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ABSTRACT 
This work deals with the basis for the development of a method for the characterisation of 
shredders in the field of waste treatment. Therefore, many parameters of shredders have to be 
considered. In this work, the throughput and its inconsistency come into focus. The fluctuating 
mass and volume flow rates often cause problems for waste treatment plants. Mixed waste 
generates a fluctuating throughput despite continuous feeding, often starting at the first machine, 
the shredder. Dynamic control of the shredder is seen as a solution. By implementing a control 
loop at the shredder, fluctuations in output are to be minimised, and the idea is that subsequent 
machines will thus be ideally fed. Autocorrelation of the data of an output volume flow of the 
shredder exists, which indicates that a dynamic output feedback control can work; therefore, an 
attempt was made to control the shredder. However, the first control attempt was probably too 
rudimentary, and implementing a dynamic control of the shredder did not yet improve 
throughput fluctuations. Nevertheless, the work provides indications and shows potential for 
further research approaches on the control-based improvement of shredders' throughput 
continuity. 

KEYWORDS 
Mixed solid waste, Shredding behaviour, Waste treatment plant, Control loop, Fluctuation flow, 
Digitalisation. 

INTRODUCTION 
Ambitious recycling targets for municipal and packaging waste are part of the European 

Union's circular economy package; these targets include recycling 65% of municipal waste by 
2035 [1]. Hence, better waste treatment has become more important in recent years [2, 3]. In 
addition, heterogeneous waste streams from mixed (commercial and municipal) waste, which 
are highly variable in their composition and particle size [4], pose a challenge in further 
processing. Shredders, often the first machines in mechanical waste treatment plants [5], must 
deal with this heterogeneous and challenging material stream. Large-scale experiments have to 
be carried out because there is no possibility of downscaling the properties and composition of 
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the mixed heterogeneous waste streams [6]. The heterogeneous composition of waste streams 
also complicates the (real-time) modelling, particularly the current state detection of material 
flows [7]. Methods for sensor-based measurement of material flow data, which are used for 
quality assurance in waste treatment, have already been published (cf. [8, 9]); further research 
on the use of various sensor technologies for materials characterisation has been presented in 
two review papers (cf. [10, 11]). Even though sensors are present in some waste treatment 
plants, they provide hardly any data about the material stream (a.o., sensors for fire protection, 
machine data). In addition, sensors already installed in some plants for recording volume or 
mass flows are still missing in other plants. 

In some cases, individual machines are equipped with sensors that collect data. However, 
this collected information is not used, particularly in terms of dynamically operating the 
machine interaction and plant optimisation. Communication between the individual machines 
and thus a step towards digitalisation-assisted plant operation is still missing, also because there 
is currently hardly any real-time information on the load of conveyor belts or the quantities fed 
to the individual machines, whose performance depends on these quantities [12, 7].  

A shredder changes the parameter particle size of the input material (for example, mixed 
solid waste) for the downstream process. In this process step, waste is shredded and transferred 
to a specific particle size range, resulting in a material stream suitable for transport, screening 
and sorting. The selection of the shredder for the respective area of application usually depends 
on the input material and its properties [13]. The particular shredder and its settings or 
parameters (a.o., cutting gap, shaft rotation speed, knives) affect the output stream in its particle 
size distribution [14], throughput capacity, and uniformity [15, 16]. Insufficient attention is 
paid to the aspect of more steady throughput, especially volume flow. Fluctuations in the 
material flow can be caused by irregular material discharge of individual machines or 
discontinuous feeding. They can affect the performance of subsequent machines and the quality 
of the output material from a machine or a plant [15]. For example, a conveyor belt's high 
occupancy rate negatively impacts the performance of a subsequent sorting machine [17]. Data 
from a pilot-scale processing line − Technical Line 4.0 consisting of a shredder, drum screen 
and an additional machine that recorded volume and mass flow − with mixed solid waste show 
an overview of the origin and causes of fluctuations [12]. The study [18] also deals, among 
other things, with the influence of throughput fluctuations on sensor-based sorting machine 
performance to enable more optimised design and operation of sorting plants. However, the 
authors [18] recommend further investigation of the fluctuations since the share of acceleration 
belt area covered by the material was low (<50%) in the tests carried out. Investigations using 
higher loading densities should therefore be performed. The study [19] states, that a 
prerequisite for a good sorting sequence is a continuous material volume flow also serving to 
avoid subsequent overfilling and underfilling conditions. The aspect of smoothing material 
stream fluctuations and thus conveying conditions has not been given enough attention so far. 
However, appropriate steps would make considerable capacity potential available in existing 
treatment plants and, at the same time, improve the quality [15]. Coarse shredders are usually 
set based on statistical insights in waste treatment plants. Parameters such as shaft rotation 
speed already pursue dynamic approaches. Programs include certain dynamic behaviour like 
reversing at regular intervals if, for example, particles get stuck. Nevertheless, the dynamic 
adjustment of the shredder, e.g., in terms of target shaft rotation speed and controlling the 
current material flow, has not yet been implemented [6].  

