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Abstract: Theoretical investigation of a wide range of photochemical and photophysical phenomena triggered by light absorption requires the 
use of nonadiabatic molecular dynamics methods. Among these techniques, surface hopping dynamics has emerged as the most widely used 
approach for modeling photochemical processes in experimentally relevant molecular systems. The Landau-Zener surface hopping method, a 
simpler alternative to the well-established Tully’s fewest switches surface hopping algorithm, presents a compelling option because it does not 
require the evaluation of nonadiabatic coupling vectors or time derivative couplings. In this study, we present an adaptive time step version of 
the LZSH algorithm, that enhances its stability while maintaining computational efficiency. We assessed its performance by applying it to several 
benchmark systems, including the one-dimensional Tully models and the fully-dimensional DMABN molecule. 
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1. INTRODUCTION 
ONADIABATIC molecular dynamics (NAMD) methods 
constitute an essential theoretical tool for studying a 

broad range of photochemical and photophysical 
phenomena triggered by light absorption.[1] Electronically 
excited molecules typically undergo various internal 
conversion pathways, some occurring on timescales as 
short as tens of femtoseconds. Prototypical ultrafast 
processes, such as photodissociation, photoisomerization, 
or charge and energy transfer, generally require consid-
ering molecular dynamics across multiple electronic states, 
thus necessitating theoretical frameworks beyond the 
Born-Oppenheimer approximation (which assumes that 
dynamics takes place on a single adiabatic potential energy 
surface — PES).[2,3] However, as long as nuclear dynamics 
involves more than one electronic state, treatment of 
nonadiabatic effects arising from coupled electron-nuclear 
motion becomes indispensable. 
 Three main groups of NAMD approaches are 
typically used,[4] differing in ways how nuclear dynamics is 
treated - quantum, semiclassical, and mixed quantum-

classical - though some methods may lie at the intersection 
of these classifications. Full quantum dynamics involves 
propagation of nuclear wavepackets on coupled electronic 
states.[5] When converged, these methods provide a 
numerically exact solutions of the time-dependent 
Schrödinger equation. However, they are typically comput-
ationally cumbersome, despite ongoing efforts to beat the 
exponential scaling with respect to the number of nuclear 
degrees of freedom. In practice, quantum dynamics is 
mainly applicable to systems with few degrees of freedom, 
with the most prominent method being the Multi-
Configuration Time-Dependent Hartree (MCTDH).[6–8] The 
semiclassical description of nuclear dynamics, while less 
rigorous, has been a popular research area for decades, 
employing classical trajectories that incorporate certain 
quantum effects. Some notable examples include the 
works of Miller[9,10] and others.[11–13] A remarkable 
approach that draws on ideas from semiclassical 
dynamics[11] but remains formally exact is the full multiple 
spawning.[14,15] This approach uses classical dynamics to 
propagate coupled frozen Gaussian functions on multiple 
electronic states, with the capability to spawn new 
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functions in regions of nonadiabatic interaction. In practice, 
however, it is often applied within a more approximate 
framework of ab initio multiple spawning (AIMS),[16] which 
allows for an accurate treatment of nonadiabatic dynamics 
in polyatomic fully-dimensional molecular systems. 
 At the other end of the approximation spectrum, 
mixed quantum-classical methods approximate quantum 
wave packets using swarms of independent classical 
trajectories, while treating the electronic part quantum 
mechanically. Apart from neglecting nuclear quantum 
effects, mixed quantum-classical methods do not account 
for the quantum mechanical phase of the electronic wave 
function or quantum interference effects. This makes them 
unsuitable for describing phenomena like coherence and 
interference, which depend on the relative phases of  
wave functions.[4] Two main mixed quantum-classical 
approaches, Ehrenfest and surface hopping,[17] differ 
primarily in how they address the following dilemma: 
Newtonian trajectories are propagated along the gradient 
of PES, but how to calculate a gradient for dynamics on 
multiple electronic states? The Ehrenfest approach solves 
this by propagating dynamics on a single “average” (i.e. 
weighted) PES, while in trajectory surface hopping (TSH) 
gradients are calculated for an “active” electronic state 
with a possibility of surface hops. The TSH algorithm acts as 
a decision-maker, determining when and how to switch 
between surfaces. By propagating a swarm of classical 
trajectories, TSH tries to mimic the motion of nuclear 
quantum wavepacket, distributing population across the 
manifold of states akin to the wavepacket splitting. Never-
theless, the implementation of TSH opens up numerous 
pathways for algorithm development, also raising more 
general questions about whether individual trajectories 
should be independent or coupled, whether surface hops 
should be deterministic or stochastic, how total energy 
should be conserved, among many other considerations. 
 Although TSH techniques have been around for 
many decades, they gained significant popularity after the 
introduction of Tully’s fewest switches surface hopping 
(FSSH) algorithm in 1990.[18] It is no exaggeration to say that 
since its introduction, FSSH has become the primary 
workhorse for photochemistry simulations in many 
experimentally relevant molecular systems in atmospheric 
chemistry, organic and biochemistry.[19,20] In a conventional 
FSSH simulation protocol, an ensemble of independent 
nuclear trajectories is propagated following Newton’s 
equations of motions, while simultaneously electronic 
amplitudes are derived from an electronic Schrödinger-like 
equation solved along the nuclear pathway. Hopping 
probabilities are determined based on both the electronic 
state amplitudes and nonadiabatic coupling vectors, 
incorporating also a stochastic element. One of the 

