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Abstract. We propose multi-threaded parallel implementations of the Riemannian conju-
gate gradient method (CG) on the Stiefel manifold and on the oblique manifold, suitable
for solving two forms of the joint approximate diagonalization problem. In our implemen-
tations, each fundamental step of the method is explicitly modified and parallelized to
enhance computational efficiency. Numerical experiments demonstrate that our modified
CG implementations are more efficient than the original versions.
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1. Introduction

We are solving the following problem: Given a set of symmetric matrices A(1), A(2),
. . . , A(m) ∈ Rn×n, find orthogonal or nonsingular Y ∈ Rn×n such that

A(p) = Y ·D(p) · Y T , for all p = 1, . . . ,m, (1)

where D(p) are either diagonal or as diagonal as possible when exact diagonalization
is not feasible. The latter case is referred to as “joint approximate diagonalization”.
In practice, there are two variants of diagonalization: the solution Y must be or-
thogonal and the problem is equivalent to joint eigenvalue decompositions of the
input matrices, or Y is only nonsingular. Each of these variants requires a different
approach.

Joint approximate diagonalization (JAD) of multiple matrices in form (1) is a
core problem in numerous applications, including canonical polyadic decomposition
of a symmetric tensor which has a symmetric orthogonal factorization [21, 22], blind
source separation [15, 25]; blind beam forming [13], estimation of frequencies of
exponentials in noise [24].

Several approaches are commonly used in practice to solve this problem. Basi-
cally, the problem of joint diagonalization reduces to finding X = Y −T such that

XTA(p)X = D(p), p = 1, . . . ,m.
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To compute the orthogonal joint diagonalizing matrices, Jacobi-type methods
were proposed in [12, 13, 14]. In [18], eigenvalue decomposition of a random linear
combination of matrices A(p) is used to obtain joint diagonalization of symmetric
matrices.

The problem can also be treated as Riemannian minimization of an appropri-
ately chosen function that measures the diagonality of XTA(p)X on a special matrix
manifold, as described in [16]. In this case, it is the Stiefel manifold (the orthogo-
nal group), and the manifold represents a constraint to the optimization problem,
where Riemannian minimization methods are adapted to utilize manifold geometry.
By exploiting differential–geometric tools, classical Euclidean optimization meth-
ods, such as steepest descent, conjugate gradient, BFGS and Newton’s methods, are
generalized to this non-Euclidean domain. The most exploited objective function is

F (X) =
1

2

m∑
p=1

‖Off(XTA(p)X)‖2F , (2)

where for a matrix B = [bij ] ∈ Rn×n, Off(B) = B − Diag(B), and Diag(B) =
diag(b11, . . . , bmm). Such approach, with the conjugate gradient and the Newton’s
method, is proposed in [1, 28], where the complexity of the described method can be
quite high. A general Riemannian BFGS algorithm applied to the Stiefel manifold
and another optimization problem is described in [27]. Both Newton’s and BFGS
methods require the solution of a large linear system or a specific matrix linear
equation at each iteration.

On the other hand, there are other non-Riemannian approaches, such as the
methods described in [23, 35]. These algorithms are derived by reformulating the
constrained optimization problem as an unconstrained one, written in terms of a local
parametrization at each iteration. The problem with such algorithms is that they
do not fully exploit the special properties arising from the structure of the manifold.
Additionally, they suffer from slow convergence and high computational complexity,
as they require solving linear systems and computing singular value decompositions
in each iteration. In some cases, these algorithms also become numerically unstable.

In the case of non-orthogonal diagonalization, it is required that X be nonsingu-
lar. This problem is challenging since it does not rely on eigenvalue decomposition.
The transformation in (1) coincides with congruence, not similarity. Jacobi type
methods also exist for this case, as proposed in [5, 32].

The other class of methods minimizes objective functions that measure the di-
agonality of XTA(p)X under various constraints, which require certain heuristic
corrections to prevent solution approximation to converge toward a zero-matrix.
This approach typically reduces the original optimization problem to a sequence of
subproblems, as described in [34, 36, 37].

There is also a possibility of using different measures for the diagonality of matri-
ces XTA(p)X implemented in the objective function, as proposed in [17, 26, 7, 6]. In
special cases, these functions allow for efficient estimation, but in most cases, they
are computationally expensive.

Finally, there is a Riemannian minimization approach for determining a non-
orthogonal diagonalizing matrix, where the problem of finding an appropriate man-
ifold with a simple structure is quite challenging. In [3], the authors propose the
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oblique manifold (a set of matrices with unit column norms) for solving blind source
separation or independent component analysis problems. The Riemannian structure
of that manifold is simple, and its differential-geometric tools are computationally
inexpensive. The objective function in [3] is also of form (2), and the trust-region
method is chosen as the method for Riemannian minimization. This method solves
a trust-region minimization subproblem in each iteration, where the size of the sub-
problem is equal to the dimension of the manifold, see [2]. Newton’s method on the
oblique manifold is described in [20]. As previously mentioned, it requires solving
a large linear system at each iteration. On the other hand, the conjugate gradi-
ent method requires the solution of a one-dimensional problem in each iteration,
referred to as line search. Its application to the oblique manifold is described in
[31], though with a different objective function not related to joint diagonalization.
Besides the oblique manifold, some authors have studied Riemannian minimization
on other matrix manifolds with more complex structures, see e.g. [9, 11, 10].

Most of the methods listed above have two fundamental problems from a numer-
ical point of view: slow convergence, especially for a large number of matrices, and
large computational complexity. In this paper, we address the second problem by
selecting matrix manifolds and objective functions with favorable numerical prop-
erties, and by combining their characteristics in order to produce highly efficient
algorithms. Our approach relies on Riemannian optimization on matrix manifolds,
which offers an opportunity for efficient parallel implementation, particularly for
larger dimension n and a large number of input matrices m. We consider the Rie-
mannian structure of the manifold, along with the evaluation of the objective func-
tion, its gradient, and its Hessian. We also want to control accuracy of line search in
our algorithms. Further, we aim to reduce or even avoid computing matrix inverses,
solving linear systems, and performing matrix factorizations such as eigenvalue and
singular value decompositions in each iteration. Therefore, we chose the conjugate
gradient (CG) method to minimize function (2) on two matrix manifolds: the
Stiefel manifold and the oblique manifold.

The conjugate gradient algorithm for minimization on Riemannian manifolds is
nicely described in [33]. As noted in [4] and [16], “conjugate gradient techniques are
considered because they are easy to implement, have low storage requirements” and
lower numerical cost, and provide stronger global convergence properties than the
Newton method while achieving superlinear local convergence, as proved in [33]. For
the particular choice of objective function and manifolds in this paper, the conjugate
gradient method is very simple for implementation, exploits simple matrix opera-
tions and is suitable for parallelization. Furthermore, it has “cheaper” iterations
compared to other commonly used optimization methods, such as BFGS, Newton’s
and the trust-region method, since it does not require solving linear systems. The
choice of the objective function, the manifolds, and the optimization method was
crucial for developing efficient algorithms. In particular, we considered variants of
the method that are often avoided due to their numerical complexity, but may exhibit
superior convergence properties. Therefore, we have implemented many variants of
the method with different complexities and convergence properties, and we provide
a recommendation for the most efficient one.

