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Abstract. We provide and analyze optimal estimators from a fixed sample and asymptotic
point of view for a class of discretely observed continuous-time stochastic volatility models
with jumps. In particular, we consider a class of non-Gaussian Ornstein-Uhlenbeck-based
models, as introduced by Barndorff-Nielsen and Shephard.
We develop in detail a martingale estimating function approach for this kind of processes,
which are bivariate Markov processes that are not diffusions, but admit jumps. We assume
that the bivariate process is observed on a discrete grid of fixed width, and the observation
horizon tends to infinity.
We prove rigorously consistency and asymptotic normality of the optimal estimator based
on a single assumption that all moments of the stationary distribution of the variance
process are finite, and give explicit expressions for the asymptotic covariance matrix.
As an illustration, we provide a simulation study for daily increments, but the method
applies unchanged to any time-scale, including high-frequency observations, without intro-
ducing any discretization error. Additionally, we compare the asymptotic covariance matrix
of the optimal estimator with the one of the simple explicit estimators and investigate the
improvement in variance reduction, even though this improvement is not significant.
This paper complements earlier works [24, 25].
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1. Introduction

In [5], Barndorff-Nielsen and Shephard introduced a class of stochastic volatility
models in continuous time, where the instantaneous variance follows an Ornstein-
Uhlenbeck type process driven by an increasing Lévy process. BNS models, as we will
refer to them from now on, allow flexible modelling, capture many stylized facts of
financial time series, and yet are of great analytical tractability. This model class has
been studied from various points of view in mathematical finance and econometrics,
with MathSciNet listing, at the time of writing, over 400 citations of the seminal
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article underlining its relevance, see [35, 29, 34, 7, 42, 8, 30, 43, 4, 52, 21, 15, 2], and
[6] for a multivariate setting. More recently, [19, 20] studied generalizations based
on superpositions. In a comprehensive note reviewing some of the contributions of
Ole Barndorff-Nielsen in financial econometrics, Neil Shephard discusses the model
in [48, Section 2]. BNS models are also treated in the textbooks [12, 46, 47, 38, 3].

The literature on statistical estimation for BNS models focuses mostly on compu-
tationally intensive Bayesian Markov Chain Monte Carlo methods, see, for example,
[43, 21, 16, 17, 15] and the references therein. Our approach is different, as we in-
vestigate how far we can get in the statistical estimation with explicit calculations,
without introducing discretization errors and approximations. This is motivated by
the analytical tractability of the BNS model class, which was exploited in other
contexts, for example, by semi-closed form option pricing formulas, see [35].

Very often, estimating functions provide a tractable alternative when the like-
lihood function is not explicitly available for stochastic process models, when it is
not tractable, or when it requires heavy computations [27, Section 1]. Indeed, in
the case of stochastic volatility models, both without and with jumps, the likelihood
function is often unknown, intractable or presents some maximization problems, or
in semi-parametric cases, it does not exist. In that case, quasi-likelihood theory was
developed as an alternative [23].

For a general discussion of and further references to the estimation of discretely
observed stochastic volatility models we refer the reader to [24] and [25] and the
references therein. In those papers, we found explicit estimators using the mar-
tingale estimating function approach and showed their consistency and asymptotic
normality. However, the obtained estimators are not efficient. In this paper, we
investigate the corresponding optimal martingale estimating functions in the sense
of [23, Chapter 2], where the best element from a fixed sample size OF and from
an asymptotic point of view OA is analyzed. We use heavily the general framework
from [49] and [50]. Our contributions are as follows:

� We show that the framework in [49] can be applied in a setting with a bivariate
process that is not a diffusion, but admits jumps.

� We derive explicit expressions for the optimal quadratic martingale estimating
functions.

� We prove rigorously the assumptions required to show consistency and asymp-
totic normality of the optimal martingale estimating function for a particu-
lar example, the model with a stationary gamma distribution, the so-called
Gamma-OU model.

� We show that the asymptotic covariance matrix of the estimator can be com-
puted in closed form. In contrast to the estimators from [24, 25], the estimator
itself, which is the solution of the estimating equations, must be computed nu-
merically using a root-finding algorithm.

As a numerical illustration, we compared the optimal estimator to the simple es-
timator from [25]. We found the improvement due to using the optimal estimator
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instead of the simple one to be non-negligible in terms of the asymptotic variance-
covariance matrix, but the gain is questionable considering the complexity of using
the optimal estimator.

We would like to emphasize that the estimation problem for BNS models is very
different from the estimation problem for Ornstein-Uhlenbeck type processes alone,
treated in [9, 55, 10, 37]. The paper is organized as follows: In Section 2, we describe
the BNS model studied and the optimal estimating functions, and give the results
of consistency and asymptotic normality of the corresponding estimator. Section 3
deals with the computation of the optimal weights used for the optimal estimating
functions, and we prove their limiting properties. The asymptotic performance of
the optimal estimator and its comparison with the simple estimator is illustrated
by a numerical example in Section 4. Section 5 concludes and gives directions for
further developments. Longer proofs and calculations are presented in Appendices
A and B.

2. Model setting and main results

2.1. The continuous time model: a general setting

For the derivation and study of the optimal estimator we use the same notation and
framework as in [25], where a simple estimator was derived and studied. Therefore,
we give only a brief summary and required details for introducing the model.

Assume we are given a probability space (Ω,F , P ) carrying a standard Brownian
motionW and an independent subordinator Z. The Barndorff-Nielsen and Shephard
model consists of a process modelling logarithmic returns denoted by X, and an
instantaneous variance process is denoted by V satisfying

dX(t) = (µ+ βV (t−))dt+
√
V (t−)dWθ(t) + ρdZλ(t), X(0) = 0.

and
dV (t) = −λV (t−)dt+ dZλ(t), V (0) = V0.

The parameters µ, β, ρ and λ are real constants with λ > 0 and Zλ(t) = Z(λt) for
all t ≥ 0. The random variable V0 has a self-decomposable distribution D on R+

and Z is chosen such that the process V is strictly stationary, see the remark below
for the construction and the required conditions. Typical examples for D used in
finance are the gamma distribution, the (generalized) inverse Gaussian distribution,
or tempered stable distributions.

X = (X,V ) is called a BNS-D-OU model. The bivariate process X is clearly
Markovian. For the statistical analysis we further assume throughout the paper
that E[V n

0 ] < ∞, for all n ∈ N, denote the mean and variance by ζ = E[V0] and η =
Var[V0], and introduce the parameter vector θ = (λ, ζ, η, µ, β, ρ)⊤ for compactness.

Remark 1. The construction and conditions for a stationary solution are discussed
in [5, Sec.2.1, Thm.1], with reference to [56, 28, 1]. We require here the notion of
self-decomposability, a concept from the study of infinite divisibility of distributions.
For a definition and details, see [45, Sec. 3.15, P.90f]. All example distributions
mentioned above are known to be self-decomposable.
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Now, given a self-decomposable distribution D, there is a probability space (Ω,F ,
P ) carrying a random variable V0 with distribution D and a subordinator Z, such
that (2.1) admits for every λ > 0 a stationary solution V with V (0) = V0. The
introduction of the time-changed subordinators Zλ allows us to have D and Z that
do not depend on λ with the intention of separating the stationary distribution from
the dynamics. We are following this approach here.

