Covering numbers with involutions in decomposing infinite matrices

Truong Huu Dung¹ and Nguyen Thi Thai Ha^{2,3,4,*}

Received March 27, 2024; accepted October 11, 2024

Abstract. Let D be a division ring. The aim of this paper is to explore the problem of decomposing an infinite matrix over D into a product of involutions and a product of commutators of involutions within the context of covering numbers. Specifically, we focus on decomposing matrices in the commutator subgroup $\mathrm{SL}_{VK,\infty}(D)$ of the Vershik–Kerov group and in the subgroup $\mathrm{SL}_{\infty}(D)$ of the stable general linear group $\mathrm{GL}_{\infty}(D)$.

AMS subject classifications: 12E15, 15A23, 15B99

Keywords: division ring, matrix decomposition, commutator, involution, infinite matrix

1. Introduction

Let G be a group with the identity element 1 and let X be a set of generators of G such that $x^{-1} \in X$ for every $x \in X$. Then, for every $g \in G$, there exist $x_1, \ldots, x_k \in X$ such that $g = x_1x_2 \cdots x_k$, where k is a positive integer. We denote $X^k = \{x_1x_2 \cdots x_k \mid x_i \in X, i = 1, \ldots, k\}$. The covering number of G by X, denoted by $\operatorname{cn}_X(G)$, is defined to be the smallest integer k such that $X^k = G$ or ∞ if no such k exists. For instance, if C is the set of all commutators $aba^{-1}b^{-1}$, where a, b range over G and G' = [G, G] is the commutator subgroup of G, then the covering number $\operatorname{cn}_C(G')$ is called the commutator width of G.

An element x in the group G is called an *involution* if $x^2 = 1$. If a and b are involutions in G, then $[a,b] = aba^{-1}b^{-1}$ is called the *commutator of involutions*. We denote \mathcal{I} and $\mathcal{C}\mathcal{I}$ as the sets of involutions and the commutators of involutions in the group G, respectively. Clearly, \mathcal{I} and $\mathcal{C}\mathcal{I}$ are closed under taking the inverse. In this paper, we will evaluate the covering numbers of the subgroup $\mathrm{SL}_{\infty}(D)$ of the stable general linear group $\mathrm{GL}_{\infty}(D)$ and the commutator subgroup $\mathrm{SL}_{VK,\infty}(D)$ of the Vershik–Kerov group by these sets. To evaluate such covering numbers, we will decompose infinite matrices within these groups into a product of involutions and a product of commutators of involutions.

 $\rm https://www.mathos.unios.hr/mc$

©2025 School of Applied Mathematics and Informatics, University of Osijek

¹ Department of Mathematics, Dong Nai University, 810 000 Dong Nai Province, Vietnam

² Faculty of Mathematics and Computer Science, University of Science, 700 000 Ho Chi Minh City, Vietnam

³ Vietnam National University, 700 000 Ho Chi Minh City, Vietnam

⁴ Campus in Ho Chi Minh City, University of Transport and Communications, 700 000 Ho Chi Minh City, Vietnam

^{*}Corresponding author. $Email\ addresses:\$ thdung@dnpu.edu.vn or dungth0406@gmail.com (T. H. Dung), hantt_ph@utc.edu.vn (N. T. T. Ha)

The decomposition of elements in a group, especially linear groups, into products of involutions has received significant attention from the mathematical community, e.g. see [1, 2, 3, 7, 8, 13, 15]. Assume that R is a unitary associative ring. The notation $GL_n(R)$ denotes the group of invertible $n \times n$ matrices over R, and $SL_n(R)$ is the commutator subgroup of $GL_n(R)$. A matrix $A \in GL_n(R)$ is called an *involution* if $A^2 = \mathbf{1}_n$, where $\mathbf{1}_n$ is the identity matrix. Over an arbitrary field, every matrix with determinant ± 1 can be expressed as a product of at most four involutions [7, Theorem]. Note that if A is an involution, then both A^{-1} and $B^{-1}AB$ are also involutions. Therefore, a commutator of involutions is essentially the product of two involutions. In connection with this topic, X. Hou in [10] and T. N. Son et al. in [13] proved that a matrix over a field is a product of at most two commutators of involutions. These results have been extended to division rings in [2, Theorem 4.5 and Theorem 6.3].