The paper is organized as follows. In Section 2, we give a brief overview of basic
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concepts from differential geometry required by the conjugate gradient method. This
section is divided into two subsections: one focuses on the specific objective function
and its derivatives, while the other covers the geometric structures of the Stiefel and
oblique manifolds. Section 3 presents our multi-threaded parallel implementations
of the conjugate gradient algorithm on these two matrix manifolds, where we de-
veloped and implemented many variants of the algorithm. The same section also
describes procedures of operation reorganization and explicit parallelization. The
computational complexity of the specific variants is analyzed in Section 4. Section 5
presents the results of numerical experiments, which confirm the superiority of the
parallel versions. Additionally, the convergence is analyzed, and a recommendation
for the most efficient variant is proposed. Finally, Section 6 concludes the paper.

2. Conjugate gradient method on Riemannian manifolds

Riemannian optimization algorithms are adapted to exploit the geometry of the
manifold. Therefore, standard concepts and operations are tailored to the manifold
structure to ensure that approximations in all iterations remain on the manifold.
The concepts required by the algorithms are as follows: the definition of the inner
product in tangent spaces called the Riemannian metric, line search, where straight
lines are replaced by curves called geodesics or retractions; parallel translation, where
a tangent vector is transported from one point on the manifold to another, the
gradient, which is a tangent vector, and the Hessian, which acts on tangent vectors.
These basic concepts from differential geometry related to manifolds can be found
in [4], and they represent the building blocks of the conjugate gradient method on
Riemannian manifolds.

Since we deal with matrix manifolds and matrices are typically denoted by capital
letters, we will adopt this convention in our notation. As described in [4, 16, 29, 33],
let M be a matrix manifold and F : M → R an objective function; the conjugate
gradient method computes an approximation to the solution of the optimization
problem minX∈M F (X). It is an iterative method based on line search, where the
search direction in each iteration is specified as the steepest descent direction, orthog-
onalized against the previous search direction in a certain scalar product determined
by the Hessian and the Riemannian metric (the property of conjugacy).

In the k-th iteration, the method produces the current solution approximationXk

and search direction Hk required to reach the next approximation. In the idealized
version of the method, these two data determine a new geodesic Γk going through
Γk(0) = Xk in direction Γ̇k(0) = Hk, and the new approximation Xk+1 is computed
as Xk+1 = Γk(tk+1), where tk+1 is a local minimum of F (Γk(t)) (the line search
step). It only remains to compute a new search direction Hk+1, and this is done in
the following way: compute gradient Gk+1 = grad F (Xk+1), and choose

Hk+1 = −Gk+1 + βk+1Π(Hk),

where Π(Hk) = P
tk+1←0
Γk

Hk is the parallel translation of Hk along Γk to Xk+1.
Parameter βk+1 is chosen such that Hk+1 and Π(Hk) are conjugated; namely,

〈Hess F (Xk+1)[Hk+1],Π(Hk)〉Xk+1
= 0,
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where 〈 , 〉X is the Riemannian metric in the tangent space at the point X on the
manifold. From the property of exact conjugacy it follows that

βk+1 =
〈Hess F (Xk+1)[Gk+1],Π(Hk)〉Xk+1

〈Hess F (Xk+1)[Π(Hk)],Π(Hk)〉Xk+1

.

Choosing Hk+1 = −Gk+1 corresponds to the steepest descent method, whose con-
vergence is proven in [33] to be only linear. In contrast, the same paper demonstrates
that the conjugate gradient method achieves superlinear convergence. Additionally,
in [30], numerical experiments on various matrix manifolds confirm that the steep-
est descent method is the slowest. Consequently, this choice of the search direction
generally accelerates the slow convergence of the steepest descent method.

This idealized version of the conjugate gradient method is usually relaxed in
order to improve computational efficiency. In many applications, certain operations
in the described algorithm are replaced with simpler variants. The following list
outlines typical alternative approaches:

� Since computing a new point on the geodesic is numerically expensive for some
manifolds, retractions are used instead. Similarly, simpler vector transport is
used as a substitute for parallel translation.

� As stated in [4], if the numerical cost of computing the exact line search solution
is not prohibitive, then the minimizing value tk+1 should be used. Otherwise,
an approximation is used instead.

� The condition of exact conjugacy is replaced by some approximation that
avoids computing the Hessian. As described in [16, 33], typical choices for
parameter βk+1 are derived from the finite difference approximation to the
Hessian, exploiting the assumption that Xk+1 is a minimum point along the
geodesic, and they include

βk+1 =
〈Gk+1 −Π(Gk), Gk+1〉

〈Gk, Gk〉
, the Polak–Riebière formula, (3)

βk+1 =
〈Gk+1, Gk+1〉
〈Gk, Gk〉

, the Fletcher–Reeves formula. (4)

All these alternatives are chosen to ensure convergence, though they may slow down
the convergence speed in some cases, as demonstrated by the results of our numerical
experiments in Section 5. An interesting convergence analysis of several variants of
the Riemannian conjugate gradient method is presented in [30], concerning non-exact
line search and approximations of exact conjugacy.

On the other hand, for our choice of the objective function and the matrix man-
ifolds, we are able to compute the exact Hessian and to obtain the exact conjugacy
of the search direction in a less complex way.

2.1. Objective function

Let A(p) = [a
(p)
ij ] ∈ Rn×n, p = 1, . . . ,m be a set of symmetric matrices, and let

X = [xij ] ∈ Rn×n be a nonsingular or orthogonal matrix. Then we define our
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objective function as

F (X) =
1

2

m∑
p=1

‖Off(XTA(p)X)‖2F =
1

2

m∑
p=1

n∑
i,j=1
i6=j

 n∑
k,`=1

xkia
(p)
k` x`j

2

. (5)

The conjugate gradient algorithm requires knowledge of the gradient and, poten-
tially, the Hessian at each approximation on the manifold. Therefore, the first and
the second partial derivatives of the function F must be computed in each iteration.

We adopt simpler notations from [16], where for tangent vectors Ξ` = [ξ
(`)
ij ], ` = 1, 2,

FX(X) := ∇F (X) =

[
∂F

∂xrs
(X)

]
rs

,

FXX(X)(Ξ1,Ξ2) :=

n∑
r,s=1

n∑
u,v=1

∂2F

∂xuv∂xrs
(X)ξ(1)

rs ξ
(2)
uv .

It is easy to see that for the function defined in (5) we have

FX(X) = 2

m∑
p=1

A(p)X ·Off(XTA(p)X), (6)

FXX(X)(Ξ1,Ξ2) = 2

m∑
p=1

[
tr(ΞT

1 A
(p)Ξ2 ·Off(XTA(p)X))

+ tr(XTA(p)Ξ1 ·Off(XTA(p)Ξ2)) + tr(ΞT
1 A

(p)X ·Off(XTA(p)Ξ2))
]
, (7)

where for B = [bij ] ∈ Rn×n, tr(B) =
∑n

i=1 bii. See also [3, 20]. We emphasize here
that FX(X) and FXX(X) are obtained as sums of either matrix products or traces
of matrix products involving input matrices, which is suitable for parallelization,
since all these products can be computed independently.

2.2. Matrix manifolds

In our problem, the diagonalizing matrix X is square, so the Stiefel manifold is, in
fact, the orthogonal group. A formal definition is

Sn,n = {X ∈ Rn×n : XTX = I}.

A formal definition of the oblique manifold is as follows:

On,n = {X ∈ Rn×n : Diag(XTX) = I}.

