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PARAMETER ESTIMATION PROBLEM IN THE BOX-COX
SIMPLE LINEAR MODEL

Darija Marković

Abstract. Given the data (xi, yi), i = 1, . . . , n, such that yi > 0 for
all i = 1, . . . , n, we consider the parameter estimation problem in a simple
linear model with the Box-Cox transformation of the dependent variable.
Maximum likelihood estimation of its parameter reduces to one nonlinear
least squares problem. As a main result, we obtained three theorems in
which we give necessary and sufficient conditions which guarantee the ex-
istence of the least squares estimate. In the most interesting case when
at least three xi’s are different, it is shown that the least squares estimate
exists.

1. Introduction

Suppose we are given the data (xi, yi), i = 1, . . . , n, such that yi > 0 for
all i = 1, . . . , n. The Box-Cox simple linear model has the form

y
(λ)
i = axi + b+ εi, i = 1, . . . , n,

where

(1.1) y
(λ)
i =

{
yλi −1
λ , for λ ̸= 0

ln yi, for λ = 0,
and where it is assumed that errors εi are independent and normally dis-
tributed with zero mean and some unknown constant variance σ2 > 0 (see
[2]). The Box-Cox transformation (1.1) was proposed as a modification of the
power transformation introduced by Tukey in [11] in order to avoid disconti-
nuity at λ = 0. The theoretical properties and a variety of applications of the
Box-Cox transformation (1.1) as well as other transformations can be found
in [3]. A review and different extensions of the Box-Cox transformation with
corresponding applications are given in the recent paper [1].

The maximum likelihood (ML) method was one of the techniques used in
[2] to estimate the parameters of their model. The ML method provides the
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option to simultaneously estimate the transformation parameter λ and all re-
gression parameters. It is well known that ML estimation of the unknown vec-
tor parameter (λ, a, b) reduces to the following nonlinear least squares (NLS)
problem:

(1.2) min
(λ,a,b)∈R3

F (λ, a, b), where F (λ, a, b) :=
n∑
i=1

(axi + b− y
(λ)
i

ẏλ−1

)2
,

and

ẏ :=
( n∏
i=1

yi

) 1
n

is the geometric mean of the yi’s (see, e.g., [2, 7]). If there exists a point
(λ0, a0, b0) ∈ R3 such that F (λ0, a0, b0) ≤ F (λ, a, b) for all (λ, a, b) ∈ R3,
i.e. such that F (λ0, a0, b0) = inf(λ,a,b)∈R3 F (λ, a, b), then it is called a global
minimizer of F . It is also called a least squares estimate (LSE) of (λ, a, b)
with respect to the problem (1.2) and the function F .

Numerical methods for solving the NLS problem are described in [6] and
[8]. Prior to iterative minimization of the sum of squares it is still necessary
to ask whether an LSE exists. For NLS problems, this question is difficult to
answer (see, e.g., [4, 5, 9, 10]).

In the next section, after presenting some notations and preliminary re-
sults, we establish three theorems in which we give necessary and sufficient
conditions which guarantee the existence of the LSE for problem (1.2).

2. Existence theorems for NLS problem (1.2)

Necessary and sufficient conditions for the existence of the LSE for prob-
lem (1.2) are given in theorems 2.3, 2.4 and 2.5. Before that, we need some
notations and technical results which will be used in proofs of our results.

2.1. Basic notations and preliminaries. Let

x̄ := 1
n

n∑
i=1

xi, ȳλ := 1
n

n∑
i=1

y
(λ)
i ,

and let continuous functions α, β, S : R → R be defined by the formulae:

α(λ) :=


∑n

i=1
(xi−x̄)(y(λ)

i
−ȳλ)∑n

i=1
(xi−x̄)2 , if

∑n
i=1(xi − x̄)2 ̸= 0

0, otherwise,
β(λ) := ȳλ − α(λ)x̄,
S(λ) := F (λ, α(λ), β(λ)).