intentions of Tully’s original algorithm was to achieve 
internal consistency between the quantum and classical 
subsystems, specifically, to achieve the equivalence of state 
populations calculated from the fractions of active 
trajectories with those populations obtained from the 
squared electronic amplitudes. However, it was later 
recognized that achieving this consistency is difficult for 
many systems.[21] Standard FSSH procedure tends to be 
overcoherent, with electronic populations typically being 
broadly spread across the manifold of states as compared 
to the “classical” populations.[22] Many decoherence 
corrections have been proposed to address this issue.[23–26] 
In practice, also, nonadiabatic coupling vectors are often 
difficult to obtain for many electronic structure methods 
(e.g., most single-reference methods). As a result, FSSH is 
frequently implemented using overlap-based time-
derivative couplings[27] and local diabatization to propagate 
the electronic quantities.[28] Additionally, other algorithmic 
details can significantly impact the results — for instance, 
the handling of frustrated hops[29] and the ways to rescale 
momentum after a successful hop have been subjects of 
ongoing scrutiny.[26,30–32] The influence of initial conditions 
on the dynamics has also been a topic of interest.[33] 
 A simpler alternative to FSSH is Landau-Zener 
surface hopping (LZSH), which is based on the core 
equation for transition probability in a two-state system, 
dating back to the 1930s.[34–37] Although the Landau-Zener 
probability has been used in the context of TSH since 
decades ago,[38] interestingly, LZSH has recently re-
emerged in the literature,[39–44] largely due to its appealing 
properties. In LZSH, the hopping probability is determined 
solely based on the topography of the PESs near state 
crossings, eliminating the need to calculate nonadiabatic 
couplings. This drastically simplifies the interface between 
nuclear dynamics and electronic structure, as virtually any 
electronic structure method can be employed as long as it 
provides energies and gradients. Furthermore, LZSH works 
for both adiabatic and diabatic representations[39] of the 
PES, whereas FSSH is primarily applicable in the adiabatic 
representation, as argued by Tully.[18] Consequently, LZSH 
can routinely handle intersystem crossing via singlet-triplet 
transitions (usually treated in spin-diabatic represen-
tation),[22,23] a task that is more challenging for FSSH.[45,46] 
Another argument in favor of LZSH is a realization that the 
outcomes of NAMD primarily depend on the accuracy of 
the underlying electronic structure methods, while nuclear 
dynamics is typically not a bottleneck for the accuracy of 
molecular simulations.[42] In other words, using sophis-
ticated methods for nuclear dynamics does not guarantee 
the accuracy of simulated observables as long as we use 
approximate electronic structure methods.[47] However, it 
remains crucial to understand the limitations of different 
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NAMD methods and to recognize situations in which they 
may not be the optimal methods of choice. 
 In this work, we assess the performance of LZSH 
using two one-dimensional Tully models, representing 
simple (Tully I) and dual avoided crossings (Tully II).[18] 
Furthermore, we examine a fully-dimensional molecular 
benchmark proposed by Ibele and Curchod.[48] Specifically, 
we focus on the so called “molecular Tully model II”, 
represented by the DMABN (4-N,N'-dimethylamino-
benzonitrile) molecule. This molecule exhibits character-
istics similar to the original Tully II model. DMABN molecule 
undergoes multiple nonadiabatic transitions between the 
two lowest singlet excitations, which remain energetically 
close during the excited-state dynamics.[49–51] Following the 
initial ultrafast decay from the second excited state, the 
system experiences population oscillations that correlate 
with experimentally measured dual fluorescence. The 
DMABN benchmark system has been studied[48] using FSSH, 
both in its pristine form and with decoherence correction, 
as well as a more rigorous AIMS approach, which provides 
a valuable point of comparison for the results obtained  
with LZSH. 
 