The oblique manifold is chosen for its simple structure, and in the case of non-
orthogonal joint diagonalization, it provides a solid constraint that prevents solution
approximation from converging to the zero matrix. Since joint diagonalization is
invariant under column scaling of the diagonalizing matrix X, selecting a solution
from the oblique manifold fixes this scaling.

Next, we list the required concepts from differential geometry regarding both
manifolds; for details, see [4, 16, 20].
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� Dimension: dim(Sn,n) = n2− n(n+1)
2 = n(n−1)

2 , dim(On,n) = n2−n = n(n−1).

� Tangent vector Ξ ∈ TXM:
M = Sn,n : Ξ = X ·A with AT = −A,
M = On,n : satisfies Diag(XT Ξ) = 0.

� Riemannian metric: 〈Ξ,Θ〉X = tr(ΞT Θ) = vec(Ξ)T vec(Θ), Ξ,Θ ∈ TXM.

� Geodesic Γ such that Γ(0) = X and Γ̇(0) = H:
M = Sn,n : Γ(t) = XeAt, H = XA, AT = −A, (8)
M = On,n : Γ(t) = X cos(Λt) +HΛ−1 sin(Λt),

Λ = diag (‖H(:, 1)‖2, . . . , ‖H(:, n)‖2). (9)

� Parallel vector field Ξ(t) such that Ξ(0) = Ξ0 ∈ TXM along geodesic Γ:

M = Sn,n : Ξ(t) = Xe
At
2 Be

At
2 , Ξ0 = XB, BT = −B, (10)

M = On,n : Ξ(t) = Ξ0 −XΛ−1M sin(Λt) +HΛ−2M cos(Λt)−HΛ−2M ,
M = diag (H(:, 1)T Ξ0(:, 1), . . . ,H(:, n)T Ξ0(:, n)). (11)

� Retraction Γ such that Γ(0) = X and Γ̇(0) = H:
M = Sn,n : Let (X + tH) = QtRt be QR factorization, then Γ(t) = Qt, (12)
M = On,n : Γ(t) = (X + tH)N(t)−1,

N(t) = diag (‖(X + tH)(:, 1)‖2, . . . , ‖(X + tH)(:, n)‖2) . (13)

� Vector transport Ξ(t) such that Ξ(0) = Ξ0 ∈ TXM along retraction Γ:
M = Sn,n : Ξ(t) = 1

2Qt(Q
T
t Ξ0 − ΞT

0 Qt), (14)
M = On,n : Ξ(t) = Ξ0 − (X + tH)N(t)−2M(t) = Ξ0 − Γ(t)N(t)−1M(t),

M(t) = diag ((X + tH)(:, 1)T Ξ0(:, 1), . . . , (X + tH)(:, n)T Ξ0(:, n)). (15)

� Gradient of F :M→ R:

M = Sn,n : grad F (X) =
1

2
(FX(X)−XFX(X)TX), (16)

M = On,n : grad F (X) = FX −XDiag(XTFX(X)). (17)

� Riemannian Hessian of F :M→ R:

M = Sn,n : 〈Hess F (X)[Ξ1],Ξ2〉X = FXX(Ξ1,Ξ2)−
− 1

2 tr((FX(X)TX +XTFX(X))ΞT
1 Ξ2), (18)

M = On,n : 〈Hess F (X)[Ξ1],Ξ2〉X = FXX(Ξ1,Ξ2)−
− tr(FX(X)TXDiag(ΞT

1 Ξ2)). (19)

3. Efficient implementations of conjugate gradient methods on
two matrix manifolds

The most expensive operation in the conjugate gradient method on the Stiefel and
oblique manifolds is the computation of the matrix exponential required for evalu-
ation of the geodesic on Sn,n. Of course, a simpler retraction can be used instead
of the geodesic. In our numerical experiments, we will assess the convergence of
the algorithms based on these two curves in terms of the number of iterations and
execution time. Our goal is to exploit the beneficial properties of the geodesic while
reducing the cost of its computation. All other tasks reduce to basic matrix opera-
tions: matrix multiplication and sum, the trace of a matrix, and extracting diagonal
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elements of a matrix. Additionally, we observe that the same products are involved
in computations of different terms. Therefore, we can reorganize our algorithm to
compute these products only once, store them, and reuse them. We begin with an
efficient implementation of the objective function evaluation and its derivatives.

The objective function evaluation is indirectly required in line search, and more
commonly in stopping criteria. It is important to note that matrix productsXTA(p)X
for all p can be computed in parallel.

When computing the standard gradient FX(X) in form (6), the products A
(p)
X =

A(p) ·X and B(p) = XT ·A(p)
X for all p = 1, . . . ,m are computed in parallel, and the

results are stored for later use. The final products A
(p)
X ·Off(B(p)) are also computed

in parallel.

It is worth noting that in both function and standard gradient evaluations,
batched matrix multiplication functions can be utilized. In our implementation,
we explicitly distribute the computation of multiple matrix-matrix products across
the threads in the function multiple gemms(). Threads use the BLAS ([8]) func-
tion dgemm() for matrix-matrix multiplication. Our function takes a set of matrices
A(p) and a matrix X, or optionally another set of matrices B(p), and computes
C(p) = scal · A(p) · X, or C(p) = scal · X · A(p), or C(p) = scal · A(p) · B(p), for
p = 1, . . . ,m.

Since computing the gradient is one of the first operations in each conjugate
gradient iteration, and since Off(B(p)) is involved in both computations of FX(X)
and FXX(X), as soon as these products are computed their diagonals are removed,
stored and returned later when needed. At the end, the products are summed up,
again, in a parallel manner, where n2 elements of the result are uniformly distributed
across the threads. When computing the second derivative function FXX(Ξ1,Ξ2) in

form (7), the products ∆
(p)
1 = (A

(p)
X )T ·Ξ1, ∆

(p)
2 = (A

(p)
X )T ·Ξ2, and ∆

(p)
3 = ΞT

1 A
(p)Ξ2

for all p are computed in parallel by function multiple gemms().

Furthermore, the traces of the products tr(∆
(p)
3 ·Off(B(p))), tr(∆

(p)
1 ·Off(∆

(p)
2 )),

and tr((∆
(p)
1 )T · Off(∆

(p)
2 )) are computed in parallel, without first computing the

matrix products and then performing trace evaluation. In our implementation, only
diagonal elements of the products are efficiently evaluated and summed by function
traces by ddots(). The same approach is used for the evaluation of F (X). This
function takes two sets of matrices A(p) and B(p), p = 1, . . . ,m, and computes∑m

p=1 tr((A(p))T ·B(p)) or
∑m

p=1 tr(A(p) ·B(p)).

Since the matrices are stored in one-dimensional arrays in column-major rep-
resentation, the traces by ddots() function computes traces as one call to the
ddot() BLAS function for the first sum, and with n calls to ddot() for the second
sum. The set {1, . . . , k}, where k = m or k = mn is uniformly partitioned across
the threads, and each thread sums a local partial sum of traces. At the end of the
parallel evaluation of the partial sums, a single thread sums up all partial sums into
the final sum.
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3.1. Implementation of the method on the Stiefel manifold

The four terms required by the conjugate gradient algorithm, that are typical of the
specific manifold, are the gradient, the Riemannian Hessian, the geodesic or retrac-
tion, and parallel translation along geodesic or vector transport along retraction.
The gradient (16) and the Riemannian Hessian (18) are easily obtained by matrix
multiplications and trace evaluation of the matrix product, which is computed by
the function traces by ddots().