By using a well-known fact that the quadratic function t 7→
∑r
i=1(t−ui)2

attains its minimum
∑r
i=1(τ1 − ui)2 at point τ1 = 1

r

∑r
i=1 ui, as well as the
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fact that the quadratic function t 7→
∑r
i=1(tvi − ui)2 attains its minimum∑r

i=1(τ2vi − ui)2 at point τ2 =
∑r
i=1 uivi/

∑r
i=1 v

2
i , we obtain

F (λ, a, b) =
n∑
i=1

(axi + b− y
(λ)
i

ẏλ−1

)2

≥
n∑
i=1

(a(xi − x̄) + ȳλ − y
(λ)
i

ẏλ−1

)2

= F (λ, a, ȳλ − ax̄)
≥ F (λ, α(λ), ȳλ − α(λ)x̄)
= F (λ, α(λ), β(λ))
= S(λ).(2.1)

Furthermore, it is easy to verify that if
∑n
i=1(xi − x̄)2 ̸= 0, then

(2.2) S(λ) =

n∑
i=1

(xi − x̄)2
n∑
i=1

(y(λ)
i − ȳλ)2 −

( n∑
i=1

(xi − x̄)(y(λ)
i − ȳλ)

)2

ẏ2(λ−1)
n∑
i=1

(xi − x̄)2
,

whereas if
∑n
i=1(xi − x̄)2 = 0, then

(2.3) S(λ) =
n∑
i=1

(y(λ)
i − ȳλ
ẏλ−1

)2
.

The next lemma will be used to prove our Theorems 2.3, 2.4 and 2.5.

Lemma 2.1. With the notations as above, we have:
(i) inf

(λ,a,b)∈R3
F (λ, a, b) = inf

λ∈R
S(λ).

(ii) If a point (λ0, a0, b0) is a global minimizer of F , then λ0 is a global
minimizer of S.

(iii) If λ0 is a global minimizer of S, then (λ0, α(λ0), β(λ0)) is a global
minimizer of F .

(iv) If F (λ, a, b) ≥ F (λ, a0, b0) for all a, b ∈ R, then F (λ, a0, b0) = S(λ).

Proof. (i) By (2.1) and the definition of infimum we obtain
F (λ, a, b) ≥ S(λ) ≥ inf

λ∈R
S(λ) for all (λ, a, b) ∈ R3,

and, consequently, inf(λ,a,b)∈R3 F (λ, a, b) ≥ infλ∈R S(λ). On the other hand,
since

inf
(λ,a,b)∈R3

F (λ, a, b) ≤ F (λ, α(λ), β(λ)) = S(λ) for all λ ∈ R,

it follows that inf(λ,a,b)∈R3 F (λ, a, b) ≤ infλ∈R S(λ).
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(ii) Assume that (λ0, a0, b0) is a global minimizer of F . Then, by virtue of
(2.1), we observe that

S(λ) = F (λ, α(λ), β(λ)) ≥ F (λ0, a0, b0) ≥ S(λ0) for all λ ∈ R.

Therefore, infλ∈R S(λ) = S(λ0).
(iii) If λ0 is a global minimizer of S, by (2.1) and the definition of infimum
we obtain that for all (λ, a, b) ∈ R3,

F (λ0, α(λ0), β(λ0)) = S(λ0) ≤ S(λ) = F (λ, α(λ), β(λ)) ≤ F (λ, a, b),

from where there follows a desired assertion.
(iv) By the assumption, S(λ) = F (λ, α(λ), β(λ)) ≥ F (λ, a0, b0). On the other
hand, by (2.1), F (λ, a0, b0) ≥ S(λ).

The next lemma is also used in the proofs of Theorems 2.3, 2.4 and 2.5. Its
proof is omitted because it follows easily from the definition of infinite limit
at infinity and the Extreme Value Theorem, which says that a continuous
function from a closed interval attains its minimum value at some point in
the closed interval.

Lemma 2.2. Let f : R → [0,∞) be a continuous function such that

lim
λ→−∞

f(λ) = ∞ & lim
λ→∞

f(λ) = ∞.

Then there exist reals λ1 < 0, λ2 > 0 and a point λ0 ∈ [λ1, λ2] such that

inf
λ∈R

f(λ) = inf
λ∈[λ1,λ2]

f(λ) = f(λ0).

2.2. Existence theorems.

Theorem 2.3. If the data (xi, yi), i = 1, . . . , n, n ≥ 3, are such that

(2.4) |{x1, . . . , xn}| ≥ 3

and yi > 0 for all i = 1, . . . , n, then NLS problem (1.2) has a solution.

Proof. If y1 = y2 = . . . = yn = ẏ, then F (λ, 0, ẏ(λ)) = 0 for each λ ∈ R,
and the proof is complete. Therefore, suppose further that

min
i=1,...,n

yi < ẏ < max
i=1,...,n

yi.

