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SUMMARY 

Cancer is one of the most serious diseases that humans face nowadays, and, until now, no 

permanent remedy has been developed for it, especially in the case of advanced stages. Cancer is 

characterised by uncontrolled multiplication and abnormal growth of cells until tumour formation 

and organ destruction. Early detection and diagnosis are imperative to reduce the number of 

mortalities, which has progressively declined in recent years thanks to more advanced computer-

aided diagnosis systems (CADS). Artificial intelligence and machine learning have been successfully 

applied to detect and treat various dangerous diseases. It is more accurate to use histopathological 

imaging to detect cancers such as breast, lung, and brain cancer in the early stage based on more 

important features. In this paper, we review previous work on various types of cancer using 

microscopic and histopathological imaging as datasets on different deep learning and artificial 

intelligence models for classifying abnormalities. The aim is to provide a comprehensive view of the 

existing techniques and datasets for detecting and classifying histopathological images. 

KEYWORDS: cancer detection; histopathological imaging; artificial intelligence; medical image 

analysis. 

1. INTRODUCTION 

According to the World Health Organisation (WHO), cancer is the leading cause of global 
mortality, resulting in approximately 10 million deaths in 2020, accounting for almost one in 
every six deaths. The most prevalent cancers include breast, lung, colon, rectal, and prostate 
cancers. Several methods are frequently employed in cancer detection, histopathological 
imaging being a significant component. However, histopathological imaging presents challenges 
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due to the substantial volume of data and the complexity of interpretation. Pathologists devote 
considerable time to analysing these images and providing diagnostic evaluations. It is 
important to note that even when provided with identical visual data, pathologists can 
occasionally arrive at differing conclusions. This variability can be influenced by various factors, 
including fatigue and concentration lapses. 

With the advancement of technology, it is now possible to digitise slides of histological images 
using different types of cameras and microscopes that can clearly visualise and define the 
structure of the tissue. The quality of the scan varies from one raw material to another, which 
introduces some differences in the slides. During the digitisation process, a hematoxylin and 
eosin (H&E) colouring is used. This advancement makes it possible to employ CAD systems and 
artificial intelligence, which can help the pathologist in assessing the accuracy of diagnosis and 
prognosis and also save time based on these digitised images. 

Early detection and classification of any cancer are crucial to improving the survival rate, which 
requires a substantial number of pathologists and time. Therefore, there is a consistent need for 
CAD systems to ease pathologist workload and assist in the early treatment of cancer before 
metastasis occurs, which allows pathologists to focus on more pressing and intricate tasks. 
Microscopic and histopathological slides are to be used to detect and classify cancer into 
multiple categories at an early stage. They provide in-depth information about the disease and 
its impact on cells [1], thanks to the preparation process that preserves the architecture of the 
underlying tissue. The diagnosis of a histopathological image remains the gold standard, 
allowing the diagnosis of various diseases, including almost all types of cancer. Most previous 
studies published on cancer detection focused on artificial intelligence and deep learning 
algorithms based on mammography, ultrasound, and magnetic resonance imaging (MRI) but 
rarely discussed histopathology images as datasets. The remainder of this paper is structured 
as follows: Section 1 defines histopathological imaging, its utility in detecting cancers compared 
to other modalities, and the histological slide acquisition process. Section 2 highlights the types 
of segmentation used in histopathological images. Section 3 provides some approaches to cancer 
diagnosis and prognosis. Section 4 deals with the performance measures frequently used to 
evaluate the efficiency of the algorithms used in the segmentation and classification work listed 
in this document. Section 4 introduces a review of the literature based on histopathological 
imaging for diagnosis and prognosis. Finally, Section 5 addresses research directions and 
provides a conclusion for this paper. 

2. MEDICAL IMAGING MODALITIES 

As far as cancer segmentation and classification using artificial intelligence is concerned, there are 
four medical imaging modalities that can be split into two categories: coloured images and 
greyscale images. In this work, we shed light on histopathological imaging as a modality. Most of 
the previous works mainly use mammography images due to their availability and widespread 
use. Mammography imaging technology is used predominantly in scenarios that require binary 
classification, often distinguishing findings as benign or malignant [1]. However, cancer 
segmentation and classification encompass a broader spectrum of complexities and variations. 
Histopathological imaging (HP), on the other hand, presents a rich dataset that excels in multi-
class classification tasks [1]. While HP imaging is less frequently employed, it shines when dealing 
with scenarios that require the categorisation of cancers into multiple classes, providing a more 
comprehensive understanding of the disease's intricate nature at an early stage. 
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2.1 MAMMOGRAM 

A mammogram (MG), a prevalent diagnostic tool in breast imaging, provides radiologists with a 
crucial method to thoroughly examine breast tissue for any irregularities or abnormalities. In 
the presence of cancer, it usually appears as a detectable mass, as illustrated in Figure 1. 

 

Fig. 1  Example of mammogram breast cancer screening 

2.2 MAGNETIC RESONANCE IMAGING 

Magnetic resonance imaging (MRI) is a diagnostic technique that harnesses the power of 
magnetic fields and radio waves to generate comprehensive visual representations of the body's 
soft tissues, including critical areas such as the breasts, liver, lungs, and bones. Consequently, 
MRI images of cancer provide a unique level of insight into cancer's presence within soft tissues, 
surpassing the clarity achievable through some established methods like mammograms and 
ultrasounds. The high-resolution imaging offered by MRI not only aids in cancer detection but 
also in accurately assessing its extent. Figure 2 provides an illustrative example. 

 

Fig. 2  Example of magnetic resonance breast cancer screening 
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2.3 ULTRASOUND 

These images, often known as sonograms, offer a unique perspective on cancer detection. Unlike 
other imaging techniques such as mammograms and magnetic resonance imaging, cancer 
ultrasound stands out as a radiation-free diagnostic tool. It emits high-frequency sound waves, 
which travel into the body, bounce off organs and tissues, and then return as echoes. These 
echoes are expertly captured and translated into detailed images, providing a safe and radiation-
free method of visualising internal structures, as shown in Figure 3. 

 

Fig. 3  Example of ultrasound in the context of cancer diagnosis 

2.4 HISTOPATHOLOGICAL IMAGES 

Histopathological images offer high-resolution microscopic views of cellular structures within 
tissues, revealing intricate details. In this modality, cancer diagnoses are made at the cellular 
level, well before tumour formation, making it a proactive and efficient approach. These images 
are indispensable for researchers and medical professionals, allowing for an accurate diagnosis 
of disease, particularly for various types of cancer, as illustrated in Figure 4. 

 

Fig. 4  Example of Breast Cancer Histopathology Image 
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3. IMAGE ACQUISITION OF HISTOLOGICAL SLIDES 

During the acquisition of histopathological slides, the pathologist takes samples from abnormal 
areas of the organ and mounts them on glass slides for microscopic examination [1]. 
Subsequently, they examined these samples using a microscope after staining them with 
haematoxylin and eosin. The stained slides are then digitised to obtain whole slide imaging 
(WSI) images. With WSI, the pathologist can extract suspicious samples at various 
magnifications, known as Regions of Interest (ROI), to classify and diagnose different subtypes 
of benign and malignant cancers. 