Let D be a division ring. We define the notation $\operatorname{GL}_{c,\infty}(D)$ to denote the group consisting of all countable-dimensional column-finite invertible matrices. Moreover, we introduce $\mathbf{1}_{\infty} \in \operatorname{GL}_{c,\infty}(D)$ to denote the diagonal matrix with 1 entries along its diagonal. If we consider a matrix $A \in \operatorname{GL}_n(D)$ as the matrix $\begin{pmatrix} A & 0 \\ 0 & \mathbf{1}_{\infty} \end{pmatrix} \in \operatorname{GL}_{c,\infty}(D)$, then $\operatorname{GL}_n(D)$ becomes a subgroup of $\operatorname{GL}_{c,\infty}(D)$. A matrix in $\operatorname{GL}_{c,\infty}(D)$ is considered unitriangular if it is upper triangular and has diagonal entries equal to 1. The subgroup $\operatorname{T}_{\infty}(D)$ of $\operatorname{GL}_{c,\infty}(D)$ consists of all upper triangular matrices, while $\operatorname{\mathbb{UT}}_{\infty}(D)$ denotes the subgroup of upper unitriangular matrices. Recall that the Vershik–Kerov group, denoted as $\operatorname{GL}_{VK,\infty}(D)$, is a subgroup of $\operatorname{GL}_{c,\infty}(D)$. This subgroup consists of matrices in the form $A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}$, where $A_1 \in \operatorname{GL}_n(D)$, $A_3 \in \operatorname{T}_{\infty}(D)$ and A_2 has the size $n \times \mathbb{N}$. We denote $\operatorname{SL}_{\infty,n}(D)$ as a subset of $\operatorname{GL}_{VK,\infty}(D)$, where $A_1 \in \operatorname{SL}_n(D)$ and $A_3 \in \operatorname{T}_{\infty}(D)$ with the main diagonal entries represented by elements $s_i \in D'$. Let $\operatorname{SL}_{VK,\infty}(D) = \bigcup_{n \geq 1} \operatorname{SL}_{\infty,n}(D)$. According to [1, Corollary 1.3], if D is a centrally finite division ring with more than three elements, then the commutator subgroup of $\operatorname{GL}_{VK,\infty}(D)$ is equal to $\operatorname{SL}_{VK,\infty}(D)$.

In Section 2, we prove that every matrix in $\operatorname{SL}_{VK,\infty}(D)$ can be expressed as a product of at most 8s+4 involutions in $\operatorname{GL}_{VK,\infty}(D)$ provided that $\operatorname{cn}_{\mathcal{C}}(D')=s$, where D is a centrally finite division ring with more than three elements. We also prove that $\operatorname{cn}_{\mathcal{C}\mathcal{I}}(\operatorname{SL}_{VK,\infty}(D)) \leq 9s+2$ if D is a noncommutative centrally finite division ring of characteristic different from 2 and $\operatorname{cn}_{\mathcal{C}}(D')=s$.

Recall that if D is a division ring, then the direct limit $GL_{\infty}(D) = \varinjlim GL_n(D)$ with respect to the transition homomorphisms $GL_n(D) \longrightarrow GL_{n+1}(D)$ given by $A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$ is called the *stable general linear group* over D. The subgroup $SL_{\infty}(D)$ of $GL_{\infty}(D)$ is defined as $SL_{\infty}(D) = \varinjlim SL_n(D)$.

In Section 3, we prove that $\operatorname{cn}_{\mathcal{I}}(\operatorname{SL}_{\infty}(D)) \leq 4$ and $\operatorname{cn}_{\mathcal{CI}}(\operatorname{SL}_{\infty}(D)) \leq 5$ when D is a noncommutative centrally finite division ring such that $\operatorname{cn}_{\mathcal{C}}(D') < \infty$.

We present some remarks frequently utilized in this paper. The proofs of these claims are simple and for convenience we provide them here.

Remark 1. Assume that D is a division ring. Then,

- (i) The matrix $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$ can be decomposed into a product of at most two involutions, where $a \in D^*$.
- (ii) If s is a commutator, then diag(1,s) can be decomposed into a product of at most four involutions.
- (iii) If B_i is an involution, then $\bigoplus_{i\in\mathbb{N}} B_i$ is also an involution for every $i\in\mathbb{N}$.
- (iv) If $A \in GL_n(D)$ and $B \in GL_m(D)$ are products of k and ℓ involution matrices, respectively, then $A \oplus B$ is the product of at most $\max\{k,\ell\}$ involution matrices in $GL_{n+m}(D)$.

Proof. (i) It is demonstrated in [2, Lemma 5.2].

- (ii) It follows from [2, Lemma 4.1].
- (iii) We have $B_i^2 = \mathbf{1}_n$ for every $i \in \mathbb{N}$, leading to $(\bigoplus_{\lambda \in \mathbb{N}} B_i)^2 = \bigoplus_{\lambda \in \mathbb{N}} B_i^2 = \mathbf{1}_{\infty}$, which is also an involution.
- (iv) We can assume that $k \leq \ell$. For every $i = 1, ..., k; j = 1, ..., \ell$ assume A_i, B_j are involution matrices such that $A = A_1 ... A_k$ and $B = B_1 ... B_\ell$. Then, $A \oplus B = C_1 \oplus ... \oplus C_\ell$ is a product of ℓ involutions, in which $C_i = A_i \oplus B_i$ for i = 1, ..., k and $C_i = \mathbf{1}_n \oplus B_i$ for $i = k + 1, ..., \ell$.

Remark 2. Assume that D is a noncommutative division ring.