To complete the proof, it is enough to show that

(2.5) lim
λ→−∞

S(λ) = ∞ & lim
λ→∞

S(λ) = ∞.

Indeed, by Lemma 2.2, this will mean that there exists a point λ0 ∈ R such
that S(λ0) = infλ∈R S(λ), and then according to assertion (iii) of Lemma 2.1,
we have that inf

(λ,a,b)∈R3
F (λ, a, b) = F (λ0, α(λ0), β(λ0)).
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It remains to show (2.5). To do this, we will use the following equality
that holds for each yr ∈ {y1, . . . , yn} and for all λ ̸= 0:

(2.6) S(λ) =
( yλr
λẏλ−1

)2
·Hr(λ),

where
Hr(λ) :=
n∑
i=1

(xi − x̄)2
n∑
i=1

[(
yi
yr

)λ− 1
n

n∑
j=1

( yj
yr

)λ]2 −
[ n∑
i=1

(xi − x̄)
((

yi
yr

)λ− 1
n

n∑
j=1

( yj
yr

)λ)]2

n∑
i=1

(xi − x̄)2
.

The above equality follows easily from (2.2). Let us first show that
limλ→∞ S(λ) = ∞. If we take yr = max{yi : yi > ẏ} in (2.6), after pass-
ing to the limit as λ → ∞, we obtain

lim
λ→∞

( yλr
λẏλ−1

)2
= ∞

and

lim
λ→∞

Hr(λ) =
n∑
i=1

(xi − x̄)2
( n∑

i=1
yi=yr

(
1 − L

n

)2 +
n∑
i=1
yi ̸=yr

(
− L

n

)2
)

−
[ n∑

i=1
yi=yr

(xi − x̄)
(
1 − L

n

)
+

n∑
i=1
yi ̸=yr

(xi − x̄)
(

− L

n

)]2

≥ 0,

where L is the number of yi’s equal to yr. Thus to prove that limλ→∞ S(λ) =
∞, it suffices to show that limλ→∞ Hr(λ) > 0. Otherwise, if limλ→∞ Hr(λ) =
0, according to the Cauchy-Schwarz inequality, there would exist a constant
C such that

xi − x̄ =
{
C
(
1 − L

n

)
, if yi = yr

−CL
n , if yi ̸= yr.

The latter would mean that only two xi’s are different, which contradicts
assumption (2.4). Thus, we have proved that limλ→∞ Hr(λ) > 0. Arguing in
a similar way, if we take yr = min{yi : yi < ẏ} (2.6), after passing to the limit
as λ → −∞, we obtain that limλ→−∞ S(λ) = ∞. This completes the proof
of the theorem.

Theorem 2.4. If the data (xi, yi), i = 1, . . . , n, n ≥ 3, are such that

x1 = x2 = · · · = xn

and yi > 0, for all i = 1, . . . , n, then NLS problem (1.2) has a solution.
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Proof. If y1 = y2 = . . . = yn = ẏ, then F (λ, 0, ẏ(λ)) = 0 for each λ ∈ R,
and the proof is complete. Therefore, suppose further that

min
i=1,...,n

yi < ẏ < max
i=1,...,n

yi.

Let
yi0 := min

i=1,...,n
yi & yi1 := max

i=1,...,n
yi.

Note that for each r ∈ {1, . . . , n} and for all λ ̸= 0, by virtue of (2.3) we
have:

S(λ) =
n∑
i=1

(y(λ)
i − ȳλ
ẏλ−1

)2
=

n∑
i=1

( yλi
λẏλ−1 − 1

n

n∑
i=1

yλi
λẏλ−1

)2

≥
( yλr
λẏλ−1 − 1

n

n∑
i=1

yλi
λẏλ−1

)2

= ẏ2
( 1
λ

(yr
ẏ

)λ)2(
1 − 1

n

n∑
i=1

( yi
yr

)λ)2
.(2.7)

Since
yi1
ẏ
> 1 & yi0

ẏ
< 1,

we have

lim
λ→∞

( 1
λ

(yi1
ẏ

)λ)2
= ∞ & lim

λ→−∞

( 1
λ

(yi0
ẏ

)λ)2
= ∞.

Therefore, after putting r = i0 and r = i1 in (2.7), we obtain
lim
λ→∞

S(λ) = ∞ & lim
λ→−∞

S(λ) = ∞.

