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SUMMARY 

Ovens are devices commonly used to in laboratories and industry provide temperature conditions 

for drying, cooking and chemical processes. Developing an accurate mathematical model is an 

important step before designing a controller for this system. In this study, an electric oven was 

tested with pulse and step inputs. The Prony curve fitting method was used to fit the step response 

of the oven to that of a typical nth order Linear Time-Invariant (LTI) system. The decision to use the 

step response for identification was based on two reasons. First, the oven is a high-order dynamic 

system with input constraints that make it practically impossible to obtain the impulse response. 

Secondly, the step input ensures the persistence of excitation and is easy to apply. Adapting Prony's 

method, which usually uses the impulse response, to work with pulse and step responses required 

some theoretical modifications. Finally, different model orders were evaluated using the Akaike 

information function, and it was found that a 17th order LTI system best describes the behaviour of 

the oven system. The discrete and continuous Transfer Functions (TFs) for this well-fitted model 

were determined. 

KEYWORDS: system identification; electric oven; Prony approach; step response; Akaike 

information criterion. 

1. INTRODUCTION 

Since the dawn of civilization, mankind has sought ways to simplify life by modifying its 

environment. The first step in accomplishing this is to understand the environment. For humans, 

it is crucial first to recognize the environment. This paper aims to identify the model of an oven 

for the design of its temperature controller. System identification methods can generally be 

categorized as linear and nonlinear. Within these categories, identification can be performed 

using gray box [1] or black box [2]1 methods. In the black box identification method, only input-

output signal samples are utilized without using any information about the system's internal 

variables where most of the time, it is difficult or impossible to access this information. A lack of 

 

1 The white box identifying, called modeling, is not on the agenda. 
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information about the internal components of a system leads to an extensive list of nonlinear 

identification approaches [3]. Given these explanations, it makes sense to start with a simple 

structure and then move on to more complex methods if the expected results are not achieved. 

In [2] and [4] an electric oven is modelled with a first-order linear TF while in [5], an Artificial 

Neural Network (ANN) approach was used for modelling and temperature control of an electric 

oven. However, due to the computational complexity of ANNs, this approach may not be suitable 

for online or practical applications. The authors in [6-7] used energy equations to model an 

electric oven and control its temperature, focusing on energy efficiency. 

In the black - box category of identification methods, the first and simplest methods are 

identification using impulse and step responses [8]. The Prony is an old method in the literature 

on systems identification [9-10]. However, it is still one of the most powerful batch2 

identification methods [11-12]. This method was examined with two other methods in the 

review article by [12] using four different case studies. In the review, Prony's method is praised 

for its performance in order reduction and noise resilience. Properties that can be achieved in 

the Matrix Pencil (MP) and Eigensystem Realization Algorithm (ERA) methods through the use 

of auxiliary tools. In the literature on system identification, Prony's method is particularly 

noteworthy in the identification of power system modes [13-14] and their small signal stability 

analysis [15], since most of its control methods are based on models. Other applications of 

Prony's method include the localization of short-circuit faults in DC systems [16], signal 

recovery [17], and the detection of wave distortion [18] in the field of control systems. 

In this paper, the Prony method was chosen because of its ability to identify an oven system. The 

identification has to be done in the form of a black box due to the lack of information described 

in the next section, and the Prony method supports this approach. However, implementing the 

Prony method in practice can be difficult. Prony uses the samples of the impulse response of the 

system in two stages [19], which cannot be extracted in many practical systems, including the 

desired oven system. In this category of systems, high-order dynamics and restrictions in the 

input signal amplitude result in no response at the output. Therefore, the use of step input is 

recommended for three reasons. First, it does not have the problem mentioned for the impulse 

input. Secondly, its response can easily be converted into an impulse response suitable for 

identification. Thirdly, due to the high-frequency range, it fulfills the persistent excitation 

condition of the input. 

In general, the main contribution of this paper is to reconcile Prony's theory with the practical 

realities of implementation. This can be summarized as follows: first, sampling the output of an 

industrial system using common tools; second, utilizing step and pulse (rectangular) inputs in 

two different stages of the Prony method instead of an impulse input; third, updating the Prony 

method relations to parameterize the step response as original data and using a rectangular 

signal as secondary data; Fourth, convert the parameterized step response into discrete and 

continuous transfer functions of the oven system; and finally, using a valid criterion to select a 

model with the appropriate order in terms of fitting and parsimony. 