2. METHODS 
The starting point for any NAMD approach is solving the 
time-dependent molecular Schrödinger equation (TDSE) 

 ˆΨ( , , ) Ψ( , , )Mi t H t
t
∂

=
∂

r R r R  (1) 

in the full nuclear configuration space. The symbols r  and R  
denote the coordinates of the electrons and nuclei, respec-
tively. Throughout the work atomic units are employed. 
The molecular Hamiltonian 

 ˆ ˆ ˆ( , )M en ee nnH T T V V V= + + + +R rr R  (2) 

contains the kinetic energy operators of the nuclei T̂R  and 
of the electrons, T̂r , and the potential energy operators 
describing the electron-nuclei, electron-electron, and 
nuclei-nuclei interactions. It is common to regroup ˆMH  as 

 ˆ ˆ ˆ( , ) ( , )M elH T H= +Rr R r R  (3) 

where ˆelH  is the electronic Hamiltonian. By solving the 
Schrödinger equation for fixed-nuclei 

 =r R R r Rˆ Φ ( ; ) ( )Φ ( ; )el I I IH E  (4) 

one obtains a set of electronic wave functions, Φ( ; )r R , 
known as the adiabatic electronic states, which are used to 
expand the molecular wave function: 

 Ψ( , , ) ( , )Φ ( ; ),J J
J

t X t= ∑r R R r R  (5) 

where ( , )JX tR  denotes the time-dependent nuclear wave 
function in the electronic state J. The Born-Huang[52]  

representation of the molecular wave function (Equation (5)) 
is fundamental to our interpretation of photophysical and 
photochemical processes, providing the basis for the 
conventional picture of time-dependent nuclear wave 
functions evolving on time-independent PESs. Note that 
alternative representations of the molecular wave function 
are also possible.[53] 
 By following the usual procedure of inserting the 
expansion (5) into the TDSE (1), multiplying from the left by 

*Φ ( ; )I r R  and integrating over the electronic coordinates ,r  
one obtains a set of coupled differential equations for the 
nuclear amplitudes, ( , )JX tR . The direct solution of these 
coupled equations is a challenging task, as it requires 
expanding the nuclear wave function into a set of time-
independent basis functions and solving the resulting 
equations of motion for the time-dependent expansion 
coefficients.[54] As a result, grid-based methods, including the 
well-known MCTDH approach,[6–8] scale exponentially with 
the number of nuclear degrees of freedom (see Ref. [55]). 
Additionally, grid-based approaches require precomputed 
global PESs, which further restrict the scope of problems 
that can be simulated. 
 As mentioned in the Introduction, the goal of this 
work is to compare three approaches for approximating the 
TDSE on-the-fly: the ab initio multiple spawning (AIMS), the 
fewest switches surface hopping (FSSH), and the Landau-
Zener surface hopping (LZSH) method. These methods 
avoid the need for precomputed global potentials and solve 
the TDSE in real-time, calculating electronic-state energies 
and gradients along the nuclear dynamics evolution. Since 
these approaches have been extensively reviewed in the 
literature, we will provide only a brief overview here. 

2.1 Ab Initio Multiple Spawning 
To describe the fundamentals of the AIMS approach, we 
follow Ref. [56] and present the full multiple spawning 
method from which AIMS is derived. In full multiple 
spawning, the nuclear wave function ( , )IX tR  is expanded 
in a linear combination of multidimensional Gaussian basis 
functions 

 
( )

( , ) ( ) ( ; , ( ), ( ), )
IN t I II I I Ij jI j j j j
j

X t C t χ t γ t= ∑R R R P α  (6) 

where J is the label of the Gaussian basis function with 
time-dependent position ( )

I
j tR , momentum ( )

I
j tP  and 

phase ( )I
jγ t . The width I

jα  of the traveling basis function 
(TBF) is frozen. The phase space centers of TBFs follow 
classical equations of motion. Using the standard 
procedure, one first inserts Equation (6) into Equation (5) 
and subsequently into Equation (1). Then, after multiplying 
the resulting expression from the left with *Ψ ( , , )tr R   
and integrating over both the electronic and nuclear 
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coordinates, a coupled system of equations is obtained. 

 
.

1( )
( )

I
I J

II II IJII
J I

d t
i i

dt
−

≠

  = − − +  
  

∑C S H S C H C  (7) 

where ( ) |I I
kl k lχ χ= 〈 〉II RS  is the overlap matrices 

accounting for the nonorthogonality of the TBF, .
( ) | |I I

kl k ltχ χ∂
∂= 〈 〉II RS  and 

 ,ˆ( ) Φ | | ΦI J
IJ kl I M Jk lχ H χ= 〈 〉R rH  (8) 