This investigation deals with the problem of the non-uniform throughput performance of 
shredders. The aim is to improve waste plant processing performance by controlling the 
shredder's output while avoiding additional machinery or facilities. This study will present data 
analyses from real-scale experiments to show and quantify the potential of dynamically 
adjusting shredder parameters to control the output stream. The concept of implementing an 
output feedback control loop for the shredder originated from insights gained during the 
ReWaste4.0 project (cf. [20]) − a predecessor of the ReWaste F project (cf. [21]), in which this 
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work is included. The hypothesis, supported by autocorrelations observed in the output flow 
(cf. Figure 1), was that the processed waste material and the resulting volume flow of a 
shredder's output are more similar than, on average, within a certain time interval. 

METHOD 
First, the basic concept of implementing an output feedback control loop is discussed; the 

topic of autocorrelation must be addressed. A correlation between two data points 
(autocorrelation) is usually expressed as an autocorrelation coefficient rk (cf. [22]). The 
correlation coefficient indicates the distance between two data points under consideration for 
each value of k, with rk assuming a specific value between −1 and +1 [23]. 

 

𝑟𝑟𝑘𝑘 =
1

𝑁𝑁 − 𝑘𝑘∑ (𝑥𝑥𝑡𝑡 − 𝑥𝑥)(𝑥𝑥𝑡𝑡+𝑘𝑘 − 𝑥𝑥)𝑁𝑁−𝑘𝑘
𝑡𝑡=1

1
𝑁𝑁∑ (𝑥𝑥𝑡𝑡 − 𝑥𝑥)2𝑁𝑁

𝑡𝑡=1

 (1) 
 

 
These correlation coefficients applied to different lags produce a diagram and an 

autocorrelation function plot (ACF-plot, cf. Figure 1). An ACF (ordinate) describes the 
correlation between data points of the time series and the time series offset by one lag 
(abscissa). The diagram shows that the correlations decrease with increasing lag up to around 
175 s. There is no fixed defined value for defining a strong or weak correlation. However, 
values between 0.3 and 0.5 usually indicate a weak correlation, values between 0.5 and 0.7 
indicate a moderate correlation and values greater than 0.7 − a strong correlation [24]. In this 
example, there is a moderate correlation up to 25 s and a strong correlation only up to 6 s, but 
there is at least a weak correlation up to approx. 175 s. In conclusion, the idea of an output 
feedback control loop is born from the existing context.  

 

 
Figure 1. ACF plot − data from a test series of the ReWaste4.0 project of 2019, the lag given in 

seconds; shredder settings – shaft rotation speed 80%, cutting tools F, cutting gap closed; mixed 
commercial waste was comminuted 

Experimental setup 
Large-scale tests were conducted to collect meaningful data and information under real 

conditions. The material comminuted was mixed solid commercial waste from Styria, Austria. 
The material was continuously fed by a crane or wheel loader to avoid the effects of non-
continuous feeding the shredder, so the grinding chamber was always well-filled. The shredder 
used was a Terminator 5000 SD provided by Komptech GmbH (cf. Figure 2). The 
comminuted material was transported from the shredder to a Digital Material Flow Monitoring 



Lasch, T., Imhof, J., et al. 
Development of a method for shredder characterisation and…  

Year 2024 
Volume 12, Issue 3, 1120492 

 

Journal of Sustainable Development of Energy, Water and Environment Systems 4 

System (DMFMS), a mobile machine from Komptech GmbH, which records the mass and 
volume flow (described in more detail by [16]). The control of the shredder throughput is to 
be realised based on data generated by a volume flow sensor mounted above the discharge belt 
of the shredder. This method was tested, considering its retrofitability and, thus, its 
implementation in existing plants. Before the tests with the control loop started, tests to get a 
calibration curve were carried out. 