- (i) Suppose D is a centrally finite division ring such that $\operatorname{cn}_{\mathcal{C}}(D') < \infty$. In this case, $\operatorname{diag}(1,\ldots,1,s) \in \operatorname{GL}_n(D)$ is a product of at most $\operatorname{3cn}_{\mathcal{C}}(D')$ commutators of involutions if $n \geq 3$ or $\operatorname{char} D \neq 2$. Particularly, if s is a commutator, then the matrix $\operatorname{diag}(1,\ldots,1,s)$ is a product of at most three commutators of involutions.
- (ii) If A_i is a commutator of involutions for each $i \in \mathbb{N}$, then $\bigoplus_{i \in \mathbb{N}} A_i$ is also a commutator of involutions.
- (iii) If $A \in GL_n(D)$ and $B \in GL_m(D)$ are each expressed as products of k and ℓ commutators of involutions, respectively, then $A \oplus B$ can be decomposed into a product of at most $\max\{k,\ell\}$ commutators of involutions in $GL_{n+m}(D)$.

Proof. The first statement is established in [3, Lemma 4.3 and Lemma 4.4]. The last two statements can be proven similarly to (iii) and (iv) of Remark 1.

In this paper, we define a centrally finite division ring as one that has finite dimensionality over its center. We use the following notations: Let D be a division ring, and denote $D' = [D^*, D^*]$, where $D^* = D \setminus \{0\}$. We represent the diagonal matrix with elements $a_1, \ldots, a_n \in D$ on the main diagonal as $\operatorname{diag}(a_1, \ldots, a_n)$.

2. Decompositions of matrices in $\mathrm{SL}_{VK,\infty}(D)$

In this section, we decompose matrices in the subgroup $\mathrm{SL}_{VK,\infty}(D)$ of the Vershik–Kerov group, where D is a centrally finite division ring containing more than

three elements, and evaluate the covering numbers of the subgroup $\mathrm{SL}_{VK,\infty}(D)$ by the set of commutators of involutions \mathcal{CI} .

Assume that $(N_{\lambda})_{{\lambda} \in \Lambda}$, where ${\Lambda} \subseteq \mathbb{N}$ is a partition of \mathbb{N} . Then, a finite or infinite Jordan block is denoted as

$$J_{|N_{\lambda}|}(1,1) = \begin{pmatrix} 1 & 1 & & \\ & 1 & 1 & & \\ & & \ddots & \ddots & \\ & & & 1 & 1 \\ & & & & 1 \end{pmatrix}.$$

Lemma 1. Assume that D is a division ring, and $A \in \mathbb{UT}_{\infty}(D)$. Then, A is similar to an infinite Jordan block $\bigoplus_{\lambda \in \Lambda} J_{|N_{\lambda}|}(1,1)$, where $(N_{\lambda})_{\lambda \in \Lambda}$ is a partition of \mathbb{N} , and $\Lambda \subseteq \mathbb{N}$ is a subset of the natural numbers.

Proof. The lemma is established in [4, Corollary 3.4].

Suppose that R is a unitary associative ring. According to [11, Theorem 1.1], if 2 is invertible in R, then every matrix in the groups $\mathbb{UT}_n(R)$ and $\mathbb{UT}_{\infty}(R)$ can be written as a product of at most two commutators of involutions in $T_{\infty}(R)$. Recently, we have shown that if R is a division ring, then every matrix in the group $\mathbb{UT}_n(R)$ can be expressed as a product of two involutions, which is a special case of [2, Lemma 4.3].

In the following lemma, we continue considering the group $\mathbb{UT}_{\infty}(R)$, where R is a division ring. Our goal is to reduce the number of involutions in the decomposition to 2, and the number of commutators of involutions to 1.

Lemma 2. Assume that D is a division ring and $A \in \mathbb{UT}_{\infty}(D)$. Then,

- (i) Every matrix in $\mathbb{UT}_{\infty}(D)$ can be expressed as a product of at most two involutions.
- (ii) Every matrix in $\mathbb{UT}_{\infty}(D)$ can be written as a commutator of involutions, provided that $\operatorname{char} D \neq 2$.

Proof. Assume that $A \in \mathbb{UT}_{\infty}(D)$. According to Lemma 1, the matrix A is similar to $\bigoplus_{\lambda \in \Lambda} J_{|N_{\lambda}|}(1,1)$.

- (i) According to [9, Theorem 2.3], the matrix $J_{|N_{\lambda}|}(1,1)$ is a product of two involutions in $\mathbb{UT}_{\infty}(D)$. Therefore, A can be decomposed into a product of two involutions according to Remark 1.
- (ii) According to [15, Lemma 7] and [11, Corollary 2.7], the matrix $J_{|N_{\lambda}|}(1,1)$ is a commutator of involutions if char $D \neq 2$, so A is also a commutator of involutions. \square

It is known that if D is a field with characteristic different from 2, then every matrix in $\mathrm{SL}_{VK,\infty}(D)$ can be expressed as a product of at most two commutators of involutions according to [11, Theorem 1.3]. Since matrices similar to involutions are also involutions, every matrix in $\mathrm{SL}_{VK,\infty}(D)$ can be expressed as a product of at most four involutions. The results presented below address this problem for division rings.

Theorem 1. Let D be a centrally finite division ring with more than three elements. If $\operatorname{cn}_{\mathcal{C}}(D') = s$, then every element in $\operatorname{SL}_{VK,\infty}(D)$ can be decomposed into a product of at most 8s + 4 involutions in $\operatorname{GL}_{VK,\infty}(D)$.