Thus, according to Lemma 2.2, there exists a point λ0 ∈ R such that S(λ0) =
infλ∈R S(λ). Now, to complete the proof, note that from assertion (iii) of
Lemma 2.1 it follows that F (λ0, α(λ0), β(λ0)) = inf

(λ,a,b)∈R3
F (λ, a, b).

Theorem 2.5. Suppose that the data (xi, yi), i = 1, . . . , n, n ≥ 3, are
such that

|{x1, . . . , xn}| = 2
and yi > 0, for all i = 1, . . . , n. Let

ξ1 := min
i=1,...,n

xi, ξ2 := max
i=1,...,n

xi,

Yξi :=
n⋃
j=1
xj=ξi

{yj}, i = 1, 2.

Then NLS problem (1.2) has no solution if and only if exactly one of the sets
Yξ1 and Yξ2 is singleton and the second set is contained in (0, ẏ] or in [ẏ,∞).
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Proof. Without loss of generality, assume that |Yξ2 | = 1, |Yξ1 | ≥ 2 and
Yξ1 ⊆ [ẏ,∞) or Yξ1 ⊆ (0, ẏ]. Let Yξ2 = {ys}. Define continuous functions
α̃, β̃ : R\{0} → R by the formulae:

α̃(λ) := yλs
λ(ξ2 − ξ1)

β̃(λ) := − 1
λ − α̃(λ)ξ1.

Then

F (λ, α̃(λ), β̃(λ)) =
n∑
i=1
xi=ξ1

(
α̃(λ)ξ1 + β̃(λ) − y

(λ)
i

ẏλ−1

)2

+
n∑
i=1
xi=ξ2

(
α̃(λ)ξ2 + β̃(λ) − y

(λ)
i

ẏλ−1

)2

=
n∑
i=1
xi=ξ1

ẏ2
( yλi
λẏλ

)2
.(2.8)

Let us show that inf(λ,a,b)∈R3 F (λ, a, b) = 0. Indeed, if Yξ1 ⊆ [ẏ,∞), i.e.,
equivalently, if yi ≥ ẏ for each yi such that xi = ξ1, then, by virtue of (2.8),
we obtain

lim
λ→−∞

F (λ, α̃(λ), β̃(λ)) = 0,

implying that inf(λ,a,b)∈R3 F (λ, a, b) = 0. But if Yξ1 ⊆ (0, ẏ], once again by
virtue of (2.8), we also get

lim
λ→∞

F (λ, α̃(λ), β̃(λ)) = 0,

again implying that inf(λ,a,b)∈R3 F (λ, a, b) = 0.
Since inf(λ,a,b)∈R3 F (λ, a, b) = 0 and |Yξ1 | ≥ 2, it follows that for all

(λ, a, b) ∈ R3,

F (λ, a, b) ≥
n∑
i=1
xi=ξ1

(
aξ1 + b− y

(λ)
i

ẏλ−1

)2
> 0,

and hence problem (1.2) has no solution.

Conversely, suppose that problem (1.2) has no solution. By assuming the
theorem, |Yξ1 | ≥ 1 and |Yξ2 | ≥ 1. The proof will be done in three steps. In
Step 1, we will show that the two sets Yξ1 and Yξ2 cannot be singletons. In
Step 2, we will show that one of the sets Yξ1 or Yξ2 must be a singleton. The
proof that the set which is not a singleton is contained in (0, ẏ] or in [ẏ,∞)
will be done in Step 3.
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Step 1. We prove this by contradiction. Suppose to the contrary that Yξ1 =
{yi1} and Yξ2 = {yi2}. Choose any real number λ0, and define

a0 :=
y

(λ0)
i2

− y
(λ0)
i1

ξ2 − ξ1
, b0 := y

(λ0)
i1

− a0ξ1.

Then F (λ0, a0, b0) = 0, contradicting the assumption that problem (1.2) has
no solution.
Step 2. Suppose that |Yξ1 | ≥ 2 i |Yξ2 | ≥ 2. Let Nξ1 denote the number of data
points with the abscissa ξ1, and let Nξ2 denote the number of data points
with the abscissa ξ2, i.e.,

Nξ1 := |{i ∈ {1, . . . , n} : xi = ξ1}|, Nξ2 := |{i ∈ {1, . . . , n} : xi = ξ2}|.