 
Figure 2. Photo documentation of the large-scale experiments in 2022; control of the output 

volume flow of a shredder with subsequent sensor-based investigation of the material flow 

Calibration curve experiment 
In order to get a better understanding of data obtained from previous experiments (cf. [16]) 

and to create a calibration curve for the same waste used for the experiments, collected at the 
same time and location, a calibration curve was created using the new data. Using this 
calibration curve should lead to a better understanding of the correlations between the mean 
volume output and shaft rotation speed. The test runs for the calibration curve were carried out 
in random order at the following shaft speed settings: 50%, 60%, 70%, 80%, 90% and 100%, 
each for 15 minutes (so that the data collected by operating the shredder are predominantly in 
a stable state: the initial oscillations are over). 

Control loop experiment 
First, a control loop is described in general terms, and then the performed experiments are 

discussed. A control loop comprises three essential components: the process sensor, the 
controller function, and the final control element. Collectively, these components automatically 
modify the controller output value, matching the value of a predefined set point (SP) by 
changing a measured process variable (PV). The measured control deviation occurs as a 
difference between the SP and the actual value or a proportional band (a range of values within 
the PV should remain), so the response of the controller output is limited, thus reducing the 
risk of an unstable control loop. The desired output value (the SP) is compared with the current 
PV using a mathematical function, resulting in a measured deviation (Figure 3). The controller 
uses the measured deviation to generate an electrical signal for the shaft motor to change the 
shaft rotation speed. So, the process variable changes because the speed affects the 
comminution process. A sensor measures the new PV, so the new value is compared with the 
SP, generating a new measured deviation. So, the control loop is completed, and with good 
controller tuning, the process variable remains at the SP. The control action depends on the 
desired PV and the actual PV. There is a feedback loop through which a control action is 
exerted to keep the PV at the same value as the SP [25]. 
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Figure 3. Flowchart − control loop of a shredder [26] 
 

In these experiments, the output variables of the system are measured, and the control input 
is adjusted to regulate the system. Komptech GmbH programmed the control loop (Figure 4). 
The application of the control loop to the shaft rotation speed of the shredder to minimise 
fluctuations was tested with the control loop alternating activated and deactivated (to minimise 
the influence of the material). The test runs lasted 15 min. For the tests with a deactivated 
control loop, the shaft rotation speed was set to 70% of the maximum; this value was used as 
a starting point for the tests with an activated control loop. 

By a shaft rotation speed of 70%, a target volume of 180 m3/h should be reached, according 
to the control loop experiments (cf. section Results). The idea was to select a target volume 
approximately in the middle of the analysed speed range for static settings to regulate it up and 
down in the dynamic setting. Thus, the two states can be compared. The tolerance range was 
set at first to 10%, so the control loop reacted at volume flows below 162 m3/h and above 
198 m3/h. Then, the control loop was set to change the PV value (if necessary) every 10 s, with 
a waiting time of 5 s plus an observation time of 5 s. So, the volume flow was observed for 
5 seconds, and at the end of this time, an assessment was made based on the average volume 
flow. If no regulation was required, the 5 s start again from the beginning; if a regulation was 
required, then the shaft rotation speed was adjusted up or down by 20% of the speed (cf. 
Figure 4). However, the original step size of 10% was too small based on observations, so the 
next possible step based on the used software was selected (20%). A total of 18 test runs were 
carried out, 9 with activated and 9 with deactivated control loop. 

 
Figure 4. Flowchart to illustrate the control loop 

value= target 
?
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Data analysis 
The volume flow data, recorded by the sensor on the shredder output, were stored as 

Dewesoft (data acquisition and processing software) files. The files can be displayed and edited 
in Dewesoft. Selected and relevant data were further analysed using R (a statistical 
programming language). 

RESULTS AND DISCUSSION  
This chapter deals with the results. First, the results of the calibration curve tests are 

discussed, and then the results of the control loop come into focus.  

Calibration curve for control loop 
The control loop was calibrated by establishing a clear relationship between the shaft 

rotation speed and the mean volume output. Figure 5 shows the mean volume flow rate at the 
set shaft rotation speed over time.  

 

 
 

Figure 5. Linear model for output behaviour with confidence interval based on mean output; shaft 
rotation speed given in a share of maximum (31 rpm) [26] 

The data points show the trend of a directly proportional function. However, it should be 
noted that there is a residual variance and that these data are 15-minute averages, which limits 
its practical application. Based on the data, a linear model can be calibrated for the data points, 
and a confidence interval can be calculated. In Figure 5, the mean data are used to calculate 
the linear model using R. Despite the large confidence interval (the wide data distribution), 
there are not enough data points to reduce the interval width without lowering the confidence 
level. However, a clear trend indicates a proportional increase in volume power as the shaft 
speed increases. Due to the linear model for the average volume output, the control loop was 
centred at 0.7. The shaft rotation speed can then be increased and decreased without reaching 
the limits of the shredder (by an adjustment of ±20%). The volume flow value of 180 m3/h is 
calculated for the linear model for the average volume output for the chosen set point. 
According to the regression, a change of 20% in shaft rotation speed leads to a change of 41 
m3/h and thus 23% of the target. The effect observed with a change in shaft rotation speed of 
10% was low. With a change of 20%, however, the regulation may be too high (responding at 
±10%, but the volume flow is regulated by 23%). So, a finer control adjustment would probably 
be better [26]. 