Proof. Let $A \in \mathrm{SL}_{VK,\infty}(D)$ and F = Z(D). If A is central in $\mathrm{SL}_{VK,\infty}(D)$, then according to [1, Lemma 2.6], $A = \lambda \mathbf{1}_{\infty}$ for $\lambda \in F \cap D'$. Furthermore,

$$A = \operatorname{diag}(\lambda, 1, \lambda, 1, \dots) \operatorname{diag}(1, \lambda, 1, \lambda, \dots).$$

Since $\lambda \in D'$, there exist commutators $\lambda_1, \ldots, \lambda_s$ such that $\lambda = \lambda_1 \ldots \lambda_s$. Then,

$$\operatorname{diag}(\lambda, 1) = \operatorname{diag}(\lambda_1, 1)\operatorname{diag}(\lambda_2, 1)\ldots\operatorname{diag}(\lambda_s, 1),$$

where each λ_i is a commutator for i = 1, ..., s. By Remark 1, diag $(\lambda, 1)$ can be expressed as a product of at most 4s involutions, and the same holds for

$$\operatorname{diag}(\lambda, 1, \lambda, 1 \dots).$$

Therefore, A is a product of at most 8s involutions.

Now, assume A is noncentral in $\mathrm{SL}_{VK,\infty}(D)$. In this case, $A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}$, where A_1 is a matrix in $\mathrm{SL}_n(D)$, A_2 is an $n \times \mathbb{N}$ matrix, and $A_3 \in \mathrm{T}(\infty, D)$ with diagonal entries $\alpha_i \in D'$. We can express A = MN, where

$$M = \begin{pmatrix} \mathbf{1}_n \ A_2 A_3^{-1} \\ 0 \ \mathbf{1}_{\infty} \end{pmatrix} \text{ and } N = \begin{pmatrix} A_1 \ 0 \\ 0 \ A_3 \end{pmatrix}.$$

We have $A_3 = UD$, where $D = \operatorname{diag}(\alpha_1, \alpha_2, \dots)$ and $U \in \mathbb{UT}_{\infty}(D)$. According to Lemma 2, the matrix U can be decomposed into a product of at most two involutions. Moreover,

$$D = \operatorname{diag}(\alpha_1, 1, \alpha_3, 1, \dots) \operatorname{diag}(1, \alpha_2, 1, \alpha_4, \dots).$$

Since $\alpha_i \in D'$, there exist commutators a_1^i, \ldots, a_s^i such that $\alpha_i = a_1^i \ldots a_s^i$. Thus,

$$\operatorname{diag}(1, \alpha_i) = \operatorname{diag}(1, a_1^i) \dots \operatorname{diag}(1, a_s^i).$$

For each $k=1,\ldots,s$, the matrix $\operatorname{diag}(1,a_k^i)$ is a product of at most four involutions according to Remark 1. Therefore, $\operatorname{diag}(1,\alpha_i)$ is a product of 4s involutions. Similarly, according to Remark 1, the matrix $\operatorname{diag}(\alpha_1,1,\alpha_3,1,\ldots)$ is a product of at most 4s involutions. Hence, the matrix D is a product of at most 8s involutions. It follows that A_3 can be decomposed into a product of at most 8s+2 involutions. Since $A_1 \in \operatorname{SL}_n(D)$, by [2, Theorem 4.5], the matrix A_1 is a product of at most 4s+4 involutions. Thus, N is a product of at most 8s+2 involutions. Therefore, A can be decomposed into a product of at most 8s+4 involutions, as M can be expressed as a product of at most two involutions according to Lemma 2.

Below is an alternative version of [11, Theorem 1.3] for a noncommutative division ring of characteristic different from 2.

Theorem 2. Let D be a noncommutative centrally finite division ring of characteristic different from 2 and $\operatorname{cn}_{\mathcal{C}}(D') = s$. Then, $\operatorname{cn}_{\mathcal{C}\mathcal{I}}(\operatorname{SL}_{VK,\infty}(D)) \leq 9s + 2$.

Proof. Assume $A \in \mathrm{SL}_{VK,\infty}(D)$ and F = Z(D). If A is central in $\mathrm{SL}_{VK,\infty}(D)$, then $A = \lambda \mathbf{1}_{\infty}$ for $\lambda \in F \cap D'$. We have

$$A = \operatorname{diag}(\lambda, 1, 1, \lambda, 1, 1, \dots) \operatorname{diag}(1, \lambda, 1, 1, \lambda, 1, \dots) \operatorname{diag}(1, 1, \lambda, 1, 1, \lambda, \dots).$$

According to Remark 2, we observe that $diag(\lambda, 1, 1)$ can be decomposed into a product of at most 3s commutators of involutions, and the same holds for

$$\operatorname{diag}(\lambda, 1, 1, \lambda, 1, 1, \dots).$$

Similarly, diag $(1, \lambda, 1, 1, \lambda, 1, \dots)$ and diag $(1, 1, \lambda, 1, 1, \lambda, \dots)$ are also a product of 3s commutators of involutions. Therefore, A is a product of at most 9s commutators of involutions.