4. STAIN NORMALISATION 

In the digitalisation of WSI, the pathologist faces a common problem that causes a variation in 
colours between the digitised slides. Due to differences in the colour response of slide scanners, 
raw materials, and manufacturing techniques, to avoid this problem, it is critical to use stain 
normalisation as a pre-processing step before starting any analyses on histopathological images. 
For that, several studies based on this technique were used to unify the digitised image colours 
and improve the quality of analysis. For example, Reinhard et al. [2] proposed an approach based 
on matching the colour histogram statistics of the source and destination images. These 
techniques assume that each staining of the digitalised image must contain some proportion of 
stained tissue. In WSI digitisation, pathologists often encounter a common issue that leads to 
colour variations among digitised slides. These variations arise from differences in the colour 
response of slide scanners, raw materials, and manufacturing techniques. To address this 
problem, it is essential to incorporate stain normalisation as a pre-processing step before 
starting any analyses on histopathological images. Several studies have focused on techniques 
to standardise the colours of digitised images and enhance the quality of analysis. For example, 
Reinhard et al. [2] proposed an approach that involves aligning the colour histogram statistics 
of the source and destination images. These techniques operate under the assumption that each 
staining in the digitised image should contain a certain proportion of stained tissue. 

Figure 5 represents the difference between normalised and unnormalised samples of four types 
of breast cancer histological images. 

 

Fig. 5  Differences in Normalised and Unnormalized Samples of Four Types of Breast Cancer Histological 

Images 
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5. PATHOLOGY IMAGE SEGMENTATION 

In this context, the objective of the segmentation task is to assign a class label to each patch or 
pixel within the image to extract objects such as cells. Histopathological image segmentation can 
be divided into two primary categories: Tissue-Level Segmentation and Nuclei-Level 
Segmentation. Due to the diverse patterns found in whole slide images (WSI), achieving precise 
segmentation of nuclei and tissues is a formidable challenge. To begin with, variations exist in 
both nucleus and tissue sizes and shapes, necessitating a segmentation model with robust 
generalisation capabilities. Furthermore, nuclei and cells often congregate in small clusters, 
which may lead to overlap or contact issues that can result in under-segmentation within 
histopathological images. Lastly, in the case of certain malignant conditions, such as moderate 
and poorly differentiated adenocarcinomas, the structures of tissues may be significantly 
distorted, complicating a complex task. Numerous studies have presented deep learning 
approaches to overcome these challenges in nuclei and tissue segmentation, with the ultimate 
goal of extracting features from WSI while achieving the highest segmentation performance. 

5.1. TISSUE-LEVEL SEGMENTATION 

The whole slide image (WSI) covers a tissue area of approximately 15 mm × 15 mm, resulting in 
images of several gigapixels in size. Handling these exceptionally large images can pose 
computational challenges. It is common practice to initially identify regions of interest on the 
slide and subsequently conduct a more in-depth image analysis. Most slides are empty and do 
not contain tissue. Most WSI scanners can identify unsuspected areas on the slide during the 
processing phase and omit them, thereby reducing scanning time. A method for monitoring 
tissue location is introduced in [3]. In most published studies on tissue segmentation, this is 
achieved through supervised pixel-wise classification of small rectangular image regions using 
colour and texture features [4] [5]. However, an unsupervised method has also been proposed 
[6]. Several studies have employed deep learning methods for the segmentation of various tissue 
types in WSI [7, 8, 9]. A U-Net-based neural network is among the deep learning segmentation 
algorithms. For example, Saltz et al. [10] used the U-Net network to create lymphocyte mappings 
in H&E images in 13 TCGA dataset tumour types. Following suit, Raza et al. [7] achieved minimal 
information loss using a dilated network for gland instance segmentation in colon histology 
images. Lu et al. [11] introduced Brcaseg, a deep learning-based automatic segmentation 
technique for WSI processing that uses TCGA breast cancer WSI tissues from TCGA and employs 
a U-Net structure. Wen et al. [12] used a Gabor-based module for tissue segmentation to extract 
texture information at varying scales and directions. Rojthoven et al. [13] proposed a semantic 
segmentation model, HooskNet, that incorporates contextual information in WSIs using a CNN. 
Figure 6 presents the general segmentation steps at the tissue level. 

 

Fig. 6  Segmentation steps at the tissue level 
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5.2. NUCLEI-LEVEL SEGMENTATION 

Nuclei-level segmentation, or cellular object segmentation, aids in exploring nuclei features 
from histopathological imaging. It focuses on the morphological appearances. Deep learning 
methods based on this type of segmentation can be categorised into two approaches: pixel-wise 
classification [14] and fully convolutional network (FCN)-based methods [15]. Pixel-wise 
classification methods transform the segmentation task into a classification task, where the label 
of each pixel is predicted based on the value of the raw pixel within a square window centred on 
it [16]. For example, Cireşan et al. [14] used the deep neural network (DNN) as a pixel classifier 
and the image intensities in a square window centred on the pixel as input. Xing et al. [17] 
introduced a CNN model that learnt to generate a probability map for each image, with each 
pixel in this probability map assigned a probability of belonging to the nucleus. Finally, an 
iterative region merging algorithm was used to complete the segmentation task. In addition, 
Nesma et al. [18] adopted an optimised pixel-based classification model in conjunction with the 
region-growing strategy, successfully obtaining nuclear and cytoplasmic segmentation results. 
In the fully convolutional network (FCN)-based method, we used all HP images instead of using 
extracted patches as input. This technique can be more efficient and accurate for nuclei 
segmentation [19]. 

U-net is one of the nuclei segmentation architectures used in addition to FCN. U-Net incorporates 
skip connections between the down-sampling and up-sampling paths, which help stabilise gradient 
updates during deep model training. Amirreza et al. [20] presented a U-Net-based model with two 
sequential stages for segmenting touching cells. In the first stage, U-Net is used to separate cell nuclei 
from the background, and in the second stage, a regression U-Net is applied to create a distance map 
for each nucleus, facilitating the final step of cell segmentation. Yang et al. [21] implemented a hybrid 
network that combines U-Net and regional proposals to separate touching nuclei that are difficult to 
segment individually. Zhao et al. [22] introduced an architecture, known as Triple U-Net, based on 
U-Net for nuclei segmentation, eliminating the need for colour normalisation. Schmitz et al. [23] 
proposed a family of deep fusion for nuclei segmentation, intending to identify and segment nuclei 
in histopathological images and improve the segmentation task's performance. Figure 7 illustrates 
the steps of segmentation at the nuclei level. 

 

Fig. 7  Segmentation steps at the nuclei level 

6. CANCER DIAGNOSIS AND PROGNOSIS 

WSI images typically have a large size, approximately 100,000 × 100,000 pixels, which poses a 
significant challenge when applying deep learning-based classification and prediction 
techniques. It is almost impractical to use WSI as input in CNN model training [24, 25]. 
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Therefore, histopathological imaging-based studies follow two distinct approaches: patch-based 
and WSI-based. 

