1).
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To prove (C1) we must show that p−1
µ(n+1)γ(Dn+1) is an essential family in

pγ(X). From (2), p−1
µ(n+1)γ(Dn+1) is a closed thickening of pγ(Cn+1) in pγ(X)

into disjoint pairs. Apply this and Lemma 5.7 to get (C1). Of course, (D1)
is true because of (†).

Lemma 9.2. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of nonempty
compact Hausdorff spaces and X = lim X.

(1) Suppose that n ∈ N, C1, . . . , Cn is a finite sequence of essential families
in X, for each 1 ≤ k ≤ n, card(Ck) = k, and for each 1 ≤ k < n, Ck ⊂ Ck+1.
Then there is an n-essential sequence (µ, (Dk)) in X such that D1 = pµ(1)(C1),
and for each 1 ≤ k < n, p−1

µ(k)µ(k+1)(Dk) ⊂ Dk+1.
(2) Suppose that (Cn) is a sequence of essential families in X such that

for each n ∈ N, card(Cn) = n and Cn ⊂ Cn+1. Then there is an ω-essential
sequence (µ, (Dn)) in X such that D1 = pµ(1)(C1) and for each n ∈ N,
p−1
µ(n)µ(n+1)(Dn) ⊂ Dn+1.

Proof. The lemma is true in (1) for n = 1 via µ : ({1},≤) → (Γ,⪯)
from Lemma 6.9. Use this and and Lemma 9.1(1,3) recursively to complete
the proof for each of (1) and (2).

Lemma 9.3. Let X = {Xγ , pγγ′ , (Γ,⪯)} be an inverse system of nonempty
compact Hausdorff spaces and X = lim X.

(1) Suppose that n ∈ N and there exists an n-essential sequence (µ, (Dk))
in X. For each 1 ≤ k ≤ n, define Ck = p−1

µ(k)(Dk). Then for each 1 ≤ k ≤ n,

Ck is an essential family in X, card(Ck) = k, and if k < n, then Ck ⊂ Ck+1.
(2) Suppose that there exists an ω-essential sequence (µ, (Dn)) in X. For

each n ∈ N define Cn = p−1
µ(n)(Dn). Then for each n ∈ N, Cn is an essential

family in X, card(Cn) = n, and Cn ⊂ Cn+1

Proof. Applying Definitions 3.4(3) and 3.5(3) in both (1) and (2), one
sees that for each k ∈ dom(µ), (µ(k),Dk) is essential in X. Therefore the
proof is completed by applying Lemmas 8.1 and 8.2 respectively.

10. Proofs of the main results

Proof of Theorem 4.1.
(1) ⇒ (2). Since X is SID, by Definition 2.6(2), there is a countably

infinite essential family C in X. Using Lemma 5.11, write C =
⋃

{Cn |n ∈ N}
where for each n ∈ N, Cn is an essential family in X, card(Cn) = n, and
Cn ⊂ Cn+1. Then apply Lemma 9.2(2) to see that there is an ω-essential
sequence in X.

(2) ⇒ (1). We are given that there is an ω-essential sequence in X. By
Lemma 9.3(2), there is a sequence (Cn) of essential families in X such that
for each n ∈ N, card(Cn) = n and Cn ⊂ Cn+1. An application of Lemma 5.13
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shows that
⋃

{Cn |n ∈ N} is a countably infinite essential family in X, so by
Definition 2.6(2), X is SID.

Proof of Theorem 4.2.
(1) ⇒ (2). Using (2) ⇒ (1) of Theorem 4.1 and the fact that X is not SID,

we see that there does not exist an ω-essential sequence in X. Let n ∈ N.
Since X is WID, then by Definition 2.6, there exists an essential family C
in X with card(C) = n. Use Lemma 5.10 for C to find a finite sequence
(Ck), k = 1, . . . , n, of essential families in X such that for each 1 ≤ k ≤ n,
card(Ck) = k, and if 1 ≤ k < n, then Ck ⊂ Ck+1. An application of Lemma
9.2(1) yields an n-essential sequence in X.

(2) ⇒ (1). Since there is no ω-essential sequence in X, then Theorem 4.1
(1) ⇒ (2) shows that X is not SID. Let n ∈ N; by hypothesis there exists
an n-essential sequence in X. By Lemma 9.3(1), we see that there exists an
essential family in X, given there as Cn, with card(Cn) = n.

Proof of Theorem 4.3.
(1) ⇒ (2). By Theorem 2.4, dimX = n implies that there exists an

essential family C in X with card(C) = n. Use Lemma 5.10 for C to find a
finite sequence (Ck), k = 1, . . . , n, of essential families in X such that for each
1 ≤ k ≤ n, card(Ck) = k, and if 1 ≤ k < n, then Ck ⊂ Ck+1. An application
of Lemma 9.2(1) yields an n-essential sequence in X.

To arrive at a contradiction, suppose that n0 > n and there exists an
n0-essential sequence (µ, (Dk)) in X. Then card(Dn0) = n0 and (µ(n0),Dn0)
is essential in X. By Lemma 8.1, X has an essential family C0 with card(C0) =
n0. But dimX = n, so this contradicts Theorem 2.4.