2. THE OVEN SYSTEM UNDER STUDY 

The oven system, under study in this paper, located in the robotic laboratory, is shown in Figure 

1. The system is powered by household current (220V AC and 50Hz) and the main box 

 

2 In other categorization system identification methods separated to Batch, Iterative and Recursive methods. 
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temperature is the system output. Household current is supplied to the heater through a Solid-

State Relay (SSR) that can be controlled by a controller. Because the heater is in the intermediate 

chamber outside the main box, the oven system experiences dead time and high-order dynamics. 

Specifically, the heater is positioned in the middle layer on the bottom, left, and back sides. It is 

insulated from the back with fiberglass and is insulated (from the ambient temperature) on the 

bottom and left side with one and two layers, respectively. The top and right sides have no heater 

and are connected to the outside (the ambient temperature) with two layers, and it is the same 

for the oven door on the front side with a different conduction coefficient. As the transfer 

coefficients are unknown and the heater in the middle layer does not provide a uniform 

temperature, the black box identification method is a suitable approach to determine the 

mathematical model of the oven. 

    

Fig. 1  Oven system located in the robotics Lab, University of Mohaghegh Ardabili 

The oven system under study is equipped with a PT100 sensor located inside the main housing, 

which records samples via the Arduino board. However, due to physical limitations, step 

response samples were used instead of impulse responses. To protect the system's circuitry 

from possible damage, only 20% of the maximum input value (denoted by 0.2u) is applied 

instead of 100% (full step input). The recorded step response for the oven system under study 

is shown in Figure 2. 

 
Fig. 2  Step response of the oven system to 0.2u 

In Figure 2, approximately 7199 samples of the output (oven temperature) were recorded with 

a sampling time of one second. Additionally, in order to initiate the step response from zero, an 

initial temperature of 22.7°C was deducted from the recorded data. According to this figure, the 

final temperature value is 73.8°C. 
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3. PRONY'S METHOD PRINCIPLES AND ITS ADAPTATION TO THE DESIRED 

SYSTEM 

It is assumed that the TF of the system under study can be represented as a rational fractional 

expression with two polynomials with ib  real coefficients in the numerator and ia  in the 

denominator. In other words, the TF of the system under study is assumed to be as shown in Eq. 

(1). 

(1)  ( )

n k
km 22
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Where iα s are k real poles separated from complex conjugate ones and iA  and iD  are the values 

of the residues in the corresponding poles. Here it is assumed that the system has no repeated 

(multiple/double) poles and that it is separated in the form of distinct real and complex-

conjugate pairs as in Eq. (1). Combining the two summations given in Eq. (1), a more unified 

form of this TF is given in Eq. (2). 
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when compared with Eq. (1), for the first k terms, 
idω  is zero and i iσ α= . 

By applying the step input and using the inverse Laplace transform, the step response of the 

desired system can be written as Eq. (3). 

(3) 
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In which n 1σ +  and 
n 1dω
+

 are formed due to the step input and both are equal to zero. Assuming 

that the TF given in Eq. (1) can appropriately model the oven system, the recorded samples in 

Figure 2 must be fitted in the time-domain equation given in Eq. (3). However, since the 

sampling rate is equal to a constant value such as T, the sample's exact values can be represented 

as Eq. (4). 
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where 
( )i di
σ jω T

iz e
− +

= , k is the sample number, and N is the total number of samples. 

In the Prony method, the goal is to find iz s and iB s in such a way that ks  matches the step 

response samples. Expanding Eq. (4) for different samples leads to Eq. (5). 
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There are two challenges when determining the unknown parameters of Eq. (5). 

1) The relation has two unknown matrices Z  and B . 

2) Z  is not square (usually the number of samples is much larger than the order of the 

model). 

To overcome the first challenge, more information (perhaps more recorded samples) is 

required. According to Eq. (4), the components of Z  are the poles of the desired system. These 

poles can be determined by finding the roots of the denominator polynomial of the TF in Eq. (1). 

For this purpose, it is necessary to put additional samples in the different equations of the 

system given in Eq. (6) and obtain 1a  to na  coefficients. The relation Eq. (6) can be directly 

derived from Eq. (1) where ix s and iy s are the samples of the input and output signals, 

respectively. 