6.1. PATCH-LEVEL METHODS 

In a patch-based approach, the pathologist must select a representative region of interest (ROI) 
from the WSI and decompose the selected region into patches of smaller size to train the model. 
Zhu et al. [26] proposed a CNN approach named DeepConvSurv that used patches extracted from 
WSI. The algorithm developed achieved better results than the standard Cox proportional 
hazard model. Vesal et al. [27] based on patch-wise and WSI-wise methods to develop two CNN 
architectures, ResNet50 and InceptionV3, and the patch-wise technique gives significant results 
in validation on both architectures compared to the other technique. Hou et al. [28] proposed 
the patch-wise technique with maximum expectation (EM). A typical deep learning method 
requires a substantial dataset and a long time to train a robust model. Since the histopathologic 
datasets are not very available and are expensive to create, the majority of patch-based methods 
employ the technique of transfer learning (TL) that transfers and refines the learnt knowledge 
of a pre-trained model on a huge dataset. Thus, creating an accurate model can be done with a 
minimum of (dataset) images and time. 

Xu et al. [29] achieved region-level classification results using CNN activation features. First, 
each selected region from the WSI was segmented into a group of patches. They also proposed 
a pre-trained CNN architecture based on transfer learning techniques with the ImageNet dataset 
and, for the final classification, adopted an SVM classifier. Similarly, Källén et al. [30] divided a 
WSI into multiple patches to extract the characteristics of each one using a pre-trained OverFeat 
network and used a Random Forest (RF) to classify the subtypes in prostatic adenocarcinoma. 
Mercan et al. [31] used a pre-trained VGG-16 network on pre-selected patches to extract features 
and use them to classify the WSI through average pooling. 

6.2. WSI-LEVEL METHODS 

The patch-based prediction approaches mentioned above still have some shortcomings. Most of 
these existing methods usually assume that the diagnosis of every patch selected from the 
corresponding WSI is identical to it, so the patch labels are not necessarily the same as whole 
slide imaging labels due to the heterogeneous patterns [32]. Patch-based approaches require a 
large number of patch annotations, which is very difficult for pathologists [33]. To bypass these 
challenges, several studies focused only on annotation at the WSI level, such as [34, 32, 35]. 
Multi-instance learning (MIL) is one of the most effective tools. Shao et al. [34] added a ranking-
based regularisation to the Cox model to consider the ordinal characteristic of survival and then 
aggregated instance predictions to the whole slide predictions using average pooling. In the 
same way, Yao et al. [36] proposed an approach to WSI survival prediction, namely, an attention-
guided deep multiple instance learning network (DeepAttnMISL), which guarantees adaptive 
assemblies of survival prediction. Moreover, Chikontwe et al. [37] introduced a novel multi-
instance learning (MIL) architecture for histopathology slide classification. This technique can 
be implemented for bag-based and instance-based learning with a centre loss to minimise the 
distances in the embedding space of the interclass. Furthermore, Wang et al. [32] extracted 
spatial contextual characteristics from each patch individually. Then they calculated a globally 
holistic region descriptor after collecting characteristics from several instances for a 
classification based on WSI. 
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7. EVALUATION METRICS 

Generally, every model created after image pre-processing, training, and validation steps should 
be evaluated based on performance. Several metrics are calculated for this purpose using test 
images. Each metric has its formula written according to the confusion matrix presented in Table 
1. This matrix contains row classes and column class labels, which, respectively, represent input 
classes and predicted class labels. Cancer could be a true positive or true negative in the case of 
correct classification and a false positive or false negative in the case of incorrect classification. 
The most commonly used and popular evaluation measures for cancer classification and 
segmentation are accuracy, sensitivity, specificity, precision, F measure, AUC and the area under 
the ROC curve (AUROC), and Intersection-Over-Union (IoU). These metrics are defined in Table 2. 

Table 1  Confusion matrix 

 Actual Positive (1) Actual Negative (0) 

Predicted 

Positive (1) 

True Positives (TP) False Positives (FP) 

Predicted 

Negative (0) 

False Negatives 

(FN) 

True Negatives (TN) 

Table 2  Performance metrics 

Performance metric Description 

Accuracy (Acc) ��� =  (����	)

(����	�����	)
 (1) The precision measure is calculated by dividing 

the total number of accurate forecasts by the 

total number of predictions. 

Sensitivity (Sn) or 

Recall (Rc) or true 

positive rate (TPR) 

�
 =  ��

(����	)
 (2) Sensitivity, or recall, is a measurement defined 

as the total number of correct positive cases 

divided by the number of real positive findings 

(the proportion of correctly classified positive 

cases). 

Specificity (Sp) �� =  �	

(�	���)
  (3) The definition of specificity is «total negative 

cases divided by total actual negative cases» 

(the proportion of correctly classified negative 

cases). 

Precision (Pr) �� =  ��

(�����)
 (4) Precision is a measure defined as the total 

number of true positive cases divided by the 

total number of cases. 

F-score �1 =  � ×��������� ×�����������

(���������������������)
 (5) The F-score provides a more detailed 

assessment of several important facets of the 

classification procedure's prediction power. In 

order to calculate the F-score, the combination 

of accuracy and recall is considered. The lowest 

possible number is zero, and a score of one 

indicates that the classification process was 

perfect. 

Dice Coefficient 

(Dice Similarity 

Coefficient) 

 !�" =  �×|$∩&|

|$|�|&|
 (6) The dice coefficient is used primarily to 

measure the similarity or overlap between two 

sets. 

Intersection-over-

Union (IoU) 
'() =  

*�+∩�,*

|�+|�*�,*-|�+|∩*�,*
 (7) 

The Intersection-Over-Union (IoU) or Jaccard 

index is the most used metric in semantic 

segmentation tasks. It represents the area of 

overlap divided by the area of union. 
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8. LITERATURE REVIEW 

The field of detection and classification of different cancers through histopathological imaging has 
been the subject of several published studies. 