(2) ⇒ (1). Since there exists an n-essential sequence in X, then Lemma
8.1 implies there exists an essential family in X with cardinality n. To prove
that dimX = n, let n0 ∈ N with n0 > n. According to Theorem 2.4, we have
to show that there is no essential family in X whose cardinality is n0. Suppose
that there is an essential family C in X with card(C) = n0. Use Lemma 5.10
for C to find a finite sequence (Ck), k = 1, . . . , n0, of essential families in
X such that for each 1 ≤ k ≤ n0, card(Ck) = k, and if 1 ≤ k < n0, then
Ck ⊂ Ck+1. An application of Lemma 9.2(1) yields an n0-essential sequence
in X. This gives us a contradiction.

We shall leave the proof of Theorem 4.4 to the reader.

11. Examples

Our examples will involve inverse sequences X = (Xk, pkk+1, (N,≤)) of
nonempty compact metrizable spaces Xk. Their limits are nonempty metriz-
able compacta. Let X = lim X and n ≥ 0. A typical limit theorem states
that if for each k ∈ N, dimXk ≤ n, then dimX ≤ n. Such a theorem does
not provide us conditions that would show that dimX = n. In the event
that dimXk ≤ n is not necessarily true for each k, then it could still be true
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that dimX ≤ n. Once again, those typical limit theorems are not helpful in
detecting this.

As usual, for each k ∈ N, let Ik = [0, 1]k ⊂ Rk, and if j ∈ N with k < j,
let qjk : Ij → Ik be the coordinate projection. Put I0 = {0} and for each
k ∈ N, let qk0 : Ik → I0 be the constant map. For each k ≥ 0, dim Ik = k.
Denote

(†) Yk =
⊔

{Ij | 0 ≤ j ≤ k}.

Thus Yk is the topological sum of {I0, . . . , Ik}.
For each k ≥ 1, the standard essential family Dk in Ik with card(Dk) = k

consists of the pairs Dk
i = (Lki , Rki ), 1 ≤ i ≤ k, of opposite faces of Ik

(Corollary 5.2.16 of [Sa]). Here Lki = {(x1, . . . , xk) ∈ Ik |xi = 0} and Rki =
{(x1, . . . , xk) ∈ Ik |xi = 1}.

Lemma 11.1. Let k ∈ N. Then for each 1 ≤ i ≤ k, (qk+1
k )−1(Dk

i ) = Dk+1
i .

Hence (qk+1
k )−1(Dk) ⊂ Dk+1.

From Lemma 11.1 one sees that all but one element of the standard
essential family for Ik+1 comes from “pulling up” the standard essential family
from Ik.

The Hilbert cube I∞ is
∏

{Ij | j ∈ N} where for each j, Ij = [0, 1]. One
can define the countably infinite collection of opposite face pairs in I∞ by
analogy with what we just did for finite-dimensional cubes; it is known that
this family is essential in I∞ (Theorem 5.6.1 of [Sa]). So the Hilbert cube is
SID. Alternatively consider the next example.

Example 1. Let X = (Xk, pkk+1, (N,≤)) be the inverse sequence where
for each k ∈ N, Xk = Ik and pkk+1 = qk+1

k . Put X = lim X.
It can be proved that X ∼= I∞. Now define the relation preserving

function µ : (N,≤) → (N,≤) by µ = idN. Using Lemma 11.1, one can
see that p−1

kk+1(Dk) ⊂ Dk+1. It is not difficult to see that for each k ∈ N,
(µ(k),Dµ(k)) = (k,Dk) is essential in X. Hence (µ, (Dk)) is an ω-essential se-
quence in X. By Theorem 4.1, X is SID. So Example 1 provides an alternate
way of proving that I∞ is SID.

Although it is possible to define a WID compactum inside I∞, our next
example will produce a WID metrizable compactum indirectly. This com-
pactum of course could be embedded in I∞.

Example 2. Let Y = (Yk, rkk+1, (N,≤)) (see (†)) be the inverse se-
quence where for each k ∈ N, rkk+1(x) = x for x ∈

⊔
{Ij | 1 ≤ j ≤ k}, and

rkk+1|Ik+1 = qk+1
0 : Ik+1 → I0. Put Y = lim Y.

We leave it to the reader to see that there is no ω-essential sequence in
Y but that for each n ∈ N, there exists an n-essential sequence in Y. Hence
Theorem 4.2 shows that Y is WID.
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Example 3. For each n ∈ N, there exists an inverse sequence Yn =
(Yk, skk+1, (N,≤)) such that with Y n = lim Yn, dimY n = n.

We leave it to the reader to define the bonding maps skk+1 by adjusting
the maps rkk+1 in Example 2 so that Theorem 4.3 can be applied. In this
example there is no upper bound on the dimension of the coordinate spaces Yk.
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Karakterizacije jake beskonačne dimenzije, slabe beskonačne
dimenzije i dimenzije u inverznim sustavima

Matthew Lynam i Leonard R. Rubin

Sažetak. Predstavljamo interne karakterizacije za in-
verzni sustav kompaktnih Hausdorffovih prostora koje pokazuju
kada će njegov limes biti jako beskonačno-dimenzionalan, slabo
beskonačno-dimenzionalan, ili ima dimenziju dim ∈ N≥0. Tehni-
ka uključuje esencijalne familije.
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