(6) 
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This can be useful when an input is used so that the right side of the difference equation given 

in Eq. (6) becomes equal to zero. In Prony’s method, the appropriate impulse signal is one and 

for i n=  to N-1 the samples are placed in Eq. (6)[20]. However, as mentioned above, applying 

the ideal impulse input to the oven system does not significantly affect its output (temperature), 

i.e., cannot be measured with a sensor. To solve this challenge, we used a pseudo-impulse signal 

that equals 1 from 0 to 500 seconds it is equal to 1 (100% duty cycle) and then becomes zero (a 

rectangular pulse with a width of 500 seconds). Since the sampling time is 1 second, Eq. (6) can 

be rewritten for i 500 n= +  to i N 1= −  as follow: 
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In Eq. (7), the second challenge of the matrix relation of Eq. (5) appears again. This challenge 

appears since the number of equations is greater than the number of unknown parameters, and 

therefore the equations cannot have a unique solution. To solve this, it is common to use the 

pseudo-inverse formula in which a suitable unknown parameters vector that holds for almost 

all components is obtained in Eq. (7) [21]. For this: 
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Where D  is the output sample matrix in Eq. (7) and Y are samples (5500 samples) in Eq.(8), as 

illustrated in Figure 3. It should be noted that the initial value of temperature is subtracted from 

this signal. These samples present the response of the oven system to the pseudo-impulse input 

(the rectangular signal in the interval time between 0 to 500 seconds). 

 

Fig. 3  The system response to the pseudo-impulse signal 

As Ẑ  is determined using Eq. (5), the unknown vector of B̂  can be obtained using a pseudo-

inverse formula as given in Eq. (9). It should be noted that a pole at z 1= −  is added to the overall 

poles due to the applied step input signal. 
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Finally, it can be concluded that: 
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Regarding Eq. (10), the system order (n) has not been determined yet. This parameter is 

available to the designer. 

Applying Z-transform to Eq. (10), the discrete TF given in Eq. (6) can be obtained as follows: 
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According to the details considered in Eq. (4) and using i
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= + = − ,  the continuous TF 

is obtained by converting discrete TF poles to continuous TF poles. Here we get Eq. (12): 
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For the system order (n) to be determined, the following mean squared error (MSE) criterion is 

utilized. For this purpose, the obtained model is evaluated for different values of the n, and the 

order that results in the lowest value of MSE is chosen as the final system model order. 

(13)  ( )
N 1

2
k k

k 0

1
ˆMSE s s

N

−

=

 
=  − 

 
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4. ORDER FINDING AND SIMULATION 

4.1 IMPLEMENTATION OF PRONY'S ALGORITHM 

For the models with different orders to be evaluated, the proposed identification method was 

tested with different inputs and the Mean Squared Error (MSE) results are summarized in Table 

1. The identification of the oven system was performed with a 0.2u input signal, but the MSE can 

also be used to evaluate a model at different operating points. For this purpose, 0.4u and 0.6u 

inputs were applied to the obtained models, and the MSE was calculated. The results of all 

evaluations are shown in Table 1. To get a better understanding of the modelling accuracy, the 

responses of different order models to a 0.2u input are shown in Figure 4. 

Table 1  Mean Square Errors of different order models 

The oven system model order (n) 
MSE 

20% of step input 40% of step input 60% of step input 
3 56.3799 155.98 398.98 
5 45.9635 131.10 344.10 

10 11.9614 45.36 148.70 
20 1.0720 11.65 62.35 
27 0.8222 10.45 58.65 
50 1.6873 14.35 70.22 

 

 
Fig. 4  Step response of the identified oven system with different orders (identified using 0.2u input) 

Using Eqs. (11) and (12), the parameters obtained in Prony’s curve fitting method can be utilized 

to get the discrete and continuous transfer functions of the oven system. For example, for 

{ }n 3,5 ,10∈  the continuous transfer functions are extracted as follows: 

The third-order model: 
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The tenth-order model: 
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4.2 AKAIKE INFORMATION CRITERION 

There are two important principles in determining the model order: the fitting principle and 

the parsimony principle. The fitting principle focuses exclusively on minimizing the MSE, which 

often results in a high-order model. While this type of model may be suitable for purposes such 

as fault detection, if the goal of the modelling is to design a controller for the system, a lower-

order model is sufficient and simplifies the calculations. In contrast, according to the principle 

of parsimony, a lower order model is chosen even if it is weaker in terms of fitting. Among the 

practical methods for determining the model order determination, the variance method, the 

covariance matrix method [22], the Akaike information criterion (AIC) and the f - test method 

are frequently used [22]. In this paper, we use the AIC method due to its efficiency and simplicity 

in calculation [23]. 

According to the simulations (Table 1), for models with n 27> , due to the unnecessary order, 

the MSE increases, and the model loses accuracy. Also, choosing a model with an order of 27 is 

solely based on the fitting principle which is considered a large order for a model. The AIC is 

used to determine the final oven system model considering both the principles of parsimony 

and fitting. 