Now consider A to be noncentral in $\mathrm{SL}_{VK,\infty}(D)$. Similarly, we have $A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}$, where A_1 is a matrix in $\mathrm{SL}_n(D)$, and $A_3 \in \mathrm{T}_\infty(D)$ with entries on the main diagonal being $s_i \in D'$. Again, we have A = MN with

$$M = \begin{pmatrix} \mathbf{1}_n & A_2 A_3^{-1} \\ 0 & \mathbf{1}_{\infty} \end{pmatrix}; \quad N = \begin{pmatrix} A_1 & 0 \\ 0 & A_3 \end{pmatrix}.$$

Since $M \in \mathbb{UT}_{\infty}(D)$, according to Lemma 2, M can be written as a commutator of involutions. Consider the matrix $A_3 = UD$ with $D = \operatorname{diag}(s_1, s_2, \ldots)$ and $U \in \mathbb{UT}_{\infty}(D)$. Again, according to Lemma 2, the matrix U is a commutator of involutions. Moreover,

$$D = diag(s_1, 1, 1, s_4, 1, 1, \ldots) diag(1, s_2, 1, 1, s_5, 1, \ldots) diag(1, 1, s_3, 1, 1, s_6, \ldots).$$

Using an argument similar to the above, D can be decomposed into a product of at most 9s commutators of involutions. Therefore, A_3 can be represented as a product of at most 9s+1 commutators of involutions. Furthermore, according to [2, Theorem 6.3], the matrix A_1 can be expressed as a product of at most 3s+2 commutators of involutions. Thus, N can be decomposed into a product of at most 9s+1 commutators of involutions. Therefore, A is a product of at most 9s+2 commutators of involutions. Furthermore, according to [1, Corollary 1.3] a product of commutators of involutions belongs to $\mathrm{SL}_{VK,\infty}(D)$. Therefore, $\mathrm{cn}_{\mathcal{CI}}(\mathrm{SL}_{VK,\infty}(D)) \leq 9s+2$.

3. Decompositions of matrices in $SL_{\infty}(D)$

In this section, we will evaluate the covering numbers of the subgroup $\mathrm{SL}_{\infty}(D)$ of the stable general linear group $\mathrm{GL}_{\infty}(D)$ by the set of involutions \mathcal{I} and the set of commutators of involutions \mathcal{CI} . We need several lemmas for this purpose. To do this, we introduce the notation $\mathbb{LT}_n(D)$ (respectively, $\mathbb{UT}_n(D)$) to denote the group of lower (respectively, upper) unitriangular matrices in $\mathrm{GL}_n(D)$, where each matrix has elements on the main diagonal equal to 1 and (x) is a square matrix of size 1.

Lemma 3 (see [8], Lemma 10). Let $c = d_1 + \cdots + d_n$ be a partition of the number c, where $d_n \in \mathbb{N}$. If $g \in \mathrm{SL}_n(D) \setminus Z(\mathrm{SL}_n(D))$, then there is $\gamma \in \mathrm{SL}_n(D)$ such that $\gamma g \gamma^{-1} = vhu$, where $v \in \mathbb{LT}_n(D), u \in \mathbb{UT}_n(D)$ and $h = \mathrm{diag}(\epsilon_1, \cdots, \epsilon_n)$, where $\epsilon_i \in D'$ and each ϵ_i is a product of at most d_i commutators for all $1 \leq i \leq n$.

Lemma 4. Let D be a division ring and $n \geq 1$. If A is a noncentral matrix in $\mathrm{SL}_n(D)$, then there exists $P \in \mathrm{GL}_n(D)$ and $s \in D'$ such that

$$P^{-1}AP = XHY,$$

where $X \in \mathbb{LT}_n(D)$, $Y \in \mathbb{UT}_n(D)$ and H = diag(1, 1, ..., s). In specific cases, when D is finite dimensional over its center and A represents a lower or upper triangular matrix with pairwise nonconjugate diagonal entries $a_{11}, ..., a_{nn} \in D$, it follows that A is similar to the diagonal matrix $\text{diag}(a_{11}, ..., a_{nn})$.

Proof. The first part of this lemma follows from [6, Theorem 2.1]. The remaining part is derived from [3, Lemma 3.2].

We know that if D is a centrally finite division ring, then every matrix in the group $\mathrm{SL}_{\infty}(D)$ is a commutator in $\mathrm{SL}_{\infty}(D)$, as stated in [8, Corollary 5]. Assume that D is a field; it has been shown in [12, Theorem 1.1] that every $A \in \mathrm{GL}_{\infty}(D)$ can be expressed as a product of three involutions if and only if $\det(A) = \pm 1$. The following theorem is an example showing that the result of [12, Theorem 1.1] does not hold when D is a noncommutative division ring.

For each element a in the division ring D, we denote N(a) as the norm of the element a. For further details on the norm of elements in finite dimensional division rings, please refer to [5, p. 143]. Before presenting the main result, we state the following lemma.