For example, Kwok et al. [38] proposed an approach based on Inception-ResNet-v2 to classify 
early-stage histopathological breast cancer images from the dataset ICIAR2018 Grand Challenge 
on Breast Cancer Histology Images into four subtypes: normal tissue, benign lesion, in situ 
carcinoma, and invasive carcinoma. The method achieved an accuracy of 87%. The article did not 
mention any limitations of the proposed technique. Alom et al. [39] proposed a repeat residual U-
Net (R2U-Net) for the segmentation of images from medical nuclei. Their experimentation 
employed a publicly available dataset derived from the Data Science Bowl Grand Challenge 2018. 
The results of their study demonstrated that the model was capable of accurately segmenting 
nuclei images, achieving an accuracy rate of 92.15%. Want et al. [40] classified liver microscopic 
images into three subtypes: normal, granuloma-fibrosis1, and granuloma-fibrosis2, using 
convolutional neural networks (CNN) and two machine learning techniques: Support Vector 
Machine (SVM) and Random Forest (RF). Using a limited mouse liver dataset, the results 
demonstrated that the proposed CNN-based classifiers achieved an accuracy of 82.78% in 
distinguishing between the three image types. The dataset used contains only 30 mouse livers, 
which can limit the generalisability of the results. Vuola et al. [41] compared two widely used 
segmentation frameworks, U-Net and Mask-RCNN, in the nuclei segmentation domain. They 
combined these frameworks to develop a high-performing model, harnessing the strengths of 
both, resulting in enhanced performance. The model was trained using the Kaggle 2018 Data 
Science Bowl dataset. The model validation was performed using a four-fold cross-validation 
approach, and it achieved an overall IOU result of 0.7 in terms of map, dice, precision, and recall, 
with respective values of 52.30%, 65.90%, and 72.50%. Pan et al. [42] proposed a novel approach 
for Semantic Nuclei Segmentation, an extension of U-Net named AS-Unet. This approach is 
designed to handle both small and large cells by extracting multi-scale features. The model was 
trained on two datasets: a multi-organic HE stained pathological image dataset (MOD) and a breast 
cancer image dataset (BNS). For the MOD dataset, the proposed approach achieved an accuracy, 
F1-score, and IoU of 92.82%, 87.35%, and 77.72%, respectively. In contrast, the same approach 
with the BNS dataset achieved 96.86%, 86.97%, and 77.31% for accuracy, F1-score, and IoU, 
respectively. This method demonstrated the best performance on both nuclei segmentation 
datasets. Zeng et al. [43] developed a novel architecture, the RIC unit, based on U-net to achieve 
more accurate nuclei segmentation using the Cancer Genomic Atlas (TCGA) dataset. This method 
achieved Dice, F1 score, and aggregated Jaccard scores of 80.08%, 82.78%, and 56.35%, 
respectively. The proposed model effectively addresses the issue of overlapping and separating 
touching cells through contour prediction, which is a common challenge in the nuclei 
segmentation task. Despite efforts to mitigate overfitting in the model's development, a deeper 
network remains essential for learning more intricate features. Mahbod et al. [44] developed a 
two-stage U-Net algorithm that was used to segment nuclei in H&E-stained tissue images. The 
architecture comprised a convolutional neural network (CNN) and a U-Net, both using distinct 
activation functions and a weighted loss function to detect and localise the nuclei in the images. 
The experimental results demonstrated that the two-stage U-Net achieved an average intersection 
over union (IoU) of 56.87% in segmenting nuclei in H&E-stained tissue images. The proposed 
approach yields favourable results when compared to several state-of-the-art algorithms applied 
to the same dataset. Toaçar et al. [45] developed a novel deep learning model based on a 
convolutional neural network (CNN) with a residual architecture to improve the effectiveness of 
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breast cancer classification. This model, named BreastNet, outperformed the AlexNet, VGG16, and 
VGG-19 architectures, as well as traditional machine learning methods, achieving an accuracy of 
98.80% when evaluated in the BreaKHis dataset. The article did not mention any limitations of the 
proposed technique. Celik et al. [46] introduced two pre-trained models, CNN ResNet-50 and 
DenseNet-161, to extract characteristics to distinguish between breast cancer subtypes using the 
BreaKHis breast cancer dataset with various magnification levels. As a result of the study, the 
DenseNet-161 model has achieved an accuracy and F-score of 91.57% and 92.38%, respectively; 
on the other hand, the ResNet-50 has achieved 90.96% and 94.11%, respectively, for accuracy and 
F-score. Gour et al. [47] developed an automated approach based on ResHist, a convolutional 
neural network, to classify histopathological images of breast cancer into two major subtypes: 
benign and malignant. They designed a data augmentation technique based on stain normalisation 
and generated patches from histopathological images of the BreaKHis dataset. In this study, the 
proposed approach outperformed some existing approaches, including AlexNet, VGG16, VGG19, 
GoogleNet, Inception-v3, and ResNet50. This approach achieved an accuracy of 84.34% and an F1 
score of 90.49% in the classification of histopathological images. It also showed a precision of 
92.52% and an F1 score of 93.45% when using patches and data enhancement. As part of this 
study in the future, the authors intend to validate the ResHist approach using a more extensive 
dataset to diagnose breast cancer. They also plan to explore the ResHist method to diagnose other 
types of cancer, such as lung cancer, colon cancer, and prostate cancer. Murtaza et al. [48] 
proposed a classification model known as the Biopsy Microscopic Image Cancer Network 
(BMIC_Net) to differentiate between eight distinct subtypes of breast cancer using the BreakHis 
dataset. They employed feature reduction techniques to extract the most discriminative feature 
subset. The proposed model outperformed existing standard models, achieving an accuracy of 
95.48% for first-level classifiers (the BC1 classifier is used to categorise images into two distinct 
classes, benign and malignant). Furthermore, it achieved 94.62% accuracy rates for second-level 
classifiers, where the B2 classifier is responsible for predicting four subtypes of benign BC 
(adenosis (A), fibroadenoma (F), tubular adenoma (TA), and phyllodes tumour (PT)), and the M2 
classifier is tasked with classifying images into four different subtypes of malignant BC (ductal 
carcinoma (DC), lobular carcinoma (LC), mucinous carcinoma (MC), and papillary carcinoma 
(PC)). For each classification level, six traditional ML algorithms were applied, namely, the kNN 
where k=1, SVM, NB, DT, LDA classifier, and LR. These six traditional ML algorithms were applied 
to see which one performs better. The k-Nearest Neighbours (kNN) algorithm exhibited superior 
performance compared to other traditional machine learning algorithms. Furthermore, the 
hierarchical classification model demonstrated its superiority over the one-level classification 
model. As a future work of this study, they envisage the creation of a classification model to 
categorise BC using any modality type. Hameed et al. [49] used four distinct models based on pre-
trained VGG16 and VGG19 architectures: fully trained VGG16, fine-tuned VGG16, fully trained 
VGG19, and fine-tuned VGG19 models. These models were trained using a 5-fold cross-validation 
technique on a private dataset of whole slide images (WSI) to classify breast cancer histopathology 
images into two classes: non-carcinoma and carcinoma. Using the fine-tuned VGG16 and fine-
tuned VGG19 models outperformed the other methods, achieving an accuracy, sensitivity, and F1 
score of 95.29%, 97.73%, and 95.29%, respectively. The authors of this study compared their work 
with state-of-the-art studies using the BreakHis dataset and trained the model using a smaller 
dataset containing only two-class images. However, this presents a limitation in terms of multi-
class classification. Mewada et al. [50] used two datasets, the 2015 BreaKHis dataset and the 
Breast Cancer Classification Challenge dataset. They employed spectral characteristics obtained 
through a multi-resolution wavelet transform and spatial characteristics extracted using a novel 
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CNN architecture to classify histopathological images of breast cancer. This integrated approach 
resulted in an improved classification average precision of 97.58% and 97.45% for both datasets 