A more complex task is the evaluation of the geodesic. The geodesic is involved
in the one-dimensional optimization problem within line search

min
t≥0

F (Γk(t)), (20)

where Γk is the geodesic in the k-th iteration of the algorithm, starting at the k-th
solution approximation Γk(0) = Xk in the direction Γ̇k(0) = Hk. The direction
vector is a tangent vector, which takes the form Hk = XkAk, where AT

k = −Ak.
From (8), we know the form of the geodesic, so Γk(t) = Xke

Akt. To solve this
optimization problem, we will use an unconstrained optimization method that does
not rely on derivatives. Prior to solving, we will search for an appropriate form for
the composition of functions F (Γk(t)):

FΓk
(t) = F (Γk(t)) =

1

2

m∑
p=1

tr(Off((eAkt)TB
(p)
k eAkt)). (21)

B
(p)
k = XT

k A
(p)Xk are stored previously in the k-th iteration, while computing

FX(Xk). eAkt are the only terms that depend on t, so only they are evaluated for
different values of this parameter. Every optimization method for solving the line
search problem (20) requires multiple evaluations of eAkt for different parameters t,
but for the same matrix Ak. Since this is the most expensive operation, we have
adapted evaluation of the matrix exponential to meet the requirements of the one-
dimensional optimization method. The matrix exponential evaluation is based on
the scaling and squaring method described in [19] and implemented in MATLAB,
which computes the Padé approximation of the function. In [19], it is shown that
computation of the rational approximant for eY requires only even powers of Y , and
for double precision accuracy it is sufficient to compute only Y2 = Y 2, Y4 = Y 2

2

and Y6 = Y2Y4. In the case of geodesic, in our function ss alg exp() we only
compute Ak,2 = A2

k, Ak,4 = A2
k,2 and Ak,6 = Ak,2Ak,4 once and then we use it

as t2Ak,2, t4Ak,4 and t6Ak,6 for different parameters t. The only drawback of this
algorithm is the final evaluation of the rational approximant, which involves solving
a linear system. Consequently, the frequency of matrix exponential evaluations
is typically minimized. For each new parameter t, we perform additional matrix
summations,up to 4 additional matrix multiplications, and solve a linear system.
In our efficient implementation, the numerator and denominator polynomials are
computed in parallel, with n2 elements of the results uniformly distributed across
the threads.

The function that implements the evaluation of F (Γk(t)), where Γk is a geodesic
as described above, is denoted by FΓ in pseudocode presented in Algorithm 1 and
implemented as the function F geod().
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Finally, we address the parallel translation of the search direction Hk. Since
Hk is a derivative of the geodesic Γk at 0, the parallel vector field defining parallel
translation is exactly Γ̇k(t), so Π(Hk) = Γ̇k(tk+1) = Xke

Aktk+1Ak = Xk+1 · Ak,
which requires only a single matrix multiplication.

Less numerically complex is line search along retraction. The function that im-
plements the evaluation of F (Γk(t)), where Γk is a retraction, is implemented by the
function F retr(). It employs the BLAS function for QR factorization.

Algorithm 1 Parallel CG on the Stiefel manifold

Require: functions F , FX , FXX , FΓ(t) = F (Γ(t)), X0 ∈ Sn,n, parameters curve indicating
choice of line search curve, linesearch indicating line search method, conj indicating conjugacy
formula.

1: Compute A
(p)
X,0 = A(p)X0, B

(p)
0 = (A

(p)
X,0)TX0, for p = 1, . . . ,m;

2: FX,0 = FX(A
(p)
X,0, B

(p)
0 ); F0 = F (B

(p)
0 ); G0 = 1

2
(FX,0 −X0FT

X,0X0); H0 = −G0;

3: if (curve == geod) then
4: A0 = XT

0 H0;
5: Compute A0,2 = A0A0, A0,4 = A0,2A0,2, A0,6 = A0,2A0,4 and n1A0 = ‖A0‖1;
6: for k = 0, 1, 2, . . . do

7: [tk+1, Etk+1 ] = linesearch(FΓ, F0, n1Ak, Ak, Ak,2, Ak,4, Ak,6, B
(p)
k );

8: if (curve == geod) then
9: Xk+1 = Xk · Etk+1 ; /* Etk+1 = etk+1Ak */

10: Ξk+1 = Π(Hk) = Xk+1 ·Ak;
11: else
12: Xk+1 = Etk+1 ; /* Etk+1 is Q factor of Xk + tk+1Hk */

13: Ξk+1 = 1
2
Xk+1(XT

k+1Hk −HT
k Xk+1);

14: Compute A
(p)
X,k+1 = A(p)Xk+1; B

(p)
k+1 = (A

(p)
X,k+1)TXk+1, for p = 1, . . . ,m;

15: FX,k+1 = FX(A
(p)
X,k+1, B

(p)
k+1); Fk+1 = F (B

(p)
k+1); Gk+1 = 1

2
(FX,k+1−Xk+1F

T
X,k+1Xk+1);

16: if (conj == exact) then
17: Ik+1 = (FT

X,k+1Xk+1 +XT
k+1FX,k+1)ΞT

k+1;

18: Jk+1 = FXX(A(p), A
(p)
X,k+1, B

(p)
k+1, Gk+1,Ξk+1)− 1

2
tr(Ik+1Gk+1);

19: Kk+1 = FXX(A(p), A
(p)
X,k+1, B

(p)
k+1,Ξk+1,Ξk+1)− 1

2
tr(Ik+1Ξk+1);

20: if (conj = PR) then
21: if (curve == geod) then
22: E = ss alg exp(t/2, n, n1Ak,Ak,Ak,2, Ak,4, Ak,6);

23: Π(Gk) = XkEX
T
k GkE /* Π(Gk) = Xke

tk+1Ak
2 (XT

k Gk)e
tk+1Ak

2 */
24: else
25: Π(Gk) = 1

2
Xk+1(XT

k+1Gk −GT
kXk+1)

26: Wk+1 = Gk+1 −Π(Gk)
27: Jk+1 = tr(WT

k+1 ·Gk+1);

28: Kk+1 = tr(GT
k ·Gk);

29: if (conj == FR) then
30: Jk+1 = tr(GT

k+1 ·Gk+1);

31: Kk+1 = tr(GT
k ·Gk);

32: βk+1 =
Jk+1

Kk+1
;

33: Hk+1 = −Gk+1 + βk+1Ξk+1;
34: if (curve == geod) then
35: Ak+1 = XT

k+1Hk+1;
36: Compute Ak+1,2 = Ak+1Ak+1, Ak+1,4 = Ak+1,2Ak+1,2, Ak+1,6 = Ak+1,2Ak+1,4,

n1Ak+1 = ‖Ak+1‖1;
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An efficient parallel version of the conjugate gradient method on the Stiefel man-
ifold is displayed in Algorithm 1, with a choice for three important elements: curve,
which determines the choice of line search curve: a geodesic or retraction, linesearch
for the choice of the line search method, and conj for the choice of the conjugacy
formula: exact conjugacy, the Polak–Riebière (PR), or the Fletcher–Reeves (FR)
formula.

3.2. Implementation of the method on the oblique manifold

We were more focused on the optimization algorithm on the oblique manifold, as this
problem lacks a compact-form solution algorithm and offers greater opportunities
for parallelization.