 ( ) ( )
N 1

2
k kn

k 0

ˆAIC 10 log s s p
−

=

 
=  −  +

 
 
  (17) 

where p =n+m+1. The value of AIC for { }n 1,...,50∈  is calculated and the results are illustrated in 

Figure 5. 

 
Fig. 5  Akaike information function values in Eq. (17) for models with orders from 1 to 50 

The AIC has its minimum value for n=17, which is 128.34. Based on this criterion and 

considering both the fitting and parsimony principles, the model with n=17 is therefore the most 

appropriate model for the oven system. 

The overall process using the Akaike information function to obtain a linear model with an order 

of 17 can be summarized as shown in Figure 6. It should be noted that Figure 5 represents the 

evaluation result within the diamond shown in the flowchart of Figure 6. This figure shows that 
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the decision-making process to determine the appropriate model is inductive and not 

straightforward. 

System responses 

measuring and recording 

using PT100 + Arduino

           (The model order)0n =

1n n= +

Implementation of Prony's 

algorithm to calculate the 

unknown parameters of 

typical step response (Eq (4))

Derivation of system 

Transfer Function (Model)

Model 

simulation and 

evaluation by 

Akaike criterion

Is it OK?

The model response 

evaluation to 0.4u and 

0.6u inputs

No

Yes

Applying 0.2u and pseudo-

impulse inputs

 

Fig. 6  Flowchart of the model order finding process 

5. DISCUSSION 

Due to the presence of noise in the input/output sampled data, the statistical approach to 

parameter identification has been investigated in several references [24-25]. Most of the 

analyses in this area refer to the Least Squares (LS) method, which uses linear regression 

equations to minimize the sum of squared errors and determine system parameters [26]. This 

method is commonly used to identify system parameters by identifying the coefficients of 

impulse responses or difference equations [19]. According to the BLUE theorem, unbiased 

estimation is achieved when the noise in the sampled data is white, making this method the best 

linear estimator. However, white noise is a theoretical concept and can only be approximated in 

practice, just like impulse signals. The justification for using the LS method in its ordinary format 

lies in the ignorable error caused by non-white (color) noise. In this paper, Prony's method is 

also selected for the same reasons. In the following, the initial steps taken to reduce the level 

and impact of noise to increase the success rate of the Prony method implementation are 

outlined. 

One way to reduce the effect of noise is to filter the sampled data with low-pass filters, which is 

done by programming. Another measure to reduce the effects of noise is to use an RTD 

temperature sensor instead of a thermocouple. Thermocouples can have a very high noise level 

as they generate very low voltages. 

Another important point is that in Prony's method (also in the LS method), the last equation to 

be solved (here Eq. (7) and then Eq. (5)) actually represents a system of equations with more 

equations than unknowns. Solving this system using the transpose matrix in Eqs. (8) and (9), 

the so-called pseudo-inverse, means that the fitting operation is performed twice in the Prony 

method, similar to the LS method. 

The next point to discuss is the error analysis in Table 1. When a linear model is used to model 

a nonlinear system, the desired model is expected to be valid only at the point of operation 
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where the samples were taken. Too much displacement will invalidate the model, but this does 

not mean that we should abandon the advantages of linear models. As can be seen in Figure 7, 

the main difference between the step responses obtained with 20%, 40%, and 60% inputs is one 

coefficient. In such cases, it is easy to use new linear models by means of the Gain scheduling 

technique [27], so that when the operation point of the system changes, the corresponding 

coefficient in the linear model changes. 

 

Fig. 7  The response of the oven system to 20%, 40% and 60% of the step input 

6. CONCLUSION 

This paper modelled an industrial electric oven using the Prony-based curve-fitting method and 

AIC. The Prony method can utilize all the samples from the system's output in its calculations by 

employing pseudo-inversion. This method has been demonstrated to provide the best linear 

approximation for the data used. Applying step inputs with amplitudes of 20%, 40%, and 60% 

of the unit step to the models under evaluation from different orders in Table 1 and the results 

obtained in Figure 7 confirmed that the model calculated with the 0.2u input data can perform 

well for other step inputs simply by adjusting the DC gain of the TF. Using AIC designers can 

strike a balance between the principles of fitting and parsimony, and select the AIC coefficients 

based on the modelling purpose. Finally, it can be concluded that based on the desired results 

obtained in Figure 4, the need to use more complex models, such as non-linear ones, is 

unnecessary. 
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