is an element of the molecular (full) Hamiltonian matrix. 
From the terms above, we can see that TBFs moving on the 
same electronic state are coupled together by the nuclear 
kinetic energy operator and the electronic energy term, 
while TBFs on different electronic states remain coupled by 
the nonadiabatic coupling vectors and the second order 
nonadiabatic couplings. While two nonadiabatic terms are 
generally non-zero in the adiabatic representation, the 
second order terms are picked in a narrower part of the 
configuration space than the first order terms and are 
usually neglected in the simulations. To “contain” the 
dimensionality of Equation (7) Martínez et al.[57] introduced 
a spawning algorithm that optimizes the number of TBFs in 
each electronic state during the simulation based on the 
strength of the nonadiabatic coupling between the states. 
The idea is that as the system passes through a region of 
nonadiabatic coupling, new TBFs are created on the 
coupled electronic states. This means one can start with a 
relatively small number of TBFs and allow the basis set to 
grow during the simulation, accounting for the non-
adiabatic transfer of population between electronic states. 
Details of the spawning algorithm are given in Refs. [56–58] 
 Apart from the size of the Hamiltonian matrix, the 
main limitation of the full multiple spawning method is that 
it requires integration over the whole nuclear configuration 
space for each pair of TBFs. In other words, the method still 
requires precomputed PES. To address this issue, the AIMS 
method was developed.[58] AIMS is based on two 
approximations:  

(i) The first-order saddle-point approximation is used to 
evaluate the multidimensional integrals of the Hamiltonian 
matrix as 

 | | ( ) |I J I J
IJ IJk l k lχ H χ H χ χ〈 〉 = 〈 〉R  (9) 

where R  is the centroid of the product of TBFs I
kχ  and .J

lχ  
This approximation exploits the semi-local nature of the 
traveling Gaussian functions and applies to both the 
diagonal and off-diagonal elements of the Hamiltonian 
matrix. 

(ii) The independent-first-generation approximation sets 
the initial amplitudes in Equation (6) to one 0( ( ) 1)J

iC t =  
and instead of propagating a coupled set of equations from 

the outset, the TBFs are initially propagated independently. 
These “parent” TBFs subsequently spawn new TBFs and the 
coupled set of Equations (7) is propagated. By starting from 
independent “parent” TBFs and using the saddle-point 
approximation to evaluate Hamiltonian elements, the 
method becomes suitable for on-the-fly simulations. 
However, the propagation of Equation (7) remains 
numerically demanding, requiring the interface between 
AIMS and electronic structure methods to strike a balance 
between accuracy and efficiency. 

2.2 Trajectory Surface Hopping Methods 
TSH methods rely on the propagation of (independent) 
classical trajectories initiated in a specified electronic 
state called the active state. The total wave function is 
expanded as: 

 Ψ( , ; ) ( )Φ ( ; ),J J
J

t C t= ∑r R r R  (10) 

where Φ ( ; )J r R  is the J-th adiabatic (Born-Oppenheimer) 
electronic state with associated coefficient ( )JC t . Inserting 
Equation (10) into Equation (1) one obtains a set of coupled 
differential equations for the coefficients (i.e., amplitudes): 

( )
( ) Φ ( ; ) | | Φ ( ; ) .J

J J I J I
I

dC t d
C t E C

dt dt
= − + 〈 〉∑ r R r R  (11) 

 The time-derivative couplings IJ  can be expressed 
in terms of the nuclear velocities as: 

 
Φ ( ; ) | | Φ ( ; )

Φ ( ; ) | | Φ ( ; )

IJ J I

J I

d
dt

d
dt

= 〈 〉

= 〈 ∇ 〉R

r R r R

Rr R r R


 (12) 

where ∇R  denotes the gradient with respect to the 
nuclear coordinates. From Equations (11) and (12), it is 
evident how the nuclear dynamics influence electronic 
motion. When trajectory passes through a region of strong 
nonadiabatic coupling, the population of the coupled but 
unoccupied electronic state rises. However, the nuclear 
motion is still not affected by the electronic motion, as it 
proceeds only on one active state. In other words, the 
increase in electronic population of an unoccupied 
electronic state does not reflect in the nuclear dynamics. 
The goal of TSH algorithms is to (re)introduce the feedback 
between electronic and nuclear motion. 
 In this work we consider two variants of TSH. 

(i) FSSH algorithm is by far the most widely used TSH 
algorithm, despite the fact that it cannot be rigorously 
derived.[17,18]  
 In FSSH, variations in the electronic state populations 
along a nuclear trajectory are used to determine when a 
nuclear trajectory switches from one active state to 
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another. The hopping probability from a state I to a state J 
reads: 

 

2

*

2

| ( ) |
max 0,

2 ( ) ( ) ( )
max 0, .

| ( ) |

II
FSSH

IJ J I

J

I

Jd C t
P

dt

t Re C t C t dt

C t

→→  
= − 

 
    =  
  


 (13) 

 Therefore, hops between electronic states take 
place when the population of the currently active state 
decreases and the maximum value criterion ensures that 
the probability remains positive at all times. After a 
successful hop, the momenta are scaled to ensure the 
conservation of total energy.  