Barndorff-Nielsen and Shephard discuss a second method, called later OU −D,
that starts from a given subordinator Z and derives the stationary law D. This
method requires a logarithmic moment condition for Z(1) and yields slightly different
dynamics and distributions for the model. As we do not adopt this approach here,
we refer the interested reader to [5, Sec. 2.4] for further details.

For estimation purposes, we consider a parameterized family of probability mea-
sures, (Pθ : θ ∈ Θ), where Θ = {θ ∈ R6 : θ1 > 0, θ2 > 0, θ3 > 0} is the parameter
space. The expectation with respect to Pθ and Pθ0 is denoted by Eθ[.] and E[.],
respectively. We assume that there is a process X that is BNS-DOU(θ) under Pθ.

It is assumed that we observe the process (X,V ) on a discrete grid of points in
time, 0 = t0 < t1 < . . . < tn, and denote the observations by X1, . . . , Xn, V1, . . . , Vn

with Xi = X(ti)−X(ti−1) for i = 1, . . . , n and Vi = V (ti) for i = 0, . . . , n. We want
to find an optimal estimator for θ0 in the sense of [23, Def. 2.3] using observations
X1, . . . , Xn, V1, . . . , Vn. We are interested in asymptotics as n → ∞.

Let us briefly review the notions of optimality for martingale estimating func-
tions. In [23], OA and OF optimality are distinguished, but the two notions agree
on the class (in our setting) of estimating functions of the form

Gn(θ) =

n∑
k=1

αk(θ)∆Mk(θ),

where M(θ) is a martingale and α(θ) is a predictable process for all θ. An estimator
of this form is OF -optimal if it maximizes the information criterion E(Gn) which
can be seen as a generalization of the Fisher information in the partial order of non-
negative definite matrices, see [23, Section 2.2] for precise definitions and details.

2.2. Description of the optimal estimating function

In this section, the notation from [50] is followed and the results are extended to
bivariate and jump processes. Let us denote by G the class of zero mean, square inte-
grable martingale estimating functions of the form Gn = Gn

({
(Xi, Vi), i ≤ n

}
, θ

)
.

We will consider the optimality within the class M ⊂ G of quadratic estimating
functions. We will find optimal quadratic martingale estimating functions for BNS
models, following the general theory presented in [23].

For the sake of notational simplicity, let us introduce the abbreviations

h = h(x, v, w, θ), g = g(x, v, w, θ)

with
v 7→ Vi−1, w 7→ Vi, x 7→ Xi.
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More precisely, an estimating function in M is of the form

Gn(θ) =

n∑
i=1

g(Xi, Vi, Vi−1, θ), g = (g1, g2, . . . , gp)
T , gi = gi(x, v, w, θ), (1)

where for N = 5 and h = (h1, h2, . . . h5)
T ,

g(x1, v1, v0, θ) =

N∑
j=1

αj(v0, θ)hj(x1, v1, v0, θ), hj = hj(x, v, w, θ), (2)

h1(x1, v1, v0, θ) = v1 − f1(v0, θ), f1(v, θ) = Eθ[V1|V0 = v]
h2(x1, v1, v0, θ) = x1 − f2(v0, θ), f2(v, θ) = Eθ[X1|V0 = v]
h3(x1, v1, v0, θ) = v21 − f3(v0, θ), f3(v, θ) = Eθ[V

2
1 |V0 = v]

h4(x1, v1, v0, θ) = x2
1 − f4(v0, θ), f4(v, θ) = Eθ[X

2
1 |V0 = v]

h5(x1, v1, v0, θ) = x1v1 − f5(v0, θ), f5(v, θ) = Eθ[X1V1|V0 = v],

(3)

and αj(v, θ) is a p−dimensional vector of measurable functions of v for each θ and
j = 1, . . . , N such that Gn(θ) is square integrable.

We want to find the optimal estimating function for the class M distinguishing
between fixed sample and asymptotic properties. In our case, p = 6.

Remark 2. According to [23, Theorem 2.5], we will show that OA-optimality will,
in our case, imply the OF -optimality.

In the BNS setting, according to the general moment calculations given in [25,
Appendix A], the conditional expectations given by (3) are polynomials in v. Namely,
for every j = 1, . . . , 5, we have

fj(v, θ) = E[X
rj
1 V

sj
1 |V0 = v] =

pj∑
l=0

ϕj
l (θ) · v

l, (4)

where the degree pj and the coefficients ϕj
l (·), which are smooth functions in θ,

can be calculated explicitly. Based on these closed form expressions, the martingale
estimating function Gn(θ) is still explicit, but the resulting estimator has to be
solved numerically. The simple explicit estimator obtained in [25] might be a good
starting point for solving equations Gn(θ) = 0 numerically with general αj(v, θ).

A first step towards the computation of the optimal estimating function in a
bivariate setting is given by the following result. In order to prove the following
results, the theory from [23] is extended in the case of a bivariate Markov process that
is not a diffusion, but admits jumps. We do not approximate transition probabilities,
but can make use of exact expressions.

Theorem 1 (Optimality). Assume (X,V ) is a BNS D-OU model with

E[V n
0 ] < ∞, ∀ n ∈ N, ζ = E[V0], η = Var[V0].

Denote the parameter vector θ = (λ, ζ, η, µ, β, ρ)⊤, where µ, β, ρ and λ are real con-
stants with λ > 0. Take observations X1, . . . , Xn with Xi = X(ti) − X(ti−1) and
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V0, V1, . . . , Vn with Vi = V (ti), for i = 1, . . . , n on an equidistant grid t0, . . . , tn
of fixed width ∆ > 0, and let M denote the square-integrable quadratic martingale
estimating functions of the form (1)–(3), with

Eθ

[
aij(V0)

2hj(V0, V1, X1)
2
]
< ∞, for all 1 ≤ i ≤ 6, 1 ≤ j ≤ 5.

Define the matrix functions

A∗(v; θ) = {aij(v; θ)}, B(v; θ) = {bij(v; θ)}, C(v; θ) = {cij(v; θ)} (5)

bij(v, θ) = ∂ifj(v, θ), cij(v, θ) = Eθ[hihj |V0 = v]. (6)

Assume C(v; θ) is regular. In that case, define

A∗(v; θ) = B(v; θ)C(v; θ)−1

and

G∗
n(θ) =

n∑
i=1

g∗(Xi, Vi, Vi−1, θ),

where
g∗ = A∗(v0, θ)h.

Then G∗
n is OA-optimal in M and G∗

n is OF -optimal in M for all n ∈ N.

Proof. The proof is given in Appendix A.

Remark 3. The entries of B and C can be computed explicitly in terms of the
parameters. In particular, C(v; θ) is a polynomial in v. Those expressions allow us
to check in a mathematically rigorous way if

inf
v>0

det(C(v; θ)) > 0

for concrete values of θ ∈ Θ, which is enough for estimation purposes, namely, that
G∗

n is well-defined, for the conclusion of Theorem 1 and the asymptotic results in
Section 2.3.

The simple estimator from [25, Eq. (3.1)] is derived from an estimating function
with the same structure as (1), but with a function g◦ instead of g, that has entries g◦i
that are very simple quadratic polynomials in x, v, w. The corresponding estimating
equation system can be solved explicitly, and the solution is given in [25, (3.3)].