[m
3 /h

] 
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If a directly proportional linear model is assumed for the calibration, the more dominant the 
change in shaft speed, the more likely the output will change. This calibration model is an 
important part of the tuning process so that the control loop can be set up [26]. 

Control Loop Test 
Here, the aim is to show whether a statistically significant improvement in the fluctuations 

is achieved in the test runs with an activated or deactivated control loop. The average of all 
90/10 quantiles of all test runs (activated and deactivated control loop) is calculated. The 90/10 
quantiles were tested for normal distribution using a quantile-quantile plot and the Shapiro-
Wilk test, and based on these, they are assumed to be normally distributed as a result. Therefore, 
a two-sample t-test was performed (Figure 6).  

 
 

Figure 6. Control loop experiment results: test runs activated (grey) and deactivated (white) 
control loop [26]; the volume given in m3 

It was analysed whether there is a significant difference between the 90/10 quantiles with 
activated or deactivated control loop. In the results of the control loop tests shown in Figure 6, 
the volume data are visualised as boxplots. There appears to be no significant difference 
between the two settings with and without an active control loop, looking at the width of the 
individual boxplots. The medians are comparable, as well as the 75th and 25th percentiles [26]. 

The confidence interval for the difference in mean volume output contains zero; the 
confidence intervals overlap completely (cf. Figure 7), so the control loop does not cause any 
significant difference in the 90/10 quantile metric. The standard deviation of the 90/10 
quantiles is smaller for the data with an active control loop (σ = 0.8) than without a control 
loop (σ = 1.4), but the actual quantiles of the control loop are not significantly better. As a 
result, no significant improvement is caused by the control loop [26]. 

 

 
 

Figure 7. Mean of 90/10 quantiles for control loop experiments and a confidence interval of the 
mean for unknown variance [26]: without control loop (1), with control loop (2), and difference (3) 
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The hypothesis of an output feedback control loop, based on the shredder volume output 
data and the shaft rotation speed of the shredder – for the used control loop – was not confirmed. 
However, such a hypothesis cannot be generally rejected either. The controller used here was 
rudimentary, inflexible in step size and based on a basic analysis. So, there is still potential for 
improvement: for example, a control loop could work for controllers that can be more finely 
adjusted than the one used. Further, one can consider shredder settings dynamically controlled 
to create a control loop (e.g., the gap width). 

Even though only one specific shredder was tested in these trials, using a single-shaft 
shredder (as used here) is common in waste management [27]. Hence, the results from this 
work are likely to be relevant to this class of machines in general. 

CONCLUSION AND OUTLOOK 
Developing a method for the characterisation of shredders involves challenges. Individual 

parameters must be examined and combined in several steps and investigations to form such a 
method. Here, in terms of the parameter, throughput, and related fluctuations, which are 
important topics in waste treatment plants, the idea of smoothing them via shredder output 
feedback control was born. This study aimed to provide approaches to solutions that have not 
yet been confirmed. Experiments with an activated control loop showed no significant 
improvement for the 90/10 quantiles compared to those without an active control loop. The 
fluctuations in these data sets cannot be attributed to intermittent shredder feeding, as a crane 
operator ensured that the shredder feed hopper was always full. 

Further, this work did not address problems such as bridging or the material and shape of 
the objects. As the question arises as to why the control loop has not brought any improvement, 
the next analyses are planned to be carried out. The next step will focus on a detailed time 
series analysis and some step testing to better understand the process characteristics. The aim 
is to get a refined, improved controller and the desired results.  

Since dynamic control of the shredder in the waste management sector could lead to 
improved feeding of subsequent machines, as this could avoid overloading these machines, 
there is a need for further research studies. The dimensioning of subsequent machines could 
also be adapted, as they would no longer have to be designed for overloads. This step would 
also be financially beneficial. 

NOMENCLATURE 
N number of data points  
rk autocorrelation coefficient  

Abbreviations 
ACF Autocorrelation Function 
CL Control Loop 
DMFMS Digital Material Flow Monitoring System 
PV Process Variable 
SP Set Point 
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