and an AUC value ranging from 99.20% to 99.49% for different magnification factors in the 
BreaKHis dataset, surpassing ALEXNET and VGG16. The CNN architecture used in this work 
cannot handle high-resolution images, which represents a limitation of this study. Kong et al. [51] 
introduced a novel approach to segmenting nuclei in histopathological images using two-stage 
stacked U-nets with attention mechanisms. The proposed method is based on deep learning and 
uses a combination of convolutional neural networks (CNN) and U-net for segmentation. The two-
stage stacked U-net architecture (SUNets) allowed for accurate segmentation of nuclei in images 
with high variability in shape, size, and staining intensity. The method is evaluated based on 
several publicly available datasets, including the Cancer Genome Atlas (TCGA) and Triple Negative 
Breast Cancer (TNBC). The results showed that the proposed method achieved superior 
performance compared to other state-of-the-art methods in terms of various evaluation metrics, 
including the mean aggregate Jaccard Index (AJI) results, which were 59.65% and 62.10%, and F1 
scores using TCGA, which were 82.47% and 80.60%, using TNBC. Chen et al. [52] proposed a 
method for segmenting nuclei in medical images using boundary-assisted region proposal 
networks (BA-RPN) that achieved better performance in three public datasets for nucleus 
segmentation and outperformed several existing methods. Specifically, the proposed method 
achieved the following Dice similarity coefficient (DSC) values: 86.7% on the MoNuSeg dataset, 
85.5% on the TNBC dataset, and 89.8% on the PanNuke dataset. Ohata et al. [53], automatic 
techniques were used to categorise eight subtypes of colorectal cancer. Convolutional neural 
network (CNN) structures were used to extract image features, which were subsequently input 
into Naive Bayes, Multilayer Perceptron, k-Nearest Neighbours, Random Forest and Support 
Vector Machine (SVM) classifiers. Through this combination of methods for the extraction of 
histopathological images and machine learning algorithms for classification, the best performance 
was achieved using DenseNet169 in conjunction with the SVM (Radial Basis Function) classifier, 
generating a precision of 92.08% and an F-score of 92.12%. The dataset used was from the 
University Medical Centre Mannheim, which may not contain all variations. The authors aim to 
investigate combinations of various CNNs and traditional methods for feature extraction to 
improve metrics for future research. Vahadane et al. [54] introduced an innovative deep learning 
approach called dual encoder Attention U-net (DEAU) for the nuclei segmentation task. They 
incorporated the convolutional blur attention (CBA) network to mitigate noise generation and 
PyramidBlur Pooling (PBP) to handle various information scales. The model was trained and 
evaluated using two datasets, the 2018 Data Science Bowl Challenge dataset (DSB) and the multi-
organ nucleus segmentation dataset (MoNuSeg). The model achieved an overall IoU, F1, recall, and 
precision of 84.29%, 92.82%, 89.89%, and 95.96%, respectively, for the DSB dataset, and 79.85%, 
82.47%, 81.25%, and 84.29% for the MoNuSeg dataset. Tran et al. [55] proposed a new model 
based on a U-Net architecture named TMD-Unet to avoid the limitation that it is not able to fully 
exploit the output features of the convolutional units in the node. To train and validate this model, 
they used seven different datasets. The implemented method in this paper achieved a dice score 
of 92.49% for nuclei segmentation, 96.43%. for liver segmentation, 95.51% for spleen 
segmentation, 92.65% for polyp segmentation, 94.11% for EM segmentation, 91.81% for left 
atrium segmentation, and 87.27% for skin lesion segmentation using seven datasets for 
evaluation, including colonoscopy, electron microscopy (EM), dermoscopy, computed 
tomography (CT), and magnetic resonance imaging (MRI). He et al. [56] addressed the challenge 
of segmenting overlapping nuclei by introducing a hybrid attention nested UNet, called HanNet. 
This approach uses discriminative features to segment the boundaries of diverse and small nuclei, 
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employing a publicly available multi-organ nuclear segmentation dataset. The test results 
demonstrated that the model achieved an F1 score and Dice coefficient of 88.75% and 80.21%, 
respectively, for the first test (comprising eight images in total) and 88.02% and 81.85%, 
respectively, for the second test (including six images in total). Dabass et al. [57] proposed a deep 
learning-based approach for automated gland segmentation in colon histopathology images using 
an attention-guided deep atrous-residual U-Net architecture. The proposed approach achieved a 
mean intersection over union (IoU) of 84.8% and a mean Dice similarity coefficient (DSC) of 
91.5%, indicating a high level of precision in gland segmentation. The approach was also trained 
and validated on the publicly available dataset, called the Gland Segmentation (GlaS) dataset. Lal 
et al. [58] proposed a robust deep learning architecture for nuclei segmentation from liver cancer 
histopathology images (KMC liver dataset); the model achieved an F1 score of 81.36%. Le et al. 
[59] focused on nucleus segmentation within cell microscope images from the Data Science Bowl 
2018 dataset; a novel architecture known as Double ResPath Unet (DR-Unet) was proposed. The 
authors identified limitations in previous models, particularly ResUnet++, which exhibited a 
semantic gap between features directly connecting the encoder and decoder, thus impeding 
information extraction across various regions. DR-Unet uses double ResPath (DR) to enhance the 
capture of contextual information through Progressive Atrous Spatial Pyramidal Pooling (PASPP). 
The experimental results underscore that DR-Unet surpasses ResUnet, DoubleUnet, and other 
benchmark models in nuclei segmentation. Ali et al. [60] presented MSAL-Net, a new deep learning 
architecture for the accurate segmentation of nuclei in histopathological images. MSAL-Net 
integrates feature-level and spatial-level attention mechanisms to capture local and global context 
information. The proposed method was evaluated on two publicly available datasets, the TNBC 
and the CRC. The method achieved a Dice similarity coefficient (DSC) of 91% and a mean 
intersection over union (IoU) of 84.4 using the TNBC dataset as well as a DSC of 0.877 and a mean 
IoU of 81.7% using the CRC dataset. Models Ilyas et al. [61] presented TSFD-Net, a deep learning 
approach for nuclei segmentation and classification in histological images. The model is evaluated 
on several publicly available datasets, achieving high segmentation accuracy with an average Dice 
coefficient of 86.6% and classification accuracy of 93.8%. TSFD-Net also showed improved 
generalisation to unseen tissue types and pathological conditions. Dabass et al. [62] developed a 
multitasking U-net model with hybrid convolutional learning and attention modules for cancer 
classification and gland segmentation in colon histopathological images. It achieved an F1 score of 
93.3% and an object-dice index of 93.5% for the gland detection and segmentation task. Kiran et 
al. [63] proposed a Unet-based architecture called DenseRes-Unet. They used residual connections 
with Atrous blocks instead of a conventional skip connection to reduce the semantic gap between 
the encoder and decoder paths. The proposed approach is trained and evaluated on a MoNuSeg 
dataset, achieving an accuracy of 89.77%, an F1-score of 90.36%, and an Aggregated Jaccard Index 
(AJI) of 78.61%. Tran et al. [64] proposed Trans2Unet, a new two-branch architecture for nuclei 
segmentation in histopathological image analysis. As the main challenge, they highlight the 
existence of overlapping areas, which makes separating independent nuclei more complicated. 
Trans2Unet combines the Unet and TransUnet networks, with the Unet branch enabling the 
network to combine features from different spatial regions of the input image and localise regions 
of interest more precisely. The second branch, TransUnet, uses a Vision Transformer (ViT) to 
enhance image details by recovering localised spatial information. They also propose infusing 
TransUnet with a computationally efficient variation module, the "Waterfall" Atrous Spatial 
Pooling with Skip Connection (WASP-KC), to boost Trans2Unet efficiency and performance. 
Experimental results on the 2018 Data Science Bowl benchmark demonstrate the effectiveness 
and performance of the proposed architecture compared to previous segmentation. 
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Table 3 summarises the techniques to detect and classify cancer in the studies mentioned in this 
work. 