Lemma 5. Let D be a noncommutative centrally finite division ring and $n \ge 1$ an integer. Assume $g_1, g_2, \ldots, g_n \in D \setminus F^*$ are pairwise non-conjugate elements. Then there exist $\alpha \in F^*$ such that $\alpha g_1, \alpha g_2, \ldots, \alpha g_n, (\alpha g_1)^{-1}, \ldots, (\alpha g_n)^{-1}$ are pairwise non-conjugate.

Proof. Let F be the center of D and $S = \{t \in F : t^{2m} \in T\}$, in which $m^2 = \dim_F D$ and $T = \{N(g_i^{-1})N(g_j^{-1}) : 1 \le i, j \le n\}$. For each pair $1 \le i, j \le n$, the equation $t^{2m} = N(g_i^{-1})N(g_j^{-1})$ represents a polynomial of degree 2m over the field F. It is well known that this equation can have at most 2m roots in F, thus the set S is finite. Because D is a noncommutative division ring and $\dim_F D$ is finite, F is infinite (see [14, Theorems 13.11 and 15.13]). Let $\alpha \in F^* \setminus S$. We shall show that α satisfies the required condition. Indeed, for every $i \ne j$, since g_i and g_j are non-conjugate, αg_i and αg_j are also non-conjugate, and similarly, $(\alpha g_i)^{-1}$ and $(\alpha g_j)^{-1}$ are non-conjugate as well. Next, we will prove that αg_i and $(\alpha g_j)^{-1}$ are non-conjugate by using the method of contradiction. Assume αg_i and $(\alpha g_j)^{-1}$ are conjugate for every $1 \le i; j \le n$. Then, there exists $h \in D^*$ such that $\alpha g_i = h^{-1}(\alpha g_j)^{-1}h$, implying $\alpha^2 = h^{-1}g_j^{-1}hg_i^{-1}$. Consequently, $N(\alpha^2) = N(h^{-1})N(g_j^{-1})N(h)N(g_i^{-1}) = N(g_j^{-1})N(g_i^{-1})$. By [5, p. 143], we have $\alpha^{2m} = N(g_j^{-1})N(g_i^{-1})$. This implies that $\alpha \in S$, which contradicts our initial choice of α . Therefore, αg_i and $(\alpha g_j)^{-1}$ are non-conjugate for every $1 \le i; j \le n$. Hence, $\alpha g_1, \alpha g_2, \ldots, \alpha g_n, (\alpha g_1)^{-1}, \ldots, (\alpha g_n)^{-1}$ are pairwise non-conjugate.

By applying the above lemma, we obtain the following result.

Theorem 3. Let D be a noncommutative centrally finite division ring such that $\operatorname{cn}_{\mathcal{C}}(D') < \infty$. Then,

- (i) $\operatorname{cn}_{\mathcal{I}}(\operatorname{SL}_{\infty}(D)) \leq 4$.
- (ii) $\operatorname{cn}_{\mathcal{C}\mathcal{I}}(\operatorname{SL}_{\infty}(D)) \leq 5.$

Proof. (i) Assume $A \in \mathrm{SL}_{\infty}(D)$. If $A = \mathbf{1}_{\infty}$, then A is always an involution. If $A \neq \mathbf{1}_{\infty}$, then there exists $n \geq 2$ such that $A \in \mathrm{SL}_n(D)$ and A is a noncentral element in $\mathrm{SL}_n(D)$. By Lemma 4, there exists $P \in \mathrm{GL}_n(D)$ such that $P^{-1}AP = UHV$, where $U \in \mathbb{LT}_n(D)$, $V \in \mathbb{UT}_n(D)$, and $H = \mathrm{diag}(1, 1, \ldots, 1, x)$ for some $x \in D'$.

Since $\operatorname{cn}_{\mathcal{C}}(D') = s < \infty$, there exist elements a_1, \ldots, a_s and b_1, \ldots, b_s in D^* such that $x = [a_1, b_1] \ldots [a_s, b_s]$. Now, we shall show $\operatorname{SL}_{\infty}(D) \subseteq \mathcal{I}^4$, where \mathcal{I} is the set of involutions of $\operatorname{SL}_{\infty}(D)$.

Assume $n \leq 2s$. By [1, Lemma 2.3], we can choose elements $\lambda_1, \lambda_2, \ldots, \lambda_s$ in F such that $\lambda_1 b_1, \lambda_2 b_2, \ldots, \lambda_s b_s$ are pairwise non-conjugate. Since $[a_i, b_i] = [a_i, \lambda_i b_i]$, without loss of generality, we assume that b_1, \ldots, b_s are pairwise non-conjugate. By Lemma 5, there exists $\alpha \in F^*$ such that $\alpha b_1, \alpha b_2, \ldots, \alpha b_s, (\alpha b_1)^{-1}, (\alpha b_2)^{-1}, \ldots, (\alpha b_s)^{-1}$ are pairwise non-conjugate. By appropriately adjusting n, specifically by inserting 2s - n elements 1 into the main diagonal of A, we then consider A as a matrix of size n = 2s. By Lemma 3, the matrix A is similar to $U_1 H_1 V_1$, where $U_1 \in \mathbb{LT}_n(D), V_1 \in \mathbb{UT}_n(D)$, and $H_1 = \text{diag}(1, [a_1, b_1], 1, [a_2, b_2], \ldots, 1, [a_s, b_s])$.