2.3. Consistency and asymptotic normality

In order to prove consistency and asymptotic normality of the optimal estimator, we
use the general framework and results of [49]. In the BNS case, we need to extend the
theory in the case of a bivariate Markov process. To apply [49, Corollary 2.6] and [49,
Theorem 2.9] to consistency and asymptotic normality, respectively, it is necessary
to show that [49, Condition 2.1] and [49, Condition 2.5] or [49, Condition 2.7] are
satisfied.
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Let
J(v, θ) = −E[A∗(V0, θ)B(V0, θ)], (7)

for matrices B and A∗ given in Theorem 1, and

Mα
n (θ̄) =

{
θ ∈ Θ : ∥θ − θ̄∥ ≤ α√

n

}
, α > 0.

Theorem 2 (Consistency). Assume the conditions from Theorem 1. For every n,

an estimator θ̂n exists that solves the optimal estimating equation Gn(θ̂n) = 0 with
a probability tending to one as n → ∞, and that is weakly consistent.

Proof. In order to prove weak consistency of the estimator, we can apply [49, Corol-
lary 2.6]. This requires showing that [49, Condition 2.7], which contains five rather
technical parts, is satisfied. This is shown in Appendix B.

In order to show asymptotic normality of the optimal estimator, the central limit
theorem for the optimal estimating function has to be proved.

Let Ξk =
(
Vk, Xk, V

2
k , X

2
k , XkVk

)⊤
for k = 1, . . . , n and for ease of notation,

Ξm
1 = Xpm

1 V qm
1 for m = 1, . . . N .

Proposition 1 (Asymptotic normality of the optimal estimating function). Assume
the conditions from Theorem 1. We have

1√
n
Gn(θ̄)

D−→ N(0,Φ), as n → ∞,

where

Φ =

N∑
m=1

N∑
z=1

E
[
α∗
im(V0, θ̄)α

∗
jz(V0, θ̄)Cov(Ξm

1 ,Ξz
1|V0)

]
.

Proof. To show the above result, we use the multivariate martingale central limit
theorem. For that purpose, we introduce the vector martingale difference array

χn,k =
1√
n
g∗(Xk, Vk, Vk−1, θ) =

1√
n
A∗(Vk−1, θ)h(Xk, Vk, Vk−1, θ), (8)

where A∗ and h are defined by (5) and (3). First we prove a multivariate Lyapunov
condition which implies the Lindeberg condition. From (8) it follows that for p =
1, . . . , d

√
nχp

n,k ≤ const(θ)

N∑
j=1

Vk−1

[
X

pj

k V
qj
k − fj(Vk−1, θ)

]
. (9)

Expression (9) is of the form p(X1, V1, V0), where p(x1, v1, v0) is a polynomial in
x1, v1, v0, which does not depend on n. For verifying the second requirement needed
for the martingale central limit theorem, we consider the (i, j)-th element of the
matrix χn,kχ

⊤
n,k given by

1

n

N∑
m=1

N∑
z=1

α∗
im(Vk−1, θ)α

∗
jz(Vk−1, θ)

[
Xpm

k V qm
k −fm(Vk−1, θ)

][
Xpz

k V qz
k −fz(Vk−1, θ)

]
.
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From Theorem 4 it follows that

n∑
k=1

(
χn,kχ

⊤
n,k

)
i,j

a.s.−→
N∑

m=1

N∑
z=1

E
{
α∗
im(V0, θ)α

∗
jz(V0, θ)

[
Xpm

1 V qm
1 − fm(V0, θ)

]
×
[
Xpz

1 V qz
1 − fz(V0, θ)

]
.

The expectation on the right-hand side is finite and explicit expressions can be
given using explicit formulas as special cases of the general moment calculations
given in [25].

Finally, we have the following result.

Theorem 3 (Asymptotic normality of the optimal estimator). Assume the condi-

tions from Theorem 1. The estimator θ̂n obtained by solving the equation G∗
n(θ) = 0

is asymptotically normal, namely

√
n(θ̂n − θ̄)

D−→ N
(
0, J(θ̄)−1Φ(J(θ̄)−1)⊤),

as n → ∞, where Φ is given in Proposition 1 and the matrix J(θ) is given by (7),
with A∗(v, θ) being the weight matrix having entries that are rational functions in v,

and
∂f

∂θ
(V0, θ) being the Jacobian matrix of the vector function f(v, θ) with respect

to θ, whose entries are polynomials in v.

Proof. Directly from [49, Theorem 2.9].

Remark 4. A self-decomposable distribution has a density [45, Thm. 27.13], thus
the entries of J can be computed by one-dimensional numerical integration using the
corresponding density. In the case of the BNS-Γ-OU, we can evaluate the integrals
explicitly in terms of the error function. Namely, we have∫ ∞

0

vk

v − r
· αν

Γ(ν)
vν−1e−αvdv = (ν)kα

1−ke−αrEk+ν(−rα),

where (ν)k and Ek(z) denote the Pochhammer symbol and the exponential integral
function, respectively, see [36, §8.19]. Alternatively it can be expressed by an incom-
plete gamma function. The integral is evaluated for real negative r by an elementary
substitution and a quick proof for complex r can be done using an analytic continu-
ation argument.

3. Properties of the optimal weights

3.1. Computation of the optimal weights

The optimal weight α is obtained as a projection. In our setting, it can be described
as follows. Let q(v, θ) = det(C(v, θ)), where the matrix C is given by (6). From
Theorem 1 we know that the optimal A solves

A∗(v, θ)C(v, θ) = B(v, θ), (10)

where B is given by (5).
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Remark 5. We know that C(v, θ) is a covariance matrix and is thus positive semi-
definite, so q(v, θ) = det(C(v, θ)) ≥ 0.

From the definition of the determinant, we have

det(C(v, θ)) =
∑
π∈γ6

sgn(π)c1π(1) . . . c5π(5),

where π denotes the permutation function and |γ6| = 6!. It follows that q(v, θ) is a
polynomial in v, and its coefficients are smooth functions in θ as they are given by,
sums of products of entries of C(v, θ). Since the entries of C are polynomials in v
and can be computed explicitly, we can also compute the determinant of C, which
is again a polynomial in V . The resulting expression is rather lengthy, but with the
help of Mathematica, it can be shown that q(v, θ), as a polynomial in v has in fact
degree 4, i.e., q(v, θ) = q0(θ) + q1(θ)v + q2(θ)v

2 + q3(θ)v
3 + q4(θ)v

4 for every θ in
some neighborhood of θ0.

Conjecture 1. q(v, θ) as a polynomial in v, for fixed θ, has 4 distinct roots, none
of which is real and nonnegative.

In order to illustrate the optimal estimating function, its performance will be
compared with respect to the simple explicit estimator studied in a numerical exam-
ple in [25]. The conjecture can be numerically checked in practice for the example,
but using arbitrary precision arithmetic and respectively interval arithmetic, it can
be verified mathematically rigorously for concrete values with the help of a com-
puter, see [54] for more details. But we have not been able to verify the conjecture
for all values θ ∈ Θ. If Conjecture 1 is true, we could use the Cardano-Ferrari
formula [51, 11] to write an explicit expression for the roots.