When computing the gradient and the Riemannian Hessian on the oblique mani-
fold, three distinct operations must be considered: extracting diagonal elements of a
matrix product, multiplying a matrix with a diagonal matrix, and finding the trace
of such a product. From (17) and (19) we see that the gradient and the Hessian
require diagonal elements of the same matrix product: XTFX(X). These diagonal
elements are computed by n calls of ddot() on the columns of the factor matri-
ces, and the set {1, . . . , n} is uniformly partitioned across the threads in function
diagonal of transpose product().

We implemented a function that computes the elements of B + A · D, where
D is a diagonal matrix, such that n2 elements are uniformly distributed across the
threads in function product of matrix and diagonal(). This function is used to
compute gradF (X), where diagonal elements of XTFX(X) are computed for the
first time and stored in a vector. The operation tr(FX(X)TXDiag(ΞT

1 Ξ2)), required
by the evaluation of HessF (X), is performed by computing the diagonal elements of
Diag(ΞT

1 Ξ2)) and storing them in a second vector, and finally by applying ddot()

to these two vectors. In the case of the oblique manifold, we have no problems with
evaluating the geodesic. The form of the geodesic is very simple, it requires only
two multiplications of a matrix by a diagonal matrix, and a sum of two matrices.
We are going to exploit its simple form in order to obtain an efficient algorithm for
the minimization of function F along a geodesic. So, the minimization of F along
geodesic Γk through Γk(0) = Xk in direction Γ̇k(0) = Hk, with Diag(XT

k Hk) = 0, is
again obtained by employing an unconstrained optimization method that does not
use derivatives. By direct computation we get

FΓk
(t) = F (Γk(t)) =

1

2

m∑
p=1

[
tr(Ck(t)2D

(p)
k,1(t)) + 2 tr(Ck(t)Sk(t)Λ−1

k D
(p)
k,2(t))

+ 2 tr(Ck(t)2D
(p)
k,3(t)) + 2 tr(Ck(t)Sk(t)Λ−1

k D
(p)
k,4(t))

+ 2 tr(Ck(t)Sk(t)Λ−1
k D

(p)
k,5(t)) + tr(Ck(t)2D

(p)
k,6(t))

+ tr(Sk(t)2Λ−2
k D

(p)
k,7(t)) + 2 tr(Ck(t)Sk(t)Λ−1

k D
(p)
k,8(t))

+2 tr(Sk(t)2Λ−2
k D

(p)
k,9(t)) + tr(Sk(t)2Λ−2

k D
(p)
k,10(t))

]
, (22)
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D
(p)
k,1(t) = Diag (oB

(p)
k Ek,1(t)oB

(p)
k ) D

(p)
k,2(t) = Diag (oB

(p)
k Ek,1(t)oB

(p)
k,1)

D
(p)
k,3(t) = Diag (oB

(p)
k Ek,2(t)(oB

(p)
k,1)T ) D

(p)
k,4(t) = Diag (oB

(p)
k Ek,2(t)oB

(p)
k,2)

D
(p)
k,5(t) = Diag (oB

(p)
k,1Ek,2(t)oB

(p)
k,1) D

(p)
k,6(t) = Diag (oB

(p)
k,1Ek,3(t)(oB

(p)
k,1)T )

D
(p)
k,7(t) = Diag ((oB

(p)
k,1)TEk,1(t)oB

(p)
k,1) D

(p)
k,8(t) = Diag (oB

(p)
k,1Ek,3(t)oB

(p)
k,2)

D
(p)
k,9(t) = Diag ((oB

(p)
k,1)TEk,2(t)oB

(p)
k,2) D

(p)
k,10(t) = Diag (oB

(p)
k,2Ek,3(t)oB

(p)
k,2) (23)

where Λk = diag (‖Hk(:, 1)‖2, . . . , ‖Hk(:, n)‖2), and

oB
(p)
k = Off(XT

k A
(p)Xk) Ck(t) = cos(Λkt) Ek,1(t) = Ck(t)2

oB
(p)
k,1 = Off(XT

k A
(p)Hk) Sk(t) = sin(Λkt) Ek,2(t) = Ck(t)Sk(t)Λ−1

k

oB
(p)
k,2 = Off(HT

k A
(p)Hk) Ek,3(t) = Sk(t)2Λ−2

k .

Hence, the evaluation of F (Γk(t)) reduces to summing up the traces of diago-
nal matrix products. When evaluating this function for different parameters t in

the line-search optimization method, the products oB
(p)
k , oB

(p)
k,1 and oB

(p)
k,2 are com-

puted only once using multiple gemms(), and only the diagonal matrices Ck(t)
and Sk(t) are evaluated each time. Ck(t) and Sk(t) are computed in parallel, so
that n diagonal elements are uniformly distributed across the threads, together with
the diagonal elements of the matrices Ek,1(t), Ek,2(t), and Ek,3(t). These diago-

nal matrices appear as factors of D
(p)
k,i (t), where p = 1, . . . ,m and i = 1, . . . , 10,

and as factors of terms in (22). Further, only diagonal elements of D
(p)
k,i (t) are

computed in a similar way as before when diagonal elements were extracted from
a matrix product in diagonal of transpose product(). Computation of a total
of 10mn diagonal elements is uniformly distributed across the threads in function
compute diag D() geod. Finally, 10m traces are uniformly distributed across the
threads in function compute sum traces for F geod(), and computed in parallel by

applying the ddot() function to two vectors storing diagonals of a D
(p)
k,i (t) matrix

and an Ek,j(t) matrix.
We can conclude that for every new t, the evaluation of F (Γk(t)) requiresO(mn2)

instead of O(mn3) for direct computation of

2

m∑
p=1

tr(Off(Γk(t)TA(p)Γk(t))Γk(t)TA(p)Γ̇k(t))

by first computing Γk(t) and by applying matrix multiplications. Again, the function
that implements the evaluation of F (Γk(t)), as described, is denoted by FΓ, and it
is implemented by the function F geod().

As in the case with the Stiefel manifold, the parallel translation of the search
direction Hk on the oblique manifold reduces to the derivative of the geodesic Γk,
so that

Π(Hk) = Γ̇k(tk+1) = −XkΛk sin(Λktk+1) +Hk cos(Λktk+1).

Computation of Π(Hk) is as simple as computation of a point on the geodesic.
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In the case when line search is performed along the retraction going through
Γk(0) = Xk in direction Γ̇k(0) = Hk, with Diag(XT

k Hk) = 0, direct computation
reveals a similar structure of F (Γk(t)) to the same composition of functions when
Γk is a geodesic. First, we can observe that computing elements of the diagonal
matrices Nk(t) and Mk(t), defined in (13) and (15), can be simplified as

Nk(t) = (I + t2Λkt)
1
2 Mk(t) = tMk, (24)

and Mk is defined in (11). In this case, we have

FΓk
(t) = F (Γk(t)) =

1

2

m∑
p=1

[
tr(Nk(t)−2D

(p)
k,1(t)) + 2t tr(Nk(t)−2D

(p)
k,2(t))

+ 2t tr(Nk(t)−2D
(p)
k,3(t)) + 2t2 tr(Nk(t)−2D

(p)
k,4(t))

+ 2t2 tr(Nk(t)−2D
(p)
k,5(t)) + t2 tr(Nk(t)−2D

(p)
k,6(t))

+ t2 tr(Nk(t)−2D
(p)
k,7(t)) + 2t3 tr(Nk(t)−2D

(p)
k,8(t))

+2t3 tr(Nk(t)−2D
(p)
k,9(t)) + t4 tr(Nk(t)−2D

(p)
k,10(t))

]
. (25)

Matrices D
(p)
k,i (t), i = 1, . . . , 10 also satisfy (23), only Ek,1(t) = Ek,2(t) = Ek,3(t) =

Nk(t)−2. In this case, we use only one additional vector for storing diagonal elements
of Ek,1(t) = Nk(t)−2, and computation of a total of 10mn diagonal elements is uni-
formly distributed across the threads in function compute diag D() retr. Finally,
10m traces are uniformly distributed across the threads in function
compute sum traces for F retr(), and are computed in parallel by applying the

ddot() function to two vectors storing diagonals of a D
(p)
k,i (t) matrix and the Ek,1(t)

matrix. The function that implements the evaluation of F (Γk(t)), where Γk is a
retraction, is implemented by the function F retr().