(ii) LZSH algorithm is a simpler alternative to FSSH. Several 
derivations of the Landau-Zener (LZ) formula are available 
in the literature [34,35,59–61] (for more recent derivations, see 
Refs. [62] and [63]). In contrast to FSSH, which provides the 
hopping probability between two adiabatic electronic 
states, the conventional LZ formula gives the transition 
probability between two diabatic electronic states 

 
22

exp ,
| |

IJLZ
IJ

II JJ

πH
p

v H H
 

= − ′ ′− 

 (14) 

where IIH  and JJH  are diagonal matrix elements of the 
Hamiltonian, and IIH′  and JJH′  their derivatives with respect 
to nuclear coordinates. Importantly, the LZ expression was 
derived under the assumption of linear dependence of the 
two crossing potentials on nuclear coordinates. The off-
diagonal element IJH  is considered constant and v is the 
atomic velocity vector. The transition probability is 
calculated at the crossing point of the two potentials in the 
nonadiabatic region cR . The interpretation of the LZ 
formula is straightforward - the nonadiabatic transition 
probability, i.e., the probability to remain in the initial 
diabatic state is low when the diabatic potentials have 
similar slopes and the relative velocity of the atoms is small. 
 It goes without saying that Equation (14) 
is not suitable for on-the-fly simulations as diabatic PESs  
are not readily available from standard electronic struc-
ture codes. However, following Belyaev and Lebedev[64] 
Equation (14) can be recast in the adiabatic form as 
following: 

 
3

exp ,
2

IJLZ
IJ

IJ

π Z
P

Z

 
= −  

 




 (15) 

where IJZ  is the splitting between the adiabatic potentials 
IU  and JU  and IJZ  is the second time derivative of the 

energy gap. The hoping probability is computed when the 
gap IJZ  between the two adiabatic potentials reaches a 
minimal value. 

 While the LZ formula (15) can now be employed in 
on-the-fly TSH simulations, it is useful to express it in terms 
that are actually evaluated along a trajectory, namely, the 
adiabatic energies at discreet time steps.[65] The second 
derivative of the energy gap is calculated when the gap 
minimum is reached ( )ct t=  using a three-point finite 
difference 

2 2

( Δ ) ( Δ ) 2 ( ) 2 ( )
( ) ,

Δ Δ
IJ IJ IJ

IJ c
Z t t Z t t Z t d t

Z t
t t

− + + −
= =  (16) 

where we have defined ( ) ( ( Δ ) ( Δ )IJ IJd t Z t t Z t t= − + + −
2 ( )) / 2IJZ t  as the average change in the gap between the 
time steps around the minimum. We can insert this form 
back into Equation (15) to obtain the LZ formula for finite 
time steps 

 
3 2( )Δ

exp
2 2 ( )

IJLZ
IJ

π Z t t
P

d t

 
= −  

 

 (17) 

 An obvious source of error in the expression (17) is 
that the time at which the probability should be evaluated 
( )ct  has been replaced by the time t at the nearest discreet 
time step. Since the probability is an exponential function 
of the values evaluated at this time, it is expected to be 
highly sensitive to these values. Luckily, since the 
probability has to be evaluated only at points where a 
minimum of the energy gap between two surfaces is 
encountered, an adaptive time step procedure can be 
employed to enhance the numerical stability of the method 
without significantly increasing the computational cost. 
 The adaptive time step procedure implemented for 
LZSH[65] involves an optimization of the gap ( )IJZ t  between 
potential energy curves using a bisection method. To avoid 
unnecessary evaluations of the PES, we assume that the 
gap minimum ( )IJ cZ t  lies in the range ( )IJZ t d− ≤