Put $S = \text{diag}(1, a_1, 1, a_2, \dots, 1, a_s)$. Then

$$U_1H_1V_1 = SXS^{-1}Y,$$

where

$$X = \begin{pmatrix} (\alpha b_1)^{-1} & & & & \\ & \alpha b_1 & & & \\ & & \ddots & & \\ & * & & (\alpha b_s)^{-1} & & \\ & & & \alpha b_s \end{pmatrix}; Y = \begin{pmatrix} \alpha b_1 & & & & \\ & (\alpha b_1)^{-1} & & & \\ & & \ddots & * & \\ & & & \alpha b_s & \\ & & & (\alpha b_s)^{-1} \end{pmatrix}.$$

Furthermore, by Lemma 4, X is similar to diag $((\alpha b_1)^{-1}, \alpha b_1, \dots, (\alpha b_s)^{-1}, \alpha b_s)$. Then, according to Remark 1, X is a product of two involutions. Similarly, Y is also a product of two involutions. Therefore, A can be expressed as a product of at most four involutions. This leads to $SL_{\infty}(D) \subseteq \mathcal{I}^4$.

Assume n>2s and n is even. By similar reasoning, we have $x=[a_1,b_1]\dots[a_s,b_s]$, in which b_1,\dots,b_s in $D^*\setminus F$. We choose $b_{s+1},b_{s+2},\dots,b_{\frac{n}{2}}$ in $D^*\setminus F$. By Lemma 5, there exists $\lambda\in F^*$ such that $\lambda b_1,\lambda b_2,\dots,\lambda b_{\frac{n}{2}},(\lambda b_1)^{-1},\lambda b_1\dots,(\lambda b_{\frac{n}{2}})^{-1}$ are nonconjugate. By Lemma 3, the matrix A is similar to $U_1H_1V_1$, where $U_1\in\mathbb{LT}_n(D)$, $V_1\in\mathbb{UT}_n(D)$ and $H_1=\mathrm{diag}(1,\dots,1,[a_1,b_1],1,[a_2,b_2],\dots,1,[a_s,b_s])$. Similarly, put $S=\mathrm{diag}(1,\dots,1,a_1,1,a_2,\dots,1,a_s)$. Then

$$U_1H_1V_1 = SXS^{-1}Y,$$

where

$$X = \begin{pmatrix} (\lambda b_{s+1})^{-1} & & & & & & \\ & \lambda b_{s+1} & & & & & \\ & & \ddots & & & & & \\ & & & (\lambda b_{\frac{n}{2}})^{-1} & & & & \\ & & & & \lambda b_{\frac{n}{2}} & & \\ & & & & & \lambda b_{1} & & \\ & & & & & \ddots & \\ & & & & & \lambda b_{s} \end{pmatrix}$$

and

$$Y = \begin{pmatrix} \lambda b_{s+1} & & & & & & & \\ & & (\lambda b_{s+1})^{-1} & & & & & & \\ & & & & \lambda b_{\frac{n}{2}} & & & & \\ & & & & (\lambda b_{\frac{n}{2}})^{-1} & & & & \\ & & & & & \lambda b_{1} & & \\ & & & & & & (\lambda b_{1})^{-1} & & \\ & & & & & & \lambda b_{s} & \\ & & & & & & (\lambda b_{s})^{-1} \end{pmatrix}$$

By Lemma 4, X is similar to

$$\operatorname{diag}((\lambda b_{s+1})^{-1}, \lambda b_{s+1}, \dots, (\lambda b_{\frac{n}{2}})^{-1}, \lambda b_{\frac{n}{2}}, (\lambda b_1)^{-1}, \dots, \lambda b_s).$$

Therefore, X is a product of two involutions and Y as well. When n is odd, by a similar argument, we obtain that X is similar to

$$\operatorname{diag}(1,(\lambda b_{s+1})^{-1},\lambda b_{s+1},\ldots,(\lambda b_{\frac{n}{2}})^{-1},\lambda b_{\frac{n}{2}},(\lambda b_1)^{-1},\ldots,\lambda b_s).$$

This leads to $SL_{\infty}(D) \subseteq \mathcal{I}^4$.

Next, we shall show that $\mathcal{I}^4 \subseteq \operatorname{SL}_{\infty}(D)$. Let $A \in \operatorname{SL}_{\infty}(D)$, and for each $i = 1, \ldots, 4$ suppose X_i is an involution matrix such that $A = X_1 X_2 X_3 X_4$. We shall show $X_i \in \operatorname{SL}_{\infty}(D)$. Indeed, we see that $A \in \operatorname{SL}_n(D) \setminus Z(\operatorname{SL}_n(D))$, where $n \geq 3$. According to [2, Corollary 2.4], a matrix is a product of involutions if and only if its Dieudonné determinant equals $\overline{\pm 1}$. Therefore, we have the following cases:

Case 1.
$$det(X_i) = \overline{1}$$
 for all $i = 1, ..., 4$. Then, it is evident that $X_i \in SL_{\infty}(D)$.