Vector transport of any vector Ξ0 along retraction Γk is again as simple as com-
putation of a point on the retraction:

Π(Ξ0) = Ξ0 − tΓk(t)Nk(t)−1Mk.

As we can see, all components of the conjugate gradient minimization algorithm
on the oblique manifold consist of simple matrix operations, completely avoiding
solving linear systems. By taking the forms of the objective function and geodesics
into account, we also accomplish a reduction in computational complexity.

An efficient parallel version of the conjugate gradient method on the oblique
manifold is displayed in Algorithm 2.

3.3. Parallel implementations

Let us summarize all the techniques used in our parallel implementations of the
conjugate gradient algorithm on two matrix manifolds. The building blocks of the
algorithms are reduced to matrix multiplications and sums, computation of diagonal
elements or evaluation of traces on matrix products, and evaluation of the matrix
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Algorithm 2 Parallel CG on the oblique manifold

Require: functions F , FX , FXX , FΓ(t) = F (Γ(t)), X0 ∈ On,n, parameters curve indicating
choice of line search curve, linesearch indicating line search method, conj indicating conjugacy
formula.

1: Compute A
(p)
X,0 = A(p)X0; B

(p)
0 = (A

(p)
X,0)TX0, for p = 1, . . . ,m;

2: FX,0 = FX(A
(p)
X,0, B

(p)
0 ); F0 = F (B

(p)
0 ); G0 = FX,0 −X0Diag(XT

0 FX,0);

3: H0 = −G0; Λ0 = diag (‖(H0)1‖2, . . . , ‖(H0)n‖2);

4: Compute B
(p)
0,1 = XT

0 A
(p)H0, B

(p)
0,2 = HT

0 A
(p)H0, for p = 1, . . . ,m;

5: for k = 0, 1, 2, . . . do

6: tk+1 = linesearch(FΓ, F0,Λk, B
(p)
k , B

(p)
k,1, B

(p)
k,2);

7: Compute vectors Ck(tk+1) and Sk(tk+1), or Nk(tk+1);
8: if (curve == geod) then
9: Ξk+1 = Π(Hk) = −XkΛkSk(tk+1) +HkCk(tk+1);

10: Xk+1 = XkCk(tk+1) +HkΛ−1
k Sk(tk+1);

11: else
12: Xk+1 = (Xk + tk+1HkNk(tk+1)−1;
13: Ξk+1 = Hk − tk+1Xk+1Λ2

kNk(tk+1)−1; /* Mk = Λ2
k */

14: Compute A
(p)
X,k+1 = A(p)Xk+1; B

(p)
k+1 = (A

(p)
X,k+1)TXk+1, for p = 1, . . . ,m;

15: FX,k+1 = FX(A
(p)
X,k+1, B

(p)
k+1); Fk+1 = F (B

(p)
k+1);

16: Ik+1 = Diag(FT
X,k+1Xk+1); Gk+1 = FX,k+1 −Xk+1 · Ik+1;

17: if (conj == exact) then

18: Jk+1 = FXX(A(p), B
(p)
k+1, Gk+1,Ξk+1)− tr(Ik+1Diag(GT

k+1Ξk+1));

19: Kk+1 = FXX(A(p), B
(p)
k+1,Ξk+1,Ξk+1)− tr(Ik+1Diag(ΞT

k+1Ξk+1);

20: if (conj = PR) then
21: Ik+1 = diag(Hk(:, 1)TGk(:, 1), . . . , Hk(:, n)TGk(:, n)); /* Ik+1 = Mk */
22: if (curve == geod) then
23: Π(Gk) = Gk −XkSk(tk+1)Ik+1Λ−1

k +Hk(Ck(tk+1)− Idn)Ik+1Λ−2
k

24: else
25: Π(Gk) = Gk − tk+1Xk+1Ik+1Nk(tk+1)−1;
26: Wk+1 = Gk+1 −Π(Gk)
27: Jk+1 = tr(WT

k+1 ·Gk+1);

28: Kk+1 = tr(GT
k ·Gk);

29: if conj == FR then
30: Jk+1 = tr(GT

k+1 ·Gk+1);

31: Kk+1 = tr(GT
k ·Gk);

32: βk+1 =
Jk+1

Kk+1
;

33: Hk+1 = −Gk+1 + βk+1Ξk+1; Λk+1 = diag (‖(Hk+1)1‖2, . . . , ‖(Hk+1)n‖2);

34: Compute B
(p)
k+1,1 = XT

k+1A
(p)Hk+1, B

(p)
k+1,2 = HT

k+1A
(p)Hk+1, for p = 1, . . . ,m;

exponential only for the Stiefel manifold. Most of the products and traces involving
input matrices A(p) are computed in parallel. Further, some repeating products are
computed once, stored, and reused. When computing traces of matrix products in
form tr(M1 ·M2) or tr(MT

1 ·M2), or when extracting diagonals of matrix products in
form D` = Diag (M1,` ·L` ·M2,`), for diagonal matrices L`, only diagonal elements of
the products are computed in parallel, mostly by using parallel calls to the ddot()

function. The ddot() function is also used for computing tr(Li · Mj), where Li

and Mj are diagonal matrices stored as vectors. The line search method used for
finding a local minimum of F (Γk(t)) performs only minimum changes for different
parameters t, reducing the computational complexity of this task.
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It only remains to say a few words about actual implementation of the algorithms
on the specific computing platform. We produced several versions of both conjugate
gradient algorithms, trying to find the most efficient approach. Our parallel imple-
mentations are designed for multi-core systems, where we explicitly handled tasks
for each thread by using the POSIX thread library. We also used multi-threaded
BLAS functions, mostly dgemm() and ddot(), where we controlled the number of
threads used by BLAS functions. When multiple calls to a BLAS function were
executed at once, each one in its own thread, then the number of calling threads
multiplied by the number of BLAS threads was equal to the maximum number of
threads supported by our system, which was 24.

4. Computational complexity

The most complex operations in all algorithm variants are those involving matrix
products. These operations are mostly concentrated in the functions for computing
F (Γ(t)), FX(X) and FXX(X)(Ξ1,Ξ2). Since we developed many variants of the
conjugated gradient method on two manifolds, we are going to present complexity
analysis results for the variants with the most complex curve (geodesic) and conju-
gacy (exact) computations, employing Armijo’s backtracking method for line search
on both manifolds. The numerical experiments revealed that this was the optimal
variant. Table 1 displays the results of the analysis.