Table 3  Review of the literature on cancer histology image classification 

Authors Pub. 

Year 

Dataset Architecture 

Proposed 

Type of 

Cancer 

Acc 

(%) 

SP 

(%) 

F-score 

(%) 

SN (%) Dice 

(%) 

IoU 

(%) 

Pr (%) 

Kwok et 

al. [38] 

2018 ICIAR2018 Grand 

Challenge on Breast 

Cancer Histology 

Images dataset 

Inception-

ResNet-v2 

Breast Cancer 

Subtypes 

87.00 -- -- -- -- -- -- 

Alom et 

al. [39] 

2018 Data Science Bowl 

Grand Challenge 

2018 dataset 

Recurrent 

Residual U-

Net (R2U-

Net) 

Nuclei 

Segmentation 

92.15 -- -- -- -- -- -- 

Want et 

al. [40] 

2019 Mice liver 

microscopic images 

dataset 

Convolutional 

Neural 

Networks 

(CNNs) 

Liver Cancer 82.78 -- -- -- -- -- -- 

Vuola et 

al. [41] 

2019 Kaggle 2018 Data 

Science Bowl 

dataset 

Combined U-

Net and 

Mask-RCNN 

Nuclei 

Segmentation 

-- -- -- 72.50 52.30 -- 65.90 

Pan et al. 

[42] 

2019 MOD datasets AS-Unet Nuclei 

Segmentation 

92.82 -- 87.35 -- -- 77.72 -- 

Pan et al. 

[42] 

2019 BNS datasets AS-Unet Nuclei 

Segmentation 

96.86 -- 86.97 -- -- 77.31 -- 

Zeng et 

al. [43] 

2019 The Cancer Genomic 

Atlas (TCGA) 

dataset 

RIC-unit -- -- -- 82,78 -- 88.75 -- -- 

Mahbod 

et al. [44] 

2019 H&E-stained tissue 

images 

Two-stage U-

Net 

Algorithm 

-- -- -- -- -- -- 56.87 -- 

Togaçar 

et al. [45] 

2020 BreaKHis dataset BreastNet 

(CNN) 

Breast Cancer 98.80 -- -- -- -- -- -- 

Celik et 

al. [46] 

2020 BreaKHis dataset ResNet-50 Breast Cancer 

Subtypes 

91.57 -- 92.38 -- -- -- -- 

Celik et 

al. [46] 

2020 BreaKHis dataset DenseNet-

161 

Breast Cancer 

Subtypes 

90.96 -- 94.11 -- -- -- -- 

Gour et 

al. [47] 

2020 BreaKHis dataset ResHist 

(CNN) 

Breast Cancer 

Subtypes 

84.34 -- 90.49 -- -- -- -- 

Murtaza 

et al. [48] 

2020 BreakHis dataset BMIC_Net 

first level 

classifier 

Breast Cancer 

Subtypes 

95.48 -- -- -- -- -- -- 

Murtaza 

et al. [48] 

2020 BreakHis dataset BMIC_Net 

second level 

classifier 

Breast Cancer 

Subtypes 

94.62 -- -- -- -- -- -- 

Hameed 

et al. [49] 

2020 Private Dataset Fine-tuned 

VGG16 and 

Fine-tuned 

VGG19 

Breast Cancer 

Histopatholo

gy 

95.29 -- 95.29 97.73 -- -- -- 

Mewada 

et al. [50] 

2020 BreaKHis Dataset Multi-

Resolution 

Wavelet 

Transform 

and CNN 

Breast Cancer 97.58 -- -- -- -- -- -- 

Mewada 

et al. [50] 

2020 Breast Cancer 

Classification 

Challenge 2015 

dataset 

Multi-

Resolution 

Wavelet 

Transform 

and CNN 

Breast Cancer 97.58 -- -- -- -- -- -- 
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Kong et 

al. [51] 

2020 TNBC datasets Two-stage 

Stacked U-

nets with 

Attention 

Mechanisms 

(SUNets) 

-- 82.47 -- -- -- -- 80.60 -- 

Chen et 

al. [52] 

2020 MoNuSeg dataset Boundary-

Assisted 

Region 

Proposal 

Networks 

(BA-RPN) 

Nuclei 

Segmentation 

-- -- -- -- 86.70 -- -- 

Chen et 

al. [52] 

2020 TNBC dataset Boundary-

Assisted 

Region 

Proposal 

Networks 

(BA-RPN) 

Nuclei 

Segmentation 

-- -- -- -- 85.50 -- -- 

Chen et 

al. [52] 

2020 PanNuke dataset Boundary-

Assisted 

Region 

Proposal 

Networks 

(BA-RPN) 

Nuclei 

Segmentation 

-- -- -- -- 89.80 -- -- 

Ohata et 

al. [53] 

2021 University Medical 

Centre Mannheim 

dataset 

DenseNet169 

and SVM 

Colorectal 

Cancer 

Subtypes 

92.08 -- 92.12 -- -- -- -- 

Vahadan

e et al. 

[54] 

2021 Multi-organ nucleus 

segmentation 

dataset (MoNuSeg) 

DEAU with 

CBA and PBP 

Nuclei 

Segmentation 

-- -- 92.82 89.89 -- 84.29 95.96 

Vahadan

e et al. 

[54] 

2021 2018 Data Science 

Bowl challenge 

dataset (DSB) 

DEAU with 

CBA and PBP 

Nuclei 

Segmentation 

-- -- 82.47 81.25 -- 79.85 84.29 

Tran et 

al. [55] 

2021 HP images datasets TMD-Unet -- -- -- -- -- 92.49 -- -- 

Kiran et 

al. [58] 

2021 KMC liver dataset Robust Deep 

Learning 

Architecture 

Nuclei 

Segmentation 

-- -- 81.36 -- -- -- -- 

He et al. 

[56] 

2021 MoNuSeg dataset Hybrid-

attention 

Nested UNet 

(HanNet) 

-- -- -- -- -- 88.75 -- -- 

Dabass et 

al. [57] 

2021 GlaS dataset Deep Atrous-

Residual U-

Net 

Architecture 

Gland 

Segmentation 

-- -- -- -- 91.60 84.8 -- 

Ali et al. 

[60] 

2022 TNBC dataset MSAL-Net -- -- -- -- -- 91.00 84.40 -- 

Ali et al. 