Assuming Conjecture 1, let the roots r1(θ), . . . , r4(θ). It follows that r1(θ), . . . ,
r4(θ) are smooth functions in θ if the coefficients qi(θ) are smooth.
If we use Cramer’s rule to solve (10), a similar argument shows that α∗

ij(v, θ) =
pij(v, θ)/q(v, θ), where pij(v, θ) is the determinant of the matrix obtained from
C(v, θ), replacing the i-th column by the j-th column of the matrix B(v, θ). Hence,
it follows that pij(v, θ) is a polynomial in v and its coefficients are smooth functions
in θ as they are given by the sums of products of the entries of C(v, θ) and B(v, θ).
Similarly, it can be shown that pij(v, θ) as a polynomial in v has in fact at most
degree 6, i.e.,

pij(v, θ) = pij0(θ)+pij1(θ)v+pij2(θ)v
2+pij3(θ)v

3+pij4(θ)v
4+pij5(θ)v

5+pij6(θ)v
6

for every θ in some neighborhood of θ0. Thus, αij(v, θ) are rational functions in v
and if q(v, θ) ̸= 0 for all v ≥ 0, then |αij(v, θ)| ≤ K(θ)(1 + v2) for some constant
K(θ). A partial fraction decomposition yields

α∗
ij(v, θ) =α

∗(0)
ij (θ) + α

∗(1)
ij (θ)v + α

∗(2)
ij (θ)v2 +

κ
(1)
ij (θ)

v − r1(θ)
+

κ
(2)
ij (θ)

v − r2(θ)

+
κ
(3)
ij (θ)

v − r3(θ)
+

κ
(4)
ij (θ)

v − r4(θ)
,

(11)
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where κ
(l)
ij (θ), l = 1, . . . , 4 can be calculated explicitly. The calculation of the co-

efficients in a partial fraction decomposition is an elementary and well-known issue
that can be found in many textbooks. A particularly thorough reference is [22,
Section 7.1].

3.2. Strong laws for the optimal weights

For the purpose of investigating the optimality of the estimating function, we first
need to prove some results of the limiting properties on mixed moments of some
special functions of processes (V ) and (X).

Lemma 1. Assume the conditions from Theorem 1. Then:

1. For every p, q, r ≥ 0, we have

lim
n→∞

1

n

n∑
i=1

Xq
i V

p
i (1 + Vi−1)

r = E[Xq
1V

p
1 (1 + V0)

r];

2. For every θ ≤ 0 and every p, r ≥ 0, we have

lim
n→∞

1

n

n∑
i=1

eθ(1+Vi−1)Xp
i V

q
i = E

[
eθ(1+V0)Xp

1V
q
1

]
; (12)

3. For every p, q ≥ 0 and r ∈ N, we have

lim
n→∞

1

n

n∑
i=1

Xp
i V

q
i

(1 + Vi−1)r
= E

[
Xp

1V
q
1

(1 + V0)r

]
; (13)

4. For every θ ≥ 0 and every p, q, r ≥ 0, we have

lim
n→∞

1

n

n∑
i=1

Xp
i V

q
i e

−θ(1+Vi−1)V r
i−1 = E

[
Xp

1V
q
1 e

−θ(1+V0)V r
0

]
. (14)

Proof. The first claim is proven directly using the binomial theorem and [25,
Lemma 3.6]. For the second claim, we extend the strong law of large numbers
from [25, Lemma 3.6] to exponential functions. Expanding the exponential function
and using [25, Lemma 3.6], the result follows. Thirdly, for every x, v ∈ R, we have∫ ∞

0

xpvq
θr

r!
e−θ(1+v)dθ =

xpvq

(1 + v)r
.

Now the result follows using (12) that has just been proven and the convergence
property of the sequence. The fourth result follows by expanding the exponential
function in series, using the convergency property of the series just obtained and the
result from [25, Lemma 3.6].
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Finally, we are able to state the most general limiting result for mixed moment
terms of processes (V ) and (X). The proofs of auxiliary results for the strong laws
of weight functions are lengthy, but of the same structure as those given in [24, 25].

Theorem 4 (Strong laws for the weights). Assume the conditions from Theorem 1.
For every θ ∈ Θ and p, q, r ≥ 0 and every j = 1, . . . , N, p = 1, . . . , d we have

1

n

n∑
i=1

α∗
pj(Vi−1, θ)X

p
i V

q
i V

r
i−1

a.s.−→ E
[
α∗
pj(V0, θ)X

p
1V

q
1 V

r
0

]
, as n → ∞.

Proof. Rewriting (11) we have

α∗
pj(v, θ) = α

∗(0)
pj (θ) + α

∗(1)
pj v + α

∗(2)
pj v2 +

4∑
l=1

κ
(l)
pj (θ)

v − rl(θ)
. (15)

Thus, it follows that for every j = 1, . . . , N, p = 1, . . . , d and p, q, r ≥ 0 we have

1

n

n∑
i=1

α∗
pj(Vi−1, θ)X

p
i V

q
i V

r
i−1

=α
∗(0)
pj (θ)

1

n

n∑
i=1

Xp
i V

q
i V

r
i−1 + α

∗(1)
pj

1

n

n∑
i=1

Xp
i V

q
i V

r+1
i−1

+ α
∗(2)
pj

1

n

n∑
i=1

Xp
i V

q
i V

r+2
i−1 +

4∑
l=1

κ
(l)
pj (θ)

1

n

n∑
i=1

Xp
i V

q
i V

r
i−1

Vi−1 − rl(θ)
. (16)

Using Lemma 1, (13) and [25, Lemma 3.6] from relation (16) we have

1

n

n∑
i=1

α∗
pj(Vi−1, θ)X

p
i V

q
i V

r
i−1

a.s.−→ α
∗(0)
pj (θ)E

[
Xp

1V
q
1 V

r
0 ] + α

∗(1)
pj E

[
Xp

1V
q
1 V

r+1
0

]
+α

∗(2)
pj E

[
Xp

1V
q
1 V

r+2
0

]
+

4∑
l=1

κ
(l)
pj (θ)E

[
Xp

1V
q
1 V

r
0

V0 − rl(θ)

]
=E

[
α∗
pj(V0, θ)X

p
1V

q
1 V

r
0

]
,

as n → ∞, since the last equality follows from (15). That completes the proof.

For a concise notation, let

α∗
pjk(v, θ) = ∂kα

∗
pj(v, θ), κ

(l)
pjk(θ) = ∂kκ

(l)
pj (θ) (17)

for l = 1, . . . , 4, p, k = 1, . . . , d, j = 1, . . . , N. We have the following result.

Theorem 5 (Strong laws for the derivatives of the weights). Assume the conditions
from Theorem 1. For every θ ∈ Θ and p, q, r ≥ 0, for every j = 1, . . . , N and
p, k = 1, . . . , d we have

1

n

n∑
i=1

α∗
pjk(Vi−1, θ)X

p
i V

q
i V

r
i−1

a.s.−→ E
[
α∗
pjk(V0, θ)X

p
1V

q
1 V

r
0

]
, as n → ∞.

Proof. Using the notation from (17), the statement follows by applying [25, Le-
mma 3.6] and Lemma 1, (13).
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4. Numerical illustration

To illustrate the performance of the optimal estimator obtained by solving G∗
n(θ) = 0

and compare it with the performance of the simple estimator, we consider the Γ-OU
model, where the variance V has a stationary gamma distribution.� The background-
driving Lévy process is a compound Poisson process with exponential jumps and it
was simulated using the iid sequence of exponentially distributed interarrival times.§

The variance process and the integrated variance process are then computed path-
wise as deterministic functions of the jump times and jump heights of the background
driving Lévy process and the initial variance, which is simply a gamma variable, ac-
cording to the model equations. Finally, for the simulation of log returns, we use the
fact that they are conditionally Gaussian given the simulated background-driving
Lévy process and the conditional mean and variance are given in terms of the pre-
viously simulated quantities.