Alg. F (Γ(t)) FX(X)) FXX(X)(Ξ1,Ξ2) CG
OS 6mn3 6mn3 18mn3 [10 + i(6ia + 52)]mn3

PS 4mn3

p
6mn3

p
8mn3

p [6 + i(4ia + 26)]mn3

p

OO 4mn3 6mn3 18mn3 [10 + i(4ia + 50)]mn3

PO 20mn2

p
6mn3

p
8mn3

p [12 + 20i]mn3

p

Table 1: Results of the complexity analysis for the most complex operations and
the whole CG algorithm up to O(i · ia(m + n)n2/p). Here, i is the number of CG
iterations, ia is the number of Armijo’s backtracking iterations, and p is number of
threads. OS, PS, OO and PO stand for the original CG algorithm on the Stiefel
manifold, its parallel version, the original CG algorithm on the oblique manifold,
and its parallel version, respectively.

The result shows that parallel versions of the conjugate gradient method on
both manifolds, executed on only one thread, are less complex than the original
versions. This is a consequence of the modifications and operation reorganizations.
In particular, we can notice that the modified computation of F (Γ(t)) on the oblique
manifold, described in subsection 3.2, indeed reduced its complexity to O(mn2).

5. Numerical experiments

Our numerical experiments were performed on the computational environment con-
sisting of two Intel(R) Xeon(R) E5-2690 v3 processors (2.60 GHz) with 24 cores in
total, where each processor is equipped with 30 MB of cache memory, 256 GB RAM,



76 N.Bosner

and Intel Parallel Studio XE 2016 + MKL 11.3 was used for program compilations.
The CPUs reach the peak dgemm() performance of about 800 Gflops.

First, variants of the conjugate gradient method on both manifolds were imple-
mented in two forms:

� the original form, as described in Section 2, is generic; it does not exploit
the form of the objective function and specific geometric properties of the
manifolds, and any other objective function or manifold can be used instead of
our specific choices; in terms of the implementation type, this form is sequential
and implicitly parallel only via multi-threaded BLAS;

� the parallel and modified form, as described in Algorithms 1 and 2, implements
our techniques described in Section 3; this form exploits specific forms of the
objective function and manifolds, and is generally multi-threaded.

Further, we performed two rounds of tests for all conjugate gradient variants and
forms on both manifolds. In the first round, we tested only the speedup obtained
by parallel forms of the algorithm variants when compared to their original forms.
Hence, we compared execution times only for one iteration of each algorithm variant.
Speedup factors are computed as to/tp, where to is the execution time of the original
version, and tp is the time of the parallel version executed on p threads. Then, in
the second round, we performed the convergence test, where all the variants in both
forms on the specific manifolds were executed with the same input parameters and
matrices, and with the same stopping criteria. We were interested in finding the
most efficient variant in terms of the execution time.

In the first test round, we tested our implementations on a large number of
examples with different matrix dimensions and different numbers of input matrices.
The dimensions of the matrices were taken from the set n ∈ {10, 100, 1000, 2000},
and the number of input matrices were chosen from m ∈ {10, 20, 50, 100, 200, 1000}.
For each choice of n and m, we generated m input matrices A(p) = Y −T ·D(p) ·Y −1 ∈
Rn×n, with random matrix Y from the observed manifold. Diagonal elements of the

diagonal matrices D(p) are chosen as d
(p)
ii = (−1)p(i+ p · b), where b = 10 in the first

test round and b = 10−3 in the second.
As mentioned before, the algorithm variants are determined by three parameters,

i.e. curve, linesearch and conj. The choices are as follows:

� curve – a geodesic or retraction,

� linesearch – the Nelder–Mead method or Armijo’s backtracking,

� conj – exact conjugacy, the Polak–Riebière (PR) formula, or the Fletcher–
Reeves (FR) formula.

Both line search methods use only function values, and the computation of deriva-
tives is not required. The Nelder-Mead method computes the local minimum up
to a given tolerance on the accuracy. Armijo’s backtracking is a common choice for
finding a sub-optimal solution very efficiently, but on the other hand, this line search
method can still guarantee the convergence of the conjugate gradient method. Alto-
gether, we implemented 12 versions of each algorithm form on the specific manifold.
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Before executing our two test rounds, we had to determine the optimal number
of BLAS threads used in functions traces by ddots() and multiple gemms(). We
tested these two functions for the same ranges of n and m as for the conjugate
gradient algorithms, and the number of BLAS threads was chosen from the set
nbt ∈ {24, 12, 8, 6, 4, 3, 2, 1}. The number of calling threads was taken as 24/nbt.
Each function was tested with two possible choices of the trans parameter for the
first factor matrix. The optimal numbers of BLAS threads obtaining the lowest
execution time, are stored for later use. In all our further tests, as the execution
time of CG variants in parallel form for each n and m, we took the best among the
timings obtained by taking the optimal numbers of BLAS threads.

The second test round tested convergence of all variants on specific manifolds,
with the same input matrices where n = 100 and m = 1000, and with the same
X0. For simplicity of the convergence control, we chose diagonal input matrices.
The stopping criteria were also the same for all variants, specifying that iterations
should stop when F (Xk) < 10−5F (X0).

Codes written in the C language for both test rounds are available at:
https://github.com/NelaBosner/CG JAD.

5.1. Results of the speedup tests

The obtained timings of all algorithm forms and variants on both manifolds show
that the most time-consuming variants, in original and in parallel forms, are the ones
implementing Nelder–Mead method for line search. Such variants where line search
is performed on retractions are noticeably faster than those using geodesics, but only
in their original form. Choosing approximate conjugacy formulas only slightly speeds
up the execution time. The fastest iterations are obtained by variants implementing
Armijo’s backtracking. Hence, we can conclude that the choice of the line search
method has the biggest influence on the execution time of one iteration, variants
that use retractions are slightly faster, and the choice of the conjugacy formula has
only a minor influence. Due to the lower computation complexity of the conjugate
gradient methods on the oblique manifold, the execution times are lower than those
for the algorithms on the Stiefel manifold, especially for larger numbers of input
matrices.

Speedup factors obtained by comparing one iteration of the parallel CG algo-
rithms on the Stiefel manifold with one iteration of its original form are displayed
in Figure 1. We can conclude that the largest speedup factors are obtained for the
most expensive original versions, and that they grow with the number of input ma-
trices. It is also obvious that it does not pay off to apply the parallel algorithm
to the input matrices of low dimension, such as n = 10, or when the number of
input matrices m is small. That is no surprise, since we were focused on the larger
dimensions that can exploit the full potential of parallelism. On the other hand, the
speedup factors do not monotonically increase as n increases, because we compare
our parallel implementations with the original algorithms which are not completely
sequential. They use multi-threaded BLAS functions which are more efficient for
larger dimensions. Speedup factors for larger dimensions and a larger number of
input matrices range between 1.6 and 5.8.
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Figure 1: Speedup factors obtained for one iteration of the parallel CG algorithms on
the Stiefel manifold compared to its original form, with different numbers of input
matrices m. Full lines represent variants with line search performed on geodesics,
and dashed lines those with line search on retractions.
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Figure 2: Speedup factors obtained for one iteration of the parallel CG algorithms on
the oblique manifold compared to its original form, with different numbers of input
matrices m. Full lines represent variants with line search performed on geodesics,
and dashed lines those with line search on retractions.