( ) ( )IJ c IJZ t Z t≤ . Inserting these limits into Equation (17), we 
obtain an estimate of the upper and lower bound of the LZ 
hopping probability. When this error estimate is larger than 
certain threshold value (typically 1 %), we bisect the time 
step and evaluate the probability again. However, when 
reducing the time step for the calculation, one needs to be 
mindful of the fact that the energies of the states are 
usually only calculated up to a certain precision σ , which 
complicates the considerations. The “noise” in the results 
due to the finite precision of the calculated values can lead 
to numerical issues if a time step that is too small is chosen, 
especially in the evaluation of the second derivative. To 
avoid numerical issues due to the precision of the 
calculated energies, the second derivative is only recal-
culated if 20d σ≥ , while the bisection procedure is not 
performed at all if 2d σ≤ . Pseudocode for the decision on 
when to change the time step is given in Figure 1. 
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2.3 Computational details 
The LZSH algorithm was tested on Tully models I and II.[18] 
For these one-dimensional two-surface models, sets of 
2000 trajectories for each velocity and/or time step were 
initiated with the position x chosen randomly in the [–6,–5] 
range. The trajectories were terminated when the particle 
left the interaction region ( 6.1x > ). The trajectories 
were then sorted based on their final position (transmission 
for 6x >  and reflection for 6x < − ) and final state. To test 
the robustness of the adaptive time step algorithm, for 
some calculations using model I, random noise (a uniform 
random number 0.5 0.5σ r σ− ≤ ≤ ) was added to each of 
the evaluated energies and gradients to simulate the effect 
of the electronic structure calculations precision on the 
performance of the algorithm. The exact parameters used 
for both models were taken from Ref. [18]. Unless 
otherwise noted, a time step of 0.5 fs was used for model I, 
respectively. A time step of 0.1 fs was used for model II, 
which was determined to be stable for the chosen set of 
parameters without employing the adaptive time step 
algorithm. 
 To assess the accuracy of LZSH for molecular 
systems, we investigate the photodynamics of DMABN, an 
example of the molecular Tully model II.[48] The AIMS and 
FSSH results for DMABN were taken from Ref. [48]. The 
simulations were performed in the manifold of the four 
lowest singlet states (S0 – S3), starting from the S2 state  
over a 200 fs time window. Energy and gradient 
calculations were carried out using the Gaussian09 
program,[66] employing the linear-response TDDFT 
method[67–69] within the Tamm-Dancoff approximation. The 
long-range corrected LC-PBE functional,[70,71] with a range-
separation parameter of 0.3 a.u.–1, was used in 
combination with the 6-31G basis set. A time step of 0.5 fs 
was employed with a probability threshold for the adaptive 
time step procedure set at 5 %. With this setting, an 
average of only 1.2 extra time steps were added per 
trajectory. 
 In AIMS simulations, a total of 21 initial coordinates 
and momenta were sampled from a ground-state Wigner 
distribution. In FSSH simulations, the same initial conditions 
as in the AIMS dynamics were employed, but each 
trajectory was repeated 10 times with different random 
seeds to allow exploration of a larger section of the 
configuration space. Corresponding set of initial conditions 
is referred to as set A. FSSH simulations were performed 
with and without an energy-based decoherence correc-
tion,[24] but we only use the former one for comparison 
with LZSH. 
 In our LZSH simulations, we employed the same 
electronic structure method and initial conditions outlined 
above. However, another set of initial conditions was also 

used — in addition to set A, we conducted simulations using 
set B, which consisted of 210 distinct initial conditions 
sampled from the ground-state Wigner distribution. 

def check_bisect(s0, s1, s2): 
  # The input variables contain data from the three 
  # steps between which a gap minimum was detected. 
  d = (s0.gap + s2.gap – 2*s1.gap)/2 
  if sd_not_evaluated or d > 20 * sigma: 
      s1.second_deriv = eval_sec_deriv(s0, s1, s2) 
      sd_not_evaluated = False 
  prob_min = eval_lz_prob(s1.gap, s1.second_deriv) 
  prob_max = eval_lz_prob(s1.gap – d, s1.second_deriv) 
  # Check for situations where bisection is not needed: 
  if prob_max – prob_min < prob_threshold: 
      return prob_min 
  if s2.time – s1.time <= min_dt: 
      return prob_min 
  if d <= 2*sigma: 
      return prob_min 
  # Bisection is needed, check where to add the time step: 
  if s1.time – s0.time >= s2.time – s1.time: 
      new_time = (s1.time – s0.time) / 2 
  else: 
      new_time = (s2.time – s1.time) / 2 
  return new_time 

Figure 1. Pseudocode to check whether a new time step 
should be added in the adaptive time step algorithm. If a 
bisection is needed, a new substep calculation is performed 
at the requested time, and this function will be called again 
when the gap is found between the new substep and the 
previous calculations. Otherwise, the hopping probability is 
evaluated without performing extra calculations. 

 

3. RESULTS AND DISCUSSION 
3.1 1D Tully models I and II  

In Figure 2 we evaluate the performance of the LZSH 
algorithm for Tully's model I, representing a simple avoided 
crossing. Despite its simplicity, model I is already useful to 
illustrate the strengths and weaknesses of the LZSH 
approach. A comparison between the FSSH and LZSH 
algorithms is shown in panel (b). 
 We see that the LZSH algorithm (with the adaptive 
time step procedure) correctly describes the behavior for 
large initial momenta k , but significantly overestimates 
the hopping probability for low initial momenta. For 