This simulation method is elementary and exact. It relies substantially on the
fact that the background-driving Lévy process in the Γ-OU model is a compound
Poisson process, thus it has finite activity, that is, finitely many jumps in any finite
interval.¶

We use one year as the time unit, consisting of n = 250 trading days. The true
parameters are

ν = 2.56; α = 64; λ = 256; β = −0.5; ρ = −0.1; µ = 1.2

The parameters for the variance process have the following meaning: The parameter
λ determines the speed of mean-reversion in the OU-model, the parameters ζ and η
are the mean and variance of the stationary variance process in general, and in the
concrete Γ-OU model ν is the degree of freedom and α is the exponential parameter

of the stationary gamma distribution with ζ =
ν

α
, η =

ν

α2
. The parameters for the

log returns are as follows: The parameter µ is a linear drift component, the param-
eter β could be seen as a parameter for the market price of risk, as it is related to
certain structure-preserving measure changes, see [35, 26], and ρ is the parameter
governing the leverage effect. All parameters are estimated by the estimating func-
tion approach. More details about the statistical properties of the instantaneous
variance process and log returns in this specific case can be found in [25].

‡Simulations were done in C using the GNU scientific library [18]. From that library, we selected the
Mersenne Twister as the basic generator for uniform random numbers[33]. For gamma, exponential
and Gaussian random numbers, we used the default routines, which implement the Marsaglia-Tsang
fast gamma method [32] and the elementary inversion method [14, Sec. II.2.2], while for Gaussian
random numbers we used the polar (Box-Mueller) method [14, Sec.V.4.4].
§This is called the exponential spacings method in [14, VI.1.2].
¶For infinite-activity processes, such as in the OU-Γ model, the IG-OU and the OU-IG model, or
models based on tempered stable processes, more advanced simulation methods must be used, for
example the methods based on the characteristic function, as in [13], or approximative methods,
such as the truncated inverse Lévy measure method, also related to shot-noise representations, see
[40, 44, 58, 53, 57].
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4.1. The asymptotic covariance matrix of the simple and opti-
mal estimator

In this numerical analysis, we do not estimate the asymptotic covariance, but evalu-
ate the explicit expression using the true parameters. Denoting the vector of asymp-
totic standard deviations of the estimates and the correlation matrix by s/

√
n and

r, respectively, for the simple estimator, we have:

s =


4.86
125
650
7.36
253
0.526

 , r =


1 0.89 0.41 0.03 0.09 −0.02

0.89 1 0.4 0.03 0.09 −0.03
0.41 0.4 1 0.06 0.22 0
0.03 0.03 0.06 1 −0.75 0.06
0.09 0.09 0.22 −0.75 1 −0.57
−0.02 −0.03 0 0.06 −0.57 1

 .

Even though the optimal α’s can be calculated explicitly and thus the optimal es-
timating function G∗

n(θ) is explicit, the estimator θ̄ has to be solved numeri-
cally. Nevertheless, Conjecture 1 can be checked for the true parameter, coefficients

κ
(k)
ij and the asymptotic variance-covariance matrix J(θ̄)−1Φ(J(θ̄)−1)⊤ can be cal-

culated explicitly. First we calculate the coefficients α
∗(0)
ij (θ̄), α

∗(1)
ij (θ̄), α

∗(2)
ij (θ̄) and

κ
(1)
ij (θ̄), κ

(2)
ij (θ̄), κ

(3)
ij (θ̄) and κ

(4)
ij (θ̄). Furthermore, explicit expressions for the op-

timal estimating function are given. Since the variance-covariance matrix Φ from
Proposition 1 can be given explicity, from Theorem 3 it follows that the variance-
covariance matrix of the optimal estimator is T ∗/n, where

T ∗ = J(θ̄)−1Φ
(
J(θ̄)−1

)T
.

Denoting the vector of asymptotic standard deviations of the estimates and the
correlation matrix by s∗/

√
n and r∗, respectively, for the optimal estimator, we

have:

s∗ =


4.686
120.23
491.038
6.179
219.193
0.504

 , r∗ =


1. 0.88 0.32 0.03 0.06 −0.02
0.88 1. 0.31 0.03 0.06 −0.03
0.32 0.31 1. 0.04 0.2 −0.01
0.03 0.03 0.04 1. −0.69 −0.02
0.06 0.06 0.2 −0.69 1. −0.58
−0.02 −0.03 −0.01 −0.02 −0.58 1.

 .

4.2. A numerical illustration of the actual performance of the
optimal estimator

In this subsection, we report the actual estimation in the setting described in the pre-
vious subsections. Namely, 10 000 calculations with the optimal estimating functions
were performed. In Figure 1, histograms together with the theoretically calculated
Gaussian limiting distributions are displayed. We may notice an improvement of the
optimal estimator versus the simple one, even though this improvement is not sig-
nificant. More specifically, the biggest improvement is achieved for the λ parameter
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denoting the speed of the mean-reversion in the corresponding OU-model, and the
µ parameter describing the linear drift component of the returns.

The multivariate root-finding was done in C using the the hybrids solve routine
from the GSL library [18], which is, according to the documentation, based on a
modified version of Powell’s hybrid method, see [39], which replaces calls to the
Jacobian function by its finite difference approximation. As the optimal quadratic
estimating function is explicit and elementary, the Jacobian can be implemented
by a very patient coder or with the help of an automatic symbolic differentiation
system, but this was not required for the illustration here [41, 31]. The histograms
are from the empirical distribution of this illustration, the Gaussian densities are
plotted using the theoretical results of the asymptotic limit distributions given the
known true parameter values.

240 245 250 255 260 265 270
0.00

0.02

0.04

0.06

λ

2.45 2.50 2.55 2.60 2.65 2.70

2

4

6

8

ν

60 62 64 66 68
0.00

0.05

0.10

0.15

0.20

0.25

0.30

α

1.0 1.1 1.2 1.3 1.4

1

2

3

4

5

6

μ

-6 -4 -2 0 2 4 6
0.00

0.05

0.10

0.15

β

-0.115 -0.110 -0.105 -0.100 -0.095 -0.090 -0.085

10

20

30

40

50

60

70

ρ

Figure 1: Comparison of simple and optimal estimates

5. Conclusions and further research

In this paper, we provide and analyze the optimal quadratic estimator from a fixed
and asymptotic sample point of view for a class of discretely observed continuous-
time stochastic volatility models with jumps. In particular, we consider a class of
non-Gaussian Ornstein-Uhlenbeck-based models. First, we developed in detail a
martingale estimating function approach for this kind of processes, which are bi-
variate Markov processes that are not diffusions, but admit jumps. Second, we
proved rigorously consistency and asymptotic normality of the optimal estimator
based on a single assumption that all moments of the stationary distribution of
the variance process are finite, and showed that the optimal martingale estimating
function and the asymptotic covariance matrix of the estimator can be computed in
closed form. Third, in a numerical illustration we found a non-negligible improve-
ment using the optimal instead of the simple estimator in terms of the asymptotic
variance-covariance matrix.

As a natural continuation of this work, we should study numerical aspects of
solving the optimal estimating equations, and illustrate and analyze the small sample
performance of the optimal estimator in comparison to the simple explicit estimator,
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which requires no numerical root-finding.