[60] 

2022 CRC dataset MSAL-Net -- -- -- -- -- -- 81.07 -- 

Ilyas et 

al. [61] 

2022 Multiple Datasets TSFD-Net Nuclei 

Segmentation 

and 

Classification 

-- -- -- -- 86.60 -- -- 

Dabass et 

al. [62] 

2022 GlaS dataset Multi-tasking 

U-Net Model 

Cancer 

Classification 

and Gland 

Segmentation 

-- -- 93.3 -- 93.5 -- -- 

Kiran et 

al. [63] 

2022 KMC liver dataset DenseRes-

Unet 

Liver Cancer 

Nuclei 

Segmentation 

78.77 -- 90.36 -- -- 78.61 -- 
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9. DATASETS 

This section provides an in-depth analysis of public datasets used in various studies for cancer 
classification. 

The Cancer Genome Atlas (TCGA) is a public dataset used to detect and classify various types 
of cancer pathology and radiology images. It was created by the National Cancer Institute (NCI) 
and the National Human Genome Research Institute of the United States in 2006. This dataset 
comprises more than 30,000 images in two formats: SVS and DICOM, encompassing 30 types of 
cancer extracted from 11,000 patients [65]. 

BreaKHis is a publicly available dataset used for the detection and classification of breast cancer 
histological images. It was created in 2014 by the P&D Laboratory and the Department of 
Pathological Anatomy and Cytopathology in Brazil. The latest version of the dataset consists of 
7,909 histopathological biopsy images, each with dimensions of 700 × 460 pixels and containing 
3 RGB channels in PNG format. These images are available at magnifications of 40×, 100×, 200×, 
and 400×. Of the total images, 2,480 represent normal cases, while 5,429 represent abnormal 
cases [66]. The dataset is derived from 82 patients, and the abnormal class is further categorised 
into four subcategories based on size and appearance. 

The University Medical Centre Mannheim Dataset is a public dataset comprising 5,000 
images in Tiff format, each with a size of 150x150 pixels. It is mainly used for the detection and 
classification of eight types of colorectal cancer. The dataset was generated by the Institute of 
Pathology at the University Medical Centre Mannheim, Heidelberg University, Germany, in 2016. 
The images were digitised using an Aperio ScanScope (Aperio/Leica Biosystems) with a 
magnification of 20x. 

ImageNet is a publicly available database containing more than 14 million images, with an 
average image resolution of 469x387 pixels. It is generally used for classification and detection 
tasks in various fields. This dataset is created by the WordNet hierarchy, with the most recent 
version updated in 2021. 

Mice liver microscopic images are a small private dataset used to detect and classify liver 
cirrhosis. It contains 30 images, with 10 showing normal cases and 20 illustrating abnormal 
cases, divided into two classes: granuloma-fibrosis1 and granuloma-fibrosis2. These images 
have a resolution of 1536 x 2048 pixels. 

The dataset of the 2018 Competition Data Science Bowl contains 670 segmented nucleus 
images with a size of 256 by 256 pixels. Images were acquired under various conditions and 
vary in cell type, magnification, and imaging modality (bright field versus fluorescence). The 
dataset is designed to challenge the 2018 Data Science Bowl competition [67]. Each image is 
represented by an associated image ID. The dataset folder contains two subfolders: an 'images' 
folder for the image files and a 'masks' folder for the masks corresponding to the Image IDs from 
the 'images' folder. 

Breast cancer histopathology image dataset (BNS) [68] contains 33 H&E-stained 
histopathology breast cancer images, each with a size of 512x512 pixels, along with their 
associated ground truth. In the ground truth image or mask, each pixel value above 0 is 
considered as the label for the corresponding nucleus. These images were collected during the 
diagnosis of breast cancer in 7 patients. Images from the BNS dataset have been categorised 
based on patients selected at random from an unpublished study on triple negative breast 
cancer (TNBC). The 512x512 samples are randomly cropped from the entire slide images, and 3 
to 7 samples are chosen from each slide to ensure the diversity of the dataset. Each nucleus in 
the mask has been fully annotated using the ITK-SNAP software. 

PanNuke [69] [70] dataset, a valuable resource that consists of 7904 H&E-stained image 
patches derived from more than 20,000 whole slide images (WSI) representing 19 different 
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tissue types. Within this dataset, nuclei are classified into five clinically significant groups, 
including neoplastic cells, inflammatory cells, connective cells, dead cells, and epithelial cells. 
Each of these is meticulously labelled with an instance segmentation mask. The dataset provides 
annotations at the patch level, with each patch measuring 256×256 pixels at 40× resolution. In 
particular, the original patches, originally scanned at 20×, were resized to 40× for the sake of 
consistency. 

The multi-organ nucleus segmentation dataset (MoNuSeg) [71] comprises 30 H&E-stained 
histopathology images with a size of 1000 × 1000. These images, acquired at a magnification of 
40x from various hospitals, offer a diverse range of nuclear appearances. MoNuSeg stands out 
as a widely used dataset, featuring images of seven distinct organs sourced from 30 different 
patients, including the breast, stomach, liver, prostate, kidney, colon, and bladder. Within this 
dataset, the images of the liver, breast, prostate, and kidney are designated for training and 
validation, while the images of the stomach, colon, and bladder are allocated for testing. In 
specific numbers, the dataset comprises 12 training images, 4 validation images, and 14 test 
images. 

The multi-organ HE stained pathological image dataset (MOD) is a multi-organ HE stained 
pathological image dataset that contains 30 images of seven distinct organs: breast, liver, kidney, 
prostate, bladder, colon, and stomach. These images are high-resolution, each measuring 
1000x1000 pixels, and collectively contain approximately 21,000 nuclei, collected by expert 
pathologists. 

Triple Negative Breast Cancer (TNBC) [71] contains 50 high-resolution images captured at a 
magnification of 40x from 11 patients. These images show the diversity of tissue types within 
the breast, each measuring 512×512 pixels. The dataset encompasses a total of 4022 manually 
annotated nuclei, with individual images containing anywhere from a minimum of 5 to an 
average of 80 nuclei. The dataset contains images with diverse cell densities, ranging from 
sparse nuclei in adipose tissue to densely packed regions in invasive breast carcinoma. 

Table 4 provides a detailed description of the public and private datasets used for cancer 
classification using histopathological images, including the Cancer Genome Atlas (TCGA), 
BreaKHis, ImageNet, and other datasets. 

Table 4 Review of the datasets used 

Dataset Name Image acquisition year Source Country 

Cancer Genome Atlas 

(TCGA) Pathology 

-- 2006 The National Cancer 

Institute (NCI) and the 

National Human Genome 

Research Institute 

United States 

BreaKHis -- 2014 P&D Laboratory and 

Pathological Anatomy and 

Cytopathology 

Brazil 

Private dataset of 

University Medical 

centre Mannheim 

digitised with an 

Aperio ScanScope 

(Aperio/Leica 

biosystems), 

magnification 20x. 