By using a well-known fact that the quadratic function t 7→
∑r
i=1(t − ui)2

attains its minimum
∑r
i=1(τ1 − ui)2 at point τ1 = 1

r

∑r
i=1 ui, it is easy to

verify that

F (λ, a, b) =
n∑
i=1
xi=ξ1

(
aξ1 + b− y

(λ)
i

ẏλ−1

)2
+

n∑
i=1
xi=ξ2

(
aξ2 + b− y

(λ)
i

ẏλ−1

)2

≥
n∑
i=1
xi=ξ1

( 1
Nξ1

n∑
j=1
xj=ξ1

yλj
λẏλ−1 − yλi

λẏλ−1

)2

+
n∑
i=1
xi=ξ2

( 1
Nξ2

n∑
j=1
xj=ξ2

yλj
λẏλ−1 − yλi

λẏλ−1

)2

= F (λ, a0, b0)(2.9)

for all (λ, a, b) ∈ R3, where

a0 :=

1
Nξ2

n∑
j=1
xj=ξ2

y
(λ)
j − 1

Nξ1

n∑
j=1
xj=ξ1

y
(λ)
j

ξ2 − ξ1
and b0 := 1

Nξ1

n∑
j=1
xj=ξ1

y
(λ)
j − a0ξ1.

According to assertion (iv) of Lemma 2.1, we have

F (λ, a0, b0) = S(λ).

Let

ymin := min
i=1,...,n

yi, ymax := max
i=1,...,n

yi.
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Without loss of generality, assume that ymin ∈ Yξ1 (the case ymin ∈ Yξ2 can
be handled in a similar way). Then from (2.9), it easily follows that

S(λ) = F (λ, a0, b0)

≥
( 1
Nξ1

n∑
j=1
xj=ξ1

yλj
λẏλ−1 − yλmin

λẏλ−1

)2

=
( yλmin
λẏλ−1

)2
(

1 − 1
Nξ1

n∑
j=1
xj=ξ1

(
yj
ymin

)λ)2

.(2.10)

Without loss of generality, we may also assume that ymax ∈ Yξ1 (the case
ymax ∈ Yξ2 can be handled in a similar way). Once again, arguing as above,
by virtue of (2.9), we get

(2.11) S(λ) ≥
( yλmax
λẏλ−1

)2
(

1 − 1
Nξ1

n∑
j=1
xj=ξ1

(
yj
ymax

)λ)2

,

Since
ymin
ẏ

< 1 & ymax
ẏ

> 1,

we have that

lim
λ→−∞

( yλmin
λẏλ−1

)2
= ∞ & lim

λ→∞

( yλmax
λẏλ−1

)2
= ∞,

and therefore from (2.10) and (2.11) we obtain that

lim
λ→−∞

S(λ) = ∞ & lim
λ→∞

S(λ) = ∞.

Thus, by Lemma 2.2, there exists a point λ0 ∈ R such that S(λ0) =
infλ∈R S(λ). Therefore, from assertion (iii) of Lemma 2.1 it follows that

inf
(λ,a,b)∈R3

F (λ, a, b) = F (λ0, α(λ0), β(λ0)), contradicting the assumption that

problem (1.2) has no solution.
Step 3. Since n ≥ 3, without loss of generality, we assume that |Yξ2 | = 1 and
|Yξ1 | ≥ 2. To complete the proof, it remains to show that Yξ1 ⊆ [ẏ,∞) or
Yξ1 ⊆ (0, ẏ]. Suppose to the contrary that

yp := min
yi∈Yξ1

yi < ẏ < max
yi∈Yξ1

yi =: yq.

Then, arguing in the same way as in Step 2, whereby it is sufficient to replace
ymin in (2.10) with yp and ymax in (2.11) with yq, we would obtain that
problem (1.2) has a solution, which is in contradiction to the hypothesis.
This completes the proof of the theorem.
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Problem procjene parametara za jednostavan linearni Box-Cox
model

Darija Marković
Sažetak. Za dane podatke (xi, yi), i = 1, . . . , n, takve da je

yi > 0 za sve i = 1, . . . , n, razmatramo problem procjene param-
etara za jednostavan linearni model s Box-Cox-ovom transforma-
cijom zavisne varijable. Procjena njegovih parametara metodom
maksimalne vjerodostojnosti svodi se na nelinearan problem na-
jmanjih kvadrata. Kao glavni rezultat, dobili smo tri teorema u
kojima su dani nužni i dovoljni uvjeti koji jamče egzistenciju proc-
jenitelja najmanjih kvadrata. U najinteresantnijem slučaju kada
su barem tri xi različiti, pokazano je kako procjenitelj najmanjih
kvadrata postoji.
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