Finally, we address the issue that volatility, or instantaneous variance, is not
directly observable in discrete time. A potential practical solution to the problem
is to use our estimation framework with the unobservable instantaneous variance
replaced by a suitable observable substitute, see the suggestions in [25, Section 5]
and the references given therein. Another possibility would be to extend the present
analysis for the optimal estimating functions to the joint analysis of stock returns
and some measure of trading intensity, such as trading volume, for example, and
compare its performance to the simple estimator developed in [24].
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toregressive moving average (CARMA) stochastic volatility models, J. Bus. Econom.
Statist. 24(2006), 455–469.

[54] W.Tucker, Validated numerics, Princeton University Press, Princeton, 2011.
[55] L.Valdivieso, W. Schoutens, F. Tuerlinckx, Maximum likelihood estimation in

processes of Ornstein-Uhlenbeck type, Stat. Inference Stoch. Process. 12(2009), 1–19.
[56] S. J.Wolfe, On a continuous analogue of the stochastic difference equation Xn =

ρXn−1 +Bn, Stochastic Process. Appl. 12(1982), 301–312.
[57] S. Zhang, X. Zhang, Exact simulation of IG-OU processes, Methodol. Comput. Appl.

Probab. 10(2008), 337–355.



124 F.Hubalek and P.Posedel Šimović
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Appendix A. Proof of Theorem 1

Proof. For k = 1, . . . , d and j = 1, . . . , N , define two d×N matrices by

A(vi−1; θ) =
{
αk,j(vi−1; θ)

}
, Ã(vi−1; θ) =

{
α̃k,j(vi−1; θ)

}
, i ≤ n,

and two d−dimensional estimating functions

Gn(θ) =

n∑
i=1

A(Vi−1; θ)h(Vi, Xi|Vi−1; θ), G̃n(θ) =

n∑
i=1

Ã(Vi−1; θ)h(Vi, Xi|Vi−1; θ),

where h = (h1, . . . , hN )T . Denote the predictable quadratic covariation (d×d) matrix
by

〈
G(θ)

〉
n
=

{〈
Gi(θ), Gj(θ)

〉
n
, i, j = 1, . . . , d

}
. Then, using definition (6) we obtain

〈
G(θ), G̃(θ)

〉
n
=

n∑
i=1

Eθ

[
A(Vi−1; θ)h(Vi, Xi|Vi−1; θ)

(
Ã(Vi−1; θ)h(Vi, Xi|Vi−1; θ)

)T|Vi−1

]
=

n∑
i=1

A(Vi−1; θ)Eθ

[
h(Vi, Xi|Vi−1; θ)h

T (Vi, Xi|Vi−1; θ)|Vi−1

]
Ã(Vi−1; θ)

T

=

n∑
i=1

A(Vi−1; θ)C(Vi−1; θ)Ã(Vi−1; θ)
T . (18)

Since the matrix C(v0; θ) is assumed to be regular, under Conjecture 1 from (5) and
(6) we have

A∗(vi−1; θ) = B(vi−1; θ)C(vi−1; θ)
−1, (19)

where A∗(vi−1; θ) =
{
αk,j(vi−1; θ), k = 1, . . . , d, j = 1, . . . N

}
. In particular, from

(18) and (19) it follows that

〈
G∗(θ)

〉
n
=

n∑
i=1

B(Vi−1; θ)C(Vi−1; θ)
−1B(Vi−1; θ)

T

and 〈
G(θ), G∗(θ)

〉
n
=

n∑
i=1

A(Vi−1; θ)C(Vi−1; θ)A
∗(Vi−1; θ)

T

=

n∑
i=1

A(Vi−1; θ)C(Vi−1; θ)C(Vi−1; θ)
−1B(Vi−1; θ)

T

=

n∑
i=1

A(Vi−1; θ)B(Vi−1; θ)
T . (20)

Let Ḡn(θ) denote the compensator of ∂θTGn(θ) under Pθ, i.e. Ḡn(θ) is Fn−1

measurable for every n ∈ N and each component of the matrix ∂θTGn(θ)− Ḡn(θ) is
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a Pθ martingale w.r.t. {Fn}. In order to find Ḡn(θ) we differentiate Gn(θ) w.r.t. θk,
where k = 1, . . . , d.

∂θkGn(θ)=

n∑
i=1

(
∂

∂θk
A(Vi−1;θ)

)
h(Vi, Xi|Vi−1;θ)+

n∑
i=1

A(Vi−1;θ)
∂

∂θk
h(Vi, Xi|Vi−1;θ). (21)

But, for every j = 1, . . . , N , it holds that Eθ

[ n∑
i=1

hj(Vi, Xi|Vi−1; θ)

]
= 0, so

calculating the conditional expectation of both sides of equation (21), it follows that

Eθ

[
∂θkGn(θ)|Vi−1

]
=

n∑
i=1

A(Vi−1; θ)Eθ

[
∂

∂θk
h(Vi, Xi|Vi−1; θ)

∣∣Vi−1

]
.

Hence, using definition (5) and relation (20) we derive

Ḡn(θ) =

n∑
i=1

A(Vi−1; θ)Eθ

[
∂

∂θk
h(Vi, Xi|Vi−1; θ)|Vi−1

]

= −
n∑

i=1

A(Vi−1; θ)B(Vi−1; θ) =
〈
G(θ), G∗(θ)

〉
n
.

Especially, Ḡ∗
n(θ) = −

〈
G∗(θ)

〉
n
. Finally, we have that

Ḡn(θ)
−1

〈
G(θ), G∗(θ)

〉
n
= −Id = Ḡ∗

n(θ)
−1

〈
G∗(θ)

〉
n
, (22)

where Id is the identity matrix of dimension d and this quantity is obviously non-
random. Since by (22) we have Ḡn(θ)

−1
〈
G(θ), G∗(θ)

〉
n
= Ḡ∗

n(θ)
−1

〈
G∗(θ)

〉
n
, ap-

plying [23, Theorem 2.4], it follows that G∗
n(θ) ∈ M is an OA-optimal estimating

function within M. Now, we have the OA-optimality of G∗
n(θ), and from (22) it

follows that the quantity Ḡ∗
n(θ)

−1
〈
G∗(θ)

〉
n
is non-random. Finally, by [23, Theo-

rem 2.5], it thus follows that G∗
n(θ) is OF -optimal within M. This completes the

proof.

Appendix B. Fulfillment of [49, Condition 2.7]

Proposition 2. Assume the conditions from Theorem 1. Condition 2.7 of [49] is
satisfied, namely,

(i) the mapping θ 7−→ Gn(θ) is twice continuously differentiable.

(ii) There exist a θ̄ ∈ int Θ and an invertible non-random d× d matrix J(θ̄) such
that

sup
θ(i)∈Mα

n (θ̄)

∥∥ 1
n
Jn(θ

(1), . . . , θ(d))− J(θ̄)
∥∥ → 0

in probability as n → ∞ for all α > 0.
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(iii) There exist d non-random d× d matrices Bi(θ̄), i = 1, . . . , d, such that

sup
θ(i)∈Mα

n (θ̄)

∥∥ 1
n
Q(i)

n (θ(1), . . . , θ(d))−Bi(θ̄)
∥∥ → 0

in probability as n → ∞ for all α > 0 and all i = 1, . . . , d, where Q(i)
n (θ) =

∂2
θG

i
n(θ).

(iv)

{
Gn(θ̄)

n
: n ∈ N

}
is stochastically bounded.

(v) sup
θ∈Mα

n (θ̄)

∥∥∥∥Gn(θ)

n

∥∥∥∥ → 0 in probability as n → ∞ for all α > 0.