2016 Institute of Pathology, 

University Medical Center 

Mannheim, Heidelberg 

University, Mannheim, 

Germany 

Germany 

ImageNet -- 2021 WordNet hierarchy -- 

private dataset of whole 

slide images (WSI) 

-- -- -- -- 

Mice liver microscopic 

images 

-- -- -- -- 
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Table 5 represents a literature review of the dataset used by the studies cited in the article. 

Table 5 Description and details of the datasets used 

Dataset Name Number 

of 

Images 

Normal Abnormal Availability Resolution Image 

format 

Use for task 

The Cancer 

Genome Atlas 

(TCGA) 

Pathology 

30,000 -- -- Public -- SVS and 

DICO M 

format 

Detection and 

classification of 

different types of 

cancer pathology and 

radiology images 

BreaKHis 7 909 2480 5429 Public 700X460 

pixels, 3- 

channel RGB, 

8-bit depth in 

each channel 

PNG 

format 

Detection and 

classification of breast 

cancer histology 

images 

Dataset of the 

University 

Medical centre 

Mannheim [72] 

5000 -- -- Public 150 x 150 

pixels 

Tiff 

format 

Detection and 

classification of eight 

types of colorectal 

cancer 

ImageNet 14 

million 

-- -- Public The average 

image 

resolution on 

ImageNet is 

469x387 

pixels 

-- Detection, 

classification, 

segmentation, and 

object categorization 

in different fields 

private dataset 

of whole slide 

images (WSI) 

-- -- -- private -- -- Detection and 

classification of 

different cancer 

histology Images 

Mice liver 

microscopic 

images 

30 10 10 

(granuloma

fibrosis1) 

10 

(granuloma

fibrosis2) 

Private 1536 x 2048 

pixels 

-- Detection and 

classification of liver 

cirrhosis 

Dataset of the 

2018 Data 

Science Bowl 

[67] 

670 -- -- Public 256 x 256 

pixels 

JPEG Nuclei segmentation 

Breast cancer 

histopathology 

image dataset 

(BNS) 

33 -- -- Public 512x512 

pixels 

-- Nuclei segmentation of 

breast cancer 

PanNuke 

dataset [69] 

7901 -- -- Public 256 × 256 

pixels 

-- instance segmentation 

and classification 

multi-organ 

nucleus 

segmentation 

dataset 

(MoNuSeg) 

14 -- - Public 1000 × 1000 

pixels 

-- Nuclei segmentation 

Multi-organ 

HE stained 

pathological 

image dataset 

(MOD) 

30 -- - Public 1000x1000 

pixels 

-- Nuclei classification 

and segmentation 

TNBC 50 -- -- Public 512 × 512 

pixels 

-- Breast cancer 

classification and 

segmentation 
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10. DISCUSSION AND FUTURE RESEARCH DIRECTIONS 

In this study, existing works related to the detection and diagnosis of various types of cancer, 
with a particular focus on histological image modality and computer-aided diagnosis systems, 
are reviewed. The aim is to compile a list of existing methods and datasets commonly used for 
this purpose. Cancer is one of the deadliest diseases that humanity has faced, and there is an 
urgent need to improve its treatment and early diagnosis. Artificial intelligence (AI) plays a 
crucial role in achieving this objective by reducing pathological workload and increasing 
accuracy. 

Most of the reviewed studies are based on deep learning methods, specifically employing 
convolutional neural networks (CNNs) and machine learning algorithms such as SVM, KNN, and 
random forest. In addition, some studies use transfer learning methods such as AlexNet, VGG16, 
and VGG-19. Deep learning models consistently yield superior results compared to classical AI 
algorithms in most cancer classification studies. There are also studies involving segmentation 
tasks that extensively use deep learning methods, particularly the U-Net network and CNN. 
Architectures such as Recurrent Residual U-Net and TMD-Unet have demonstrated exceptional 
results in the analysis of histological images. The most commonly used datasets in this field are 
The Cancer Genome Atlas and ImageNet. 

Our literature review revealed that the discussed studies have concentrated on classification 
and segmentation. However, histopathological image analysis can be applied to various types of 
data since they share the same dataset. Therefore, it would be beneficial to explore other types 
of cancer. One challenge in histopathological analysis is acquiring diverse datasets to avoid 
overfitting and create well-trained models. Unfortunately, datasets in this field are not widely 
available. There is another crucial challenge related to the time and cost of the acquisition of 
biopsies, scanning, and digitalisation. This process is more time-consuming and expensive than 
other medical modalities. However, it is more advantageous because the diagnosis is performed 
at an earlier stage before becoming metastatic, making treatment easier and more efficient. 
Many studies use the same dataset for both training and validation, which can lead to less 
satisfactory results and less stable models. Instead, they could benefit from using diverse 
datasets to test their models. Furthermore, these datasets vary in terms of staining techniques, 
microscopes, and other factors. 

In the following section, new research directions related to the detection, classification, and 
segmentation of histopathological cancer images are introduced to provide research paths and 
directions for other researchers in the same field. A considerable effort is required to engage in 
and improve the performance of techniques utilised for early detection and segmentation tasks. 
Therefore, some issues and future work will be further discussed. 

1. Variation in nucleus/tissue sizes and shapes: Generally, the tissue in a slide image is 
heterogeneous, resulting in considerable variation in the shapes and sizes. Several existing 
studies have proposed a solution to bypass this issue using deep learning algorithms, such 
as architectures based on the U-Net Network. However, there is always a need to improve 
quality and accuracy by creating adaptive methods for each nucleus size during the 
segmentation task. 

2. Clusters of nucleus/tissue: Microscopic and cellular samples are characterised by an 
uneven distribution of cells and nuclei, which results in some nuclei forming clusters. For 
the segmentation task, it is necessary to separate them and create a distance between them 
to avoid under-segmentation. 
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3. Treatment of damaged nucleus/tissue: In the case of moderately and adenocarcinomas, the 
cells and tissue structure are generally highly damaged, which places a considerable 
challenge to distinguish them and obtain good nuclei segmentation. 

11. CONCLUSION 

This study reviews previous research on the early detection of cancer using artificial intelligence 
techniques. The focus is on the microscopic aspect of this research. In other words, 
histopathological imaging is addressed, as it is believed to provide more detailed information 
about the extracted tissue. On the one hand, histological images are one of the medical imaging 
modalities that produce high-resolution colour images for cancer detection and classification. 
On the other hand, working with this modality is not an easy task due to its size, availability, and 
cost. That is why most of the aforementioned research utilised transfer learning. This article 
serves as a review of technologies utilised for early cancer detection and classification using this 
type of dataset. First, histological images as a medical imaging modality and the process of 
acquiring slides, from scanning to digitalisation, with colour normalisation are introduced. The 
various segmentation types and techniques, including approaches like the U-Net network and 
the Fully Convolutional Network, are described. Furthermore, some diagnostic and prognostic 
approaches are introduced. In this section, most studies are based on transfer learning 
approaches focusing on patches or whole-slide images (WSI), with examples such as ResNest-
50, VGG-16, and VGG-19. Additionally, some datasets used to train models with these 
approaches are also introduced. Finally, some challenges and discussions in this field are 
outlined. 
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