Case 2. There exist two matrices with determinants equal to $\overline{-1}$. Without loss of generality, we can assume that $X_1, X_2 \in \operatorname{GL}_n(D)$ and $\det(X_1) = \det(X_2) = \overline{-1}$. Increasing the number n, and we rewrite A as

$$A = [X_1 \oplus (-1)][(X_2 \oplus (-1)][X_3 \oplus (1)][X_4 \oplus (1)].$$

Because $\det[X_1 \oplus (-1)] = \overline{1}$, we have $X_1 \oplus (-1) \in \operatorname{SL}_{n+1}(D)$. Similarly, $X_2 \oplus (-1), X_3 \oplus (1), X_4 \oplus (1)$ also belong to $\operatorname{SL}_{n+1}(D)$. Therefore, $X_i \in \operatorname{SL}_{\infty}(D)$ for each $i = 1, \ldots, 4$.

Case 3. $det(X_i) = \overline{-1}$ for all i = 1, ..., 4. Using the same argument as in the proof of Case 2 and expressing A in the form

$$A = [X_1 \oplus (-1)][(X_2 \oplus (-1)][X_3 \oplus (-1)][X_4 \oplus (-1)],$$

we conclude that $X_i \in \mathrm{SL}_{\infty}(D)$.

Therefore, $SL_{\infty}(D) = \mathcal{I}^4$.

(ii) According to the above, there exists $Q \in GL_n(D)$ such that $Q^{-1}AQ = U_1H_1V_1$. Put $X = U_1, Y = H_1V_1H_1^{-1}$, and $Z = H_1$. Then

$$Q^{-1}AQ = XYZ.$$

Furthermore, according to Remark 2, Z is a product of at most three commutators of involutions. Since $X \in \mathbb{UT}_n(D)$, and $Y \in \mathbb{LT}_n(D)$, according to [3, Theorem 3.4], XY is a product of at most two commutators of involutions. Therefore, A can be expressed as a product of at most five commutators of involutions. Therefore, $\mathrm{SL}_{\infty}(D) \subseteq \mathcal{CI}^5$. Furthermore, every commutator of involutions belongs to $\mathrm{SL}_{\infty}(D)$, so $\mathrm{cn}_{\mathcal{CI}}(\mathrm{SL}_{\infty}(D)) = 5$.

Acknowledgements

The authors sincerely thank the referee for his/her valuable comments and suggestions, which significantly improved this paper. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 101.04-2023.18.

References

- [1] M. H. BIEN, T. H. DUNG, N. T. T. HA, A certain decomposition of infinite invertible matrices over division algebras, Linear Multilinear Algebra 71(2023), 1948–1956.
- [2] M. H. BIEN, T. H. DUNG, N. T. T. HA, T. N. SON, Involution widths of skew linear groups generated by involutions, Linear Algebra Appl. 679(2023), 305–326.
- [3] M. H. BIEN, T. H. DUNG, N. T. T. HA, T. N. SON, Decompositions of matrices over division algebras into products of commutators, Linear Algebra Appl. 646(2022), 119–131.
- [4] M. H. BIEN, T. N. SON, P. T. T. THUY, L. Q. TRUONG, Products of unipotent matrices of index 2 over division rings, Acta Math. Hungar. 173(2024), 74–100.
- [5] P. DRAXL, Eine Liftung Der Dieudonné Determinante und Anwendungen Die Multiplikative Gruppe Eines Schiefkörpers Betreffend, in: SK1 von Schiefkörpern. Lecture Notes in Mathematics, (P. Draxl, M. Kneser, Eds.), Vol. 778, Springer, Berlin, Heidelberg, 1980, doi: 10.1007/BFb0095927.
- [6] E. A. EGORCHENKOVA, N. L. GORDEEV, Products of commutators on a general linear group over a division algebra, J. Math. Sci. 243(2019), 561–572.
- [7] W. H. GUSTAFSON, P. R. HALMOS, Products of Involutions, Linear Algebra Appl. 13(1976), 157–162.
- [8] P. B. Gvozdevskii, Commutator lengths in the general linear group over a skew-field, Zap. Nauchn. Sem. POMI. 492(2020), 45–60.
- [9] X. Hou, S. Li, Q. Zheng, Expressing infinite matrices over rings as products of involutions, Linear Algebra Appl. 532(2017), 257–265.

- [10] X. Hou, Corrigendum to "Expressing infinite matrices over rings as products of involutions, Linear Algebra Appl. 587(2020), 387–391.
- [11] X. Hou, Decomposition of infinite matrices into products of commutators of involutions, Linear Algebra Appl. **563**(2019), 231–239.
- [12] C. De Seguins Pazzis, Products of involutions in the stable general linear group, J. Algebra **530**(2019), 235–289.
- [13] T. N. Son, T. H. Dung, N. T. T. Ha, M. H. Bien, On decompositions of matrices into products of commutators of involutions, Electron. J. Linear Algebra 33(2022), 123–130.
- [14] T. Y. Lam, A First Course in Noncommutative Rings, 2nd Ed, GTM, No. 131, Springer-Verlage, New York, 2001.
- [15] B. Zheng, Decomposition of matrices into commutators of involutions, Linear Algebra Appl. **347**(2002), 1–7.