Proof. In our case, the number of parameters is d = 6 and N = 5. From the defini-
tions above it immediately follows that the mapping θ 7→ Gp

n(θ) is twice continuously
differentiable with respect to θ. Let us consider the matrix Jn =

(
Jp,k
n

)
p,k=1,...,d

com-

ponentwise. For j = 1, . . . , N , let

α∗
pjk(v; θ) =

∂α∗
pj(v; θ)

∂θk
, fk

j (v; θ) =
∂fj(v; θ)

∂θk
,

ϕk
jl(θ) =

∂ϕjl(θ)

∂θk
, ϕk,z

jl (θ) =
∂ϕk

jl(θ)

∂θz
z = 1, . . . , d.

From (4) it follows that

fj(v; θ) =

pj+qj∑
l=0

ϕjl(θ)v
l, (23)

where ϕjl are explicit in terms of the parameter θ. From (23) it follows that

fk
j (v; θ) =

pj+qj∑
l=0

ϕk
jl(θ)v

l.

Thus we have

Jp,k
n (θ)=

n∑
i=1

N∑
j=1

α∗
pjk(Vi−1,θ)

[
X

pj

i V
qj
i −fj(Vi−1,θ)

]
−

n∑
i=1

N∑
j=1

α∗
pj(Vi−1,θ)f

k
j (Vi−1,θ)

=

n∑
i=1

N∑
j=1

α∗
pjk(Vi−1,θ)

[
X

pj

i V
qj
i −fj(Vi−1,θ)

]
−

n∑
i=1

N∑
j=1

α∗
pj(Vi−1,θ)

pj+qj∑
l=0

ϕk
jl(θ)V

l
i−1.

(24)

Let us define

Jp,k(θ̄) = −
N∑
j=1

pj+qj∑
l=0

ϕk
jl(θ̄)E

[
α∗
pj(V0, θ̄)V

l
0

]
.
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Using the expressions for fj(v, θ) and (24), m = 1, . . . , d, we have

sup
θ(m)∈Mn(θ̄)

∣∣∣∣ 1nJp,k
n (θ(m))− Jp,k(θ̄)

∣∣∣∣
= sup

θ(m)∈Mn(θ̄)

∣∣∣∣ 1n
n∑

i=1

N∑
j=1

α∗
pjk(Vi−1, θ

(m))
[
X

pj

i V
qj
i − fj(Vi−1; θ

(p))
]

− 1

n

n∑
i=1

N∑
j=1

α∗
pj(Vi−1,θ

(m))

pj+qj∑
l=0

ϕk
jl(θ

(m))V l
i−1+

N∑
j=1

pj+qj∑
l=0

ϕk
jl(θ̄)E

[
α∗
pj(V0, θ̄)V

l
0

]∣∣∣∣
≤ sup

θ(m)∈Mn(θ̄)

∣∣∣∣ 1n
n∑

i=1

N∑
j=1

α∗
pjk(Vi−1, θ

(m))
[
X

pj

i V
qj
i − fj(Vi−1, θ

(m))
]∣∣∣∣

+ sup
θ(m)∈Mn(θ̄)

∣∣∣∣− 1

n

n∑
i=1

N∑
j=1

α∗
pj(Vi−1, θ

(m))

pj+qj∑
l=0

ϕk
jl(θ

(m))V l
i−1

+

N∑
j=1

pj+qj∑
l=0

ϕk
jl(θ̄)E

[
α∗
pj(V0, θ̄)V

l
0

]∣∣∣∣. (25)

Adding and subtracting expressions

1

n

n∑
i=1

N∑
j=1

α∗
pj(Vi−1, θ̄)

pj+qj∑
l=0

ϕk
jl(θ

(m))V l
i−1

and

1

n

n∑
i=1

N∑
j=1

α∗
pj(Vi−1, θ̄)

pj+qj∑
l=0

ϕk
jl(θ̄)V

l
i−1

in (25) it follows that

sup
θ(m)∈Mn(θ̄)

∣∣∣∣ 1nJp,k
n (θ(p))− Jp,k(θ̄)

∣∣∣∣
≤ sup

θ(m)∈Mn(θ̄)

∣∣∣∣ 1n
n∑

i=1

N∑
j=1

α∗
pjk(Vi−1, θ

(m))
[
X

pj

i V
qj
i − fj(Vi−1; θ

(p))
]∣∣∣∣

+

N∑
j=1

sup
θ(m)∈Mn(θ̄)

∣∣∣∣ 1n
n∑

i=1

[
α∗
pj(Vi−1, θ̄)−α∗

pj(Vi−1, θ
(m))

]pj+qj∑
l=0

ϕk
jl(θ

(m))V l
i−1

∣∣∣∣
+

N∑
j=1

sup
θ(m)∈Mn(θ̄)

∣∣∣∣ pj+qj∑
l=0

[
ϕk
jl(θ̄)− ϕk

jl(θ
(m))

] 1
n

n∑
i=1

α∗
pj(Vi−1, θ̄)V

l
i−1

∣∣∣∣
+

N∑
j=1

pj+qj∑
l=0

∣∣∣∣ϕk
jl(θ̄)

[
E[α∗

pj(V0, θ̄)V
l
0 ]−

1

n

n∑
i=1

α∗
pj(Vi−1, θ̄)V

l
i−1

]∣∣∣∣. (26)
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Since a function belonging to C∞ is bounded on a compact set, we have

sup
θ∗∈Mα

n (θ̄)

∣∣∣∣∂ϕj,k
l

∂θ
(p)
m

(θ∗)

∣∣∣∣ ≤ M,

for some finite constant M. Using the definition of the set Mn we thus have

sup
θ(m)∈Mn(θ̄)

∣∣∣∣ pj+qj∑
l=0

[
ϕk
jl(θ̄)− ϕk

jl(θ
(m))

]∣∣∣∣
≤

pj+qj∑
l=0

sup
θ(p)∈Mn(θ̄)

p∑
d=1

sup
θ∗∈Mα

n (θ̄)

∣∣∣∣ ∂ϕk
jl

∂θ
(m)
d

(θ∗)

∣∣∣∣∣∣θ̄m − θ
(m)
d

∣∣
≤

pj+qj∑
l=0

p∑
d=1

M
α√
n
=:

C1,j√
n
,

where C1,j = Mα(pj + qj)p. For ease of notation, let us define

Kp,k
n (θ(m)) =

1

n

n∑
i=1

α∗
pjk(Vi−1; θ

(m))
[
X

pj

i V
qj
i − ϕj(Vi−1; θ

(m))
]
.