8.9k <  the particle does not have enough energy to leave 
the well on the upper surface so in case of jumps to the 
upper surface it remains temporarily trapped before 
hopping back down to the lower surface. At first glance this 
behavior is correctly captured by the LZSH algorithm. 
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However, trajectories that reach this well at the LZSH level 
remain trapped for significantly longer time than 
equivalent FSSH trajectories, with some trajectories 
remaining in the well even after the 10000 fs simulation 
time. These trajectories are denoted with crosses in 
Figure 2. This unphysical trapping is a limitation of the 
method itself and not caused by numerical issues, however, 
it is expected to be less relevant for molecules with many 
degrees of freedom. 
 Figures 2(c) and 2(d) explore the stability issue of the 
adiabatic LZ formula evaluated at discreet time steps. The 
probability of transmission on the lower surface is 
calculated using trajectories with time steps between 
Δ 0.02t =  and Δ 1.0t =  fs. For both high and low initial 
momenta, we see that the probability at the LZSH level 
changes with the time step used in the calculation. This 
indicates that the method is less stable than FSSH with 
respect to the time step used, which was anticipated for the 
reasons explained above. For high initial momenta, where 
the problem is most significant, the adaptive time step 
procedure enhances the method's stability to match that of 
FSSH. When random noise is introduced into the 
calculation, we observe that the LZSH procedure generates 
substantial errors abruptly when the time step is reduced 
below a certain threshold. The adaptive time step 

procedure detailed above successfully avoids reducing the 
time step to the point where such problems can occur. We 
also see that when the adaptive time step procedure is 
employed, errors due to the time step are similar to those 
in FSSH for large kinetic energies where the LZSH algorithm 
would otherwise be completely unstable for large time 
steps. This allows us to choose the same time step for LZSH 
as we would for FSSH while assuming that the main source 
of the error is from the LZ probability itself and not due to 
numerical issues. 
 Next, we examine the performance of the LZSH 
algorithm for Tully's dual avoided crossing model (model II) 
shown in Figure 3(a). This model is significantly more 
challenging because it exhibits quantum interference 
effects. These effects are completely neglected in LZSH and, 
consequently, the oscillations present in FSSH results are 
not seen at all with LZSH (for a recent study see Ma et al.[72]) 
 In the low kinetic energy (E) region, we encounter a 
problem with population trapping similar to the one 
observed with model I and, overall, the reflection 
probability is greatly underestimated for LZSH. On the 
other hand, the LZSH results do correctly follow the general 
trend of the populations after transmission. Nevertheless, 
the interference effects will not be relevant for the 
molecular version of this model (see below) due to the 
increased number of degrees of freedom. 

3.2 Molecular Tully model II 
To move beyond the one-dimensional models and assess the 
performance of LZSH for a molecule in its full dimensionality, 
we shift our focus to the DMABN molecule, which serves as 
an example of the molecular Tully model II.[48] 
 The upper panel of Figure 4 shows the time-
dependent potential energies of the ground and three 
lowest singlet states of DMABN along a representative 
nonadiabatic trajectory initiated in bright S2 state. The 
trajectory is computed using the LZSH method. 
 The changes in the currently populated state (dots) 
stem from multiple nonadiabatic transitions. The dominant 

 

Figure 2. (a) Potential energy curves for Tully model I. (b). 
Transmission and reflection probabilities calculated using 
the FSSH (full lines) and the LZSH method with (dashed 
lines) and without (dotted lines) the adaptive time step 
procedure. (c) and (d) Probability of transmission on the 
lower surface for initial momenta = 10k  and 30k =  a.u. 
calculated for different noise levels (colors) and with 
different time steps using the FSSH and LZSH methods. 
 

 

Figure 3. (a) Potential energy curves for Tully model II. (b) 
Transmission and reflection probabilities calculated using 
the FSSH (full lines) and the LZSH method (dashed lines). 
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natural transition orbital (NTO) pairs shown in the insets 
clearly indicate that hops between adiabatic states (may) 
also result in a change of the diabatic state. Hops between 
the two states occur at 18.00 fs, 44.50 fs, 64.00 fs, 81.00 fs, 
92.00 fs, 147.50 fs, and 159.00 fs.  
 The lower panel shows that the hopping points 
correspond to the local minima of the energy gap between 
the S2 and S1. Comparison of energy gaps at the hopping 
points (0.0527 eV, 0.0838 eV, 0.0105 eV, 0.1383 eV,  
0.0491 eV, 0.052 eV, and 0.0179 eV) and the corresponding 
Landau-Zener probabilities (96.5 %, 89.0 %, 99.7 %, 72.7 %, 
95.6 %, 98.8 %, and 98.5 %) illustrates that gaps have a 
decisive influence on hopping probabilities. Therefore, the 
performance of LZ algorithm will also depend on the ability 
of the electronic structure method to accurately describe 
avoided crossings between adiabatic surfaces. 
 We now focus on the ensemble of trajectories 
initiated in the bright S2 state. Figure 5 compares the time-
dependent populations of the four lowest electronic states, 
calculated using initial conditions from set A =( 21trajN  
trajectories, each initiated with 10 different random seeds) 
and set B =( 210trajN  trajectories). 
 The rapid depopulation of the initially-excited S2 
state is evident in both cases, although relaxation appears 
to occur slightly faster for set B. Notably, set A exhibits a 
more pronounced repopulation of the S2 state, with distinct 

oscillations between the S2 and S1 populations that 
gradually decay over time. 
 Furthermore, we can compare LZSH simulations 
with the results from AIMS method (dark blue), which in 
this case may be considered as a theoretical best 
estimate, and the FSSH (light blue). FSSH simulations were 
conducted using initial conditions from set A, incorpor-
ating the decoherence correction, and they are referred 
to as dTSH following Ref. [48]. 
 According to the AIMS and dTSH results, after the 
initial excitation to the S2 state, ultrafast relaxation occurs 
within the first 50 fs of the simulation.[48] Subsequently, the 
S2 population stabilizes around 15 %. 