Similar results are obtained for parallel CG algorithms on the oblique manifold,
where the lower complexity of these algorithms also influences the speedup factors,
which are displayed in Figure 2. They are higher than those for the Stiefel manifold
when the number of input matrices m is smaller, and lower for larger m-s. Speedup
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factors for larger dimensions and a larger number of input matrices range between
1.46 and 3.06.

5.2. Results of the convergence tests

The best insight into the efficiency of all versions is given in the results of the second
test round. First, we were interested in the number of iterations required to reach the
stopping criteria, in order to see which conditions affect the most possible prolonged
convergence. Figure 3 plots relative objective function reduction against the number
of iterations for all versions of the CG algorithms.
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(a) CG on the Stiefel manifold.
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(b) CG on the oblique manifold.

Figure 3: Relative objective function reduction measured as F (Xk)/F (X0) against
the number of iterations until it reaches stopping criteria 10−5. Full lines represent
variants with line search performed on geodesics, and dashed lines those with line
search on retractions. Where the parallel and the original versions give the same
result, only the results of the original version are presented. The parallel versions
are denoted by circles.

The magenta line in this figure represents all variants that implement the Nelder–
Mead method for line search. They all obtained the minimum number of iterations,
and this is consistent with the recommendation for the exact line search in [4]. On the
other hand, a suboptimal solution of line search obtained by Armijo’s backtracking
in combination with the approximate conjugacy formulas prolongs the convergence.
Especially, combination with the Polak–Riebière formula on the Stiefel manifold
using geodesics did not reach the given stopping criteria even after 1000 iterations.

Finally, the most interesting data are total execution times required to reach
stopping criteria, displayed in Figures 4a and 5a for the Stiefel manifold and for the
oblique manifold, respectively.

As we can see, the fastest version in both its original and parallel forms on both
manifolds is the one that performs line search employing Armijo’s backtracking and
uses the exact conjugacy formula. For the versions in their original form on the
Stiefel manifold, and for both forms on the oblique manifold, the one that performs
line search on a geodesic is the fastest. Finally, we can conclude that the version that
implements Armijo’s backtracking and the exact conjugacy formula in the parallel
form is by far the fastest and the most efficient algorithm for our problem, requiring



80 N.Bosner

0

500

1000

1500

2000

2500

3000

3500

4000

G
NM
EC

G
NM
PR

G
NM
FR

G
AB
EC

G
AB
PR

G
AB
FR

R
NM
EC

R
NM
PR

R
NM
FR

R
AB
EC

R
AB
PR

R
AB
FR

Algorithm variants

S
e
c
o
n
d
s

m = 1000, n = 100

 

 

Original

Parallel

(a) Total execution times.

0

1

2

3

4

5

6

7

8

G
NM
EC

G
NM
PR G

NM
FR

G
AB
EC

G
AB
PR

G
AB
FR

R
NM
EC

R
NM
PR

R
NM
FR R

AB
EC

R
AB
PR

R
AB
FR

Algorithm variants

S
p
e
e
d
u
p
 f
a
c
to

rs
 (

t 1
/t

2
4
)

m = 1000, n = 100

(b) Speedup factors.

Figure 4: Total execution times and speedup factors obtained for reaching the same
stopping criteria on the Stiefel manifold. Notation: G = geodesic, R = retraction,
NM = Nelder–Mead method, AB = Armijo’s backtracking, EC = exact conjugacy,
PR = Polak–Riebière formula, FR = Fletcher–Reeves formula.
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Figure 5: Total execution times and speedup factors obtained for reaching the same
stopping criteria on the oblique manifold. Notation: G = geodesic, R = retraction,
NM = Nelder–Mead method, AB = Armijo’s backtracking, EC = exact conjugacy,
PR = Polak–Riebière formula, FR = Fletcher–Reeves formula.

only about 33 seconds to finish the job for 1000 input matrices of dimension 100×100
on the Stiefel manifold, and only about 27 seconds to complete the same task on
the oblique manifold. Numerical results also show that there is no reason to avoid
computing the Hessian and the geodesic, and that a combination of inexact line
search solving with approximate conjugacy formulas does not produce the most
efficient algorithm.

The speedup factors for the second test round are presented in Figure 4b for the
Stiefel manifold and Figure 5b for the oblique manifold. These speedup factors are
even larger than those obtained for a single iteration. This means that we succeeded
in making the conjugate gradient method on the Stiefel and the oblique manifolds
much more efficient than their original forms.
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5.3. Scalability

In order to study the strong and weak scalability, we executed one iteration of
the optimal algorithm variants that use geodesics and exact conjugacy, and apply
Armijo’s backtracking for line search, on a different number of threads. The numbers
of threads were chosen from the set p ∈ {1, 2, 3, 4, 6, 8, 12, 16, 24}. Figures 6 and 7
show the results for the Stiefel manifold and for the oblique manifold, respectively.

In the figures, the results are shown only for specific choices of parameters. In
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Figure 6: Strong, weak scalability, and the efficiency of the parallel CG algorithms
on the Stiefel manifold. The left subfigure displays speedup factors for m = 200
and all choices of n, depending on the number of threads (strong scalability). The
middle subfigure also displays speedup factors for n = 2000, but depending on both
p and m (week scalability), where the ticks on the abscissa stand for (p,m) pairs
{(1, 10), (2, 20), (4, 50), (8, 100), (16, 200)}. The right subfigure shows the efficiency
for the same data as in the middle subfigure.
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Figure 7: Strong, weak scalability, and the efficiency of the parallel CG algorithms
on the oblique manifold. The left subfigure displays speedup factors for m = 200
and all choices of n, depending on the number of threads (strong scalability). The
middle subfigure also displays speedup factors for n = 2000, but depending on both
p and m (week scalability), where the ticks on the abscissa stand for (p,m) pairs
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the case of strong scalability m = 200, is fixed. Since the computational complex-
ity depends linearly on m, n = 2000 for weak scalability is fixed, the number of
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threads is chosen to be power of 2: {1, 2, 4, 8, 16}, and m is chosen from the set
{10, 20, 50, 100, 200} where almost all m-s are obtained by doubling the previous
value. The figures show that strong scalability is the best for larger dimensions, as
expected, while weak scalability is quite good, with corresponding efficiency t1/(tp ·p)
above 80%.

6. Conclusion

In this paper, we propose optimization algorithms for solving two variants of the
joint approximate diagonalization problem, with orthogonal and non-orthogonal di-
agonalizing matrices. The algorithms are based on the conjugate gradient method
on two matrix manifolds, where the objective function and the matrix manifolds are
chosen to enable efficient parallel implementation. As a result, we developed many
variants of parallel implementations for the algorithm on both manifolds. Numeri-
cal experiments confirmed that parallel implementations of the conjugate gradient
method are more efficient than the original versions. The parallel algorithms on the
Stiefel manifold are up to 5.8 times faster than their original forms per iteration,
while the parallel algorithms on the oblique manifold achieved the largest speedup
factor of 3.06. Additionally, we recommend the most efficient variants of the algo-
rithm on both manifolds: the versions that implement Armijo’s backtracking as the
line search method and use the exact conjugacy formula in the parallel form. Nu-
merical results also show that there is no reason to avoid computing the Hessian and
the geodesic. In the future, we plan to consider GPU implementation of the parallel
CG method on the oblique manifold, and further improve its speedup factors, as its
versions are particularly well suitable for that purpose.
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