Since α∗
pj(v, θ) defined by (11) is Lipschitz if Conjecture 1 holds, from definition (1)

and relation (26) it follows that

sup
θ(m)∈Mn(θ̄)

∣∣∣∣ 1nJp,k
n (θ(p))− Jp,k(θ̄)

∣∣∣∣
≤

N∑
j=1

sup
θ(m)∈Mn(θ̄)

∣∣Kp,k
n (θ(m))

∣∣+ α√
n

N∑
j=1

sup
θ(m)∈Mn(θ̄)

∣∣∣∣ pj+qj∑
l=0

ϕk
jl(θ

(m))

∣∣∣∣∣∣∣∣ 1n
n∑

i=1

V l
i−1

∣∣∣∣
+

N∑
j=1

C1,j√
n

∣∣∣∣ 1n
n∑

i=1

α∗
pj(Vi−1; θ̄)V

l
i−1

∣∣∣∣
+

N∑
j=1

pj+qj∑
l=0

∣∣∣∣ϕk
jl(θ̄)

[
1

n

n∑
i=1

α∗
pj(Vi−1; θ̄)V

l
i−1 − E[α∗

pj(V0; θ̄)V
l
0 ]

]∣∣∣∣. (27)

Adding and subtracting expressions

1

n

n∑
i=1

α∗
pjk(Vi−1; θ̄)

[
X

pj

i V
qj
i − fj(Vi−1; θ

(m))
]

and

1

n

n∑
i=1

[
α∗
pjk(Vi−1; θ

(p))− α∗
pjk(Vi−1; θ̄)

]
fj(Vi−1; θ̄)
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in Kp,k
n (θ(m)) in relation (27) and since functions α∗

pjk(v, θ) are Lipschitz if Conjec-
ture 1 holds, for every j = 1, . . . , N, we obtain

sup
θ(m)∈Mn(θ̄)

∣∣Kp,k
n (θ(m))

∣∣
≤ sup

θ(m)∈Mn(θ̄)

∣∣∣∣1n
n∑

i=1

[
α∗
pjk(Vi−1;θ

(m))−α∗
pjk(Vi−1;θ̄)

][
X

pj

i V
qj
i −fj(Vi−1;θ̄)

]∣∣∣∣
+ sup

θ(m)∈Mn(θ̄)

∣∣∣∣1n
n∑

i=1

[
α∗
pjk(Vi−1;θ

(m))−α∗
pjk(Vi−1;θ̄)

][
fj(Vi−1;θ̄)−fj(Vi−1;θ

(m))
]∣∣∣∣

+ sup
θ(m)∈Mn(θ̄)

∣∣∣∣1n
n∑

i=1

α∗
pjk(Vi−1; θ̄)

[
fj(Vi−1; θ̄)− fj(Vi−1; θ

(m))
]∣∣∣∣

+

∣∣∣∣ 1n
n∑

i=1

α∗
pjk(Vi−1; θ̄)

[
X

pj

i V
qj
i − fj(θ̄)

]∣∣∣∣
≤ α√

n

{∣∣∣∣ 1n
n∑

i=1

[
X

pj

i V
qj
i − fj(Vi−1; θ̄)

]∣∣∣∣
+ sup

θ(m)∈Mn(θ̄)

1

n

n∑
i=1

[
fj(Vi−1; θ̄)− fj(Vi−1; θ

(m))
]∣∣∣∣}

+ sup
θ(m)∈Mn(θ̄)

1

n

n∑
i=1

α∗
pjk(Vi−1; θ̄)

[
fj(Vi−1; θ̄)− fj(Vi−1; θ

(m))
]

+

∣∣∣∣ 1n
n∑

i=1

α∗
pjk(Vi−1; θ̄)

[
X

pj

i V
qj
i − fj(θ̄)

]∣∣∣∣. (28)

Furthermore, we have

∣∣fj(Vi−1; θ̄)− fj(Vi−1; θ
(m))

∣∣ ≤ pj+qj∑
l=0

∣∣ϕjl(θ̄)− ϕjl(θ
(m))

∣∣V l
i−i

≤
pj+qj∑
l=0

p∑
d=1

sup
θ∗∈Mα

n (θ̄)

∣∣∣∣ ∂ϕk
jl

∂θ
(m)
d

(θ∗)

∣∣∣∣ · ∣∣θ(m)
d − θ̄d

∣∣V l
i−1

≤C1,j√
n
V l
i−1,

where C1,j as before. Thus, from relation (28) using Theorem 4 it follows that

sup
θ(p)∈Mn(θ̄)

∣∣∣∣Kp,k
n (θ(m))

∣∣∣∣ a.s.−→ 0,

when n → ∞. Using the result just obtained in expression (27) and using again (14),
it follows that

sup
θ(m)∈Mn(θ̄)

∣∣∣∣ 1nJp,k
n (θ(m))− Jp,k(θ̄)

∣∣∣∣ a.s.−→ 0, (29)
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as n → ∞. This proves part (ii).
Additionally, for z = 1, . . . , d, let us define

Qp,k,z
n (θ) =

∂Jp,k
n (θ)

∂θz
, α∗

pjkz(v, θ) =
∂α∗

pjk(v, θ)

∂θz
, fk,z

j (v, θ) =
∂fk

j (v, θ)

∂θz
,

Bp,k,z(θ) = −
N∑
j=1

pj+qj∑
l=0

{
ϕz
jl(θ)E

[
α∗
pjk(V0, θ)V

l
0

]
+ ϕk

jl(θ)E
[
α∗
pjz(V0, θ)V

l
0

]
+ϕk,z

jl (θ)E
[
α∗
pj(V0, θ)V

l
0

]}
.

Thus, part (iii) can be proved following the lines of the proof of part (ii) considering

ϕk
jl, ϕ

k,z
jl instead of ϕjl and ϕk

jl, taking into consideration that

α∗
pj(v, θ) ≤ cons1(θ)v

2, α∗
pjk(v, θ) ≤ cons2(θ)v

2 α∗
pjkz(v, θ) ≤ cons3(θ)v

2

and using Theorems 4 and 5 and (14).

LetK2
ϵ := 1

ϵ

N∑
j=1

N∑
k=1

E
[
α∗
pj(V0, θ)α

∗
pk(V0, θ)

(
X

pj

1 V
qj
1 −fj(V0, θ)

(
Xpk

1 V qk
1 −fk(V0, θ)

]
.

For an arbitrary ϵ > 0 and Kϵ > 0, using the Chebyshev inequality and the station-
arity of the volatility process we have

P

[∣∣∣∣Gp
n(θ̄)√
n

∣∣∣∣ > Kϵ

]
≤
E
[
|Gp

n(θ̄)|2
]

nK2
ϵ

=
1

nK2
ϵ

n∑
i=1

E
{[ N∑

j=1

α∗
pj(Vi−1, θ)(X

pj

i V
qj
i − fj(Vi−1, θ))

]2}
=

1

K2
ϵ

N∑
j=1

N∑
k=1

E

[
α∗
pj(V0,θ)α

∗
pk(V0,θ)

(
X

pj

1 V
qj
1 −fj(V0,θ)(X

pk

1 V qk
1 −fk(V0,θ)

)]
<ϵ.

Thus, it follows that for every ϵ > 0 there exists a Kϵ > 0 such that

sup
n∈N

P

[∣∣∣∣Gj
n(θ̄)√
n

∣∣∣∣ > Kϵ

]
< ϵ, which proves part (iv). Finally, using the result that has

just been proven, the definition of Mα
n (θ̄) and (29), we have

sup
θ∈ Mα

n (θ̄)

∣∣ 1
n
Gp

n(θ)
∣∣ = sup

θ∈ Mα
n (θ̄)

∣∣ 1
n
Gp

n(θ̄) +
1

n
Jp,k
n (θ∗)(θ − θ̄)

∣∣
≤
∣∣ 1
n
Gp

n(θ̄)
∣∣+ sup

θ∗∈Mα
n (θ̄)

∣∣ 1
n
Jp,k
n (θ∗)

∣∣ sup
θ∈Mα

n (θ̄)

|θ − θ̄|

≤ 1√
n
Kϵ + sup

θ∗∈Mα
n (θ̄)

∣∣ 1
n
Jp,k
n (θ∗)

∣∣ α√
n

P−→ 0,

as n → ∞. This completes the proof.