 

Figure 4. Top: Time evolution of the potential energy for the 
ground state (S0, pink), S1 (green), S2 (yellow), and S3 
(maroon) states along a representative nonadiabatic 
trajectory of DMABN, computed using the LZSH method. 
The active state is marked with dots. Insets display the 
dominant NTO pairs at selected time points. Bottom: Time 
evolution of the S2 – S1 potential energy gap along the 
trajectory, with the corresponding LZ transition 
probabilities. 
 

 

Figure 5. Populations of the four lowest adiabatic states  
(S0 – S3) of DMABN computed with LZSH. Top: initial 
conditions for set A. Bottom: initial conditions for set B. For 
details on initial condition sets A and B see text. 
 

 

Figure 6. Decay of the population of the S2 state of DMABN 
as obtained by different nonadiabatic dynamics methods: 
AIMS (dark blue), decoherence-corrected FSSH (dTSH, light 
blue), LZSH with set A initial conditions (Landau-Zener A, 
red) and with set B initial (Landau-Zener B, orange). 
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 The LZSH method predicts a significantly faster  
decay of the S2 state. The population of the S2 state drops  
below 20 % within just 10 fs. This is followed by a partial 
repopulation of the state, and by the end of the simulation 
time, the LZSH population values fall between those 
obtained from AIMS and FSSH (dTSH). Considering the 
choice of initial conditions, it is evident that LZSH yields 
notably better results using initial conditions from set B. 
The oscillations observed with set A are likely artifacts 
resulting from undersampling of the configuration space.  
 Thus, compared to FSSH, LZSH shows less variation 
between runs with different random number sequences 
(i.e. trajectories tend to be more “deterministic”), which 
should be taken into account when sampling initial 
conditions. 
 Overall, we observe that the simple LZSH algorithm, 
which unlike FSSH does not retain any memory of past 
transitions (compare Equations (13) and (15)), performs 
relatively well in the rather challenging case of molecular 
Tully model II which involves multiple nonadiabatic 
transitions. However, further investigation is needed to 
fully understand the rapid depopulation observed at the 
beginning of the simulation. 
 

4. CONCLUSIONS 
In this study, we evaluated the performance of the Landau-
Zener surface hopping (LZSH) algorithm for simulating 
nonadiabatic excited-state dynamics. Since the LZSH 
algorithm determines hopping probabilities based on the 
minimum energy gap between electronic states, it is 
essential to select an appropriate time step for nuclear 
dynamics. A time step that is too large may overlook the 
minimum gap, while an excessively small step can result in 
inefficient calculations. To address this issue, we developed 
an adaptive time step version of the LZSH algorithm. 
 We tested the adaptive LZSH algorithm using Tully's 
one-dimensional models I and II, which include simple and 
dual crossings between electronic states, as well as the 
“molecular Tully model II” represented by the DMABN 
molecule. Our key findings are as follows: 
a) For Tully’s model I, the adaptive LZSH algorithm 
accurately captures the dynamics at high initial momenta 
but tends to overestimate hopping probabilities at low 
initial momenta. When random noise was introduced to 
simulate errors in electronic structure calculations, the 
algorithm generated incorrect transitions when excessively 
small time steps were employed. The adaptive time step 
approach effectively addressed this issue by reducing the 
time step around the gap minimum by as little as possible 
to increase the accuracy of the evaluated gap minimum. 
b) For Tully’s model II, which is designed to test quantum 

interference effects, we observed that while the LZSH 
algorithm did not replicate the oscillations seen in FSSH, it 
still accurately followed the overall population trends. 
However, in certain cases with very low initial momenta, 
the LZSH method resulted in unphysical trapping of 
trajectories on the upper surface. 
c) For the DMABN molecule, the LZSH algorithm performed 
well during longer simulation times but deviated from “best 
estimate” results in the early stage of dynamics. This 
behavior is reminiscent of LZSH performance for Tully’s 
model I at low kinetic energies, where it also overestimated 
hopping probabilities. 
 In summary, the LZSH method is straightforward to 
integrate with various electronic structure approaches and 
can be implemented in both adiabatic and diabatic 
representations, making it a valuable tool for studying 
photoinduced processes. However, users should be aware 
of its potential numerical issues. The adaptive time step 
approach we propose enhances the stability of the  
LZSH algorithm without significantly increasing the 
computational cost. 
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