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Abstract. For an integer k ≥ 2, let (L
(k)
n )n≥−(k−2) be the k-generalized Lucas sequence,

which starts with 0, ..., 0, 2, 1 (k terms) and each term afterwards is the sum of the k
preceding terms. In 2019, Bitim found all the solutions of the Diophantine equation Ln −
Lm = 2 · 3a. In this paper, we generalize this result by considering the k-generalized
Lucas sequence, i.e., we solve the Diophantine equation L

(k)
n − L

(k)
m = 2 · 3a in positive

integers n,m, a with k ≥ 3. To obtain our main result, we use Baker’s method and the
Baker-Davenport reduction method.
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1. Introduction

Let k ≥ 2 be an integer and (L
(k)
n )n≥−(k−2) a linear recurrence sequence of order k

given by:

L
(k)
−(k−2) = · · · = L

(k)
−1 = 0, L

(k)
0 = 2, L

(k)
1 = 1

and
L(k)
n = L

(k)
n−1 + · · ·+ L

(k)
n−k,

for n ≥ 2. The sequence (L
(k)
n )n≥−(k−2) is called the k-generalized Lucas sequence

or, for simplicity, the k-Lucas sequence. This sequence is a generalization of the
classical Lucas sequence.

Next, we will review some facts and properties of the k-Lucas sequence that will
be relevant later. The characteristic polynomial of this sequence is given by

Ψk(x) = xk − xk−1 − · · · − x− 1.

The polynomial Ψk(x) is irreducible over Q[x] and has exactly one root, α(k), located
outside the unit circle (see, for example, [12, 13], and [18]). This root has a real

∗Corresponding author. Email addresses: kouroumabakr22@gmail.com (B. Kourouma)
salahrihane@hotmail.fr (S. E. Rihane) atogbe@pnw.edu (A. Togbé)

https://www.mathos.unios.hr/mc

c©2025 School of Applied Mathematics and Informatics, University of Osijek



132 B. Kourouma, S. E. Rihane, and A. Togbé

value satisfying α(k) > 1, while all other roots are strictly within the unit circle.
More precisely, in [18], Wolfram demonstrated that

2(1− 2−k) < α(k) < 2, k ≥ 2.

For simplicity, we generally omit the dependence of α on k. Let α := α(1), . . . , α(k)

be the zeros of Ψk(x) and fk(x) :=
x− 1

2 + (k + 1)(x− 2)
, for x > 2(1 − 2−k). In [5],

Bravo et al. proved that the inequalities

1/2 < fk(α) < 3/4 and
∣∣∣fk(α(i))

∣∣∣ < 1, 2 ≤ i ≤ k

hold. These facts imply that the number fk(α) is not an algebraic integer. The
Binet-like formula was established by Bravo and Luca in [5]. Specifically, they
demonstrated that

L(k)
n =

k∑
i=1

(2α(i) − 1)fk(α(i))α(i)n−1 and
∣∣∣L(k)
n − (2α− 1)fk(α)αn−1

∣∣∣ < 3

2
(1)

hold, for n ≥ 1 and k ≥ 2. Additionally, in the same paper, they proved that for
n ≥ 1 and k ≥ 2,

αn−1 ≤ L(k)
n ≤ 2αn. (2)

Recently, many Diophantine equations involving k-Lucas sequences have been
studied [1, 6, 3, 14, 17, 15, 16]. In [8], Bitim studied the Diophantine equation

Ln − Lm = 2 · 3a.

The aim of the present paper is to extend his result by proving the following theorem.

Theorem 1. All the solutions of the Diophantine equation

L(k)
n − L(k)

m = 2 · 3a (3)

in nonegative integers (a,m, n, k) are (2, 1, 5, 3), (3, 5, 7, 3), (3, 7, 8, 3).

Our strategy for proving Theorem 1 is the following: first, we rewrite equation (3)
in suitable ways in order to obtain two different linear forms in logarithms of algebraic
numbers which are both nonzero and small. Next, we use twice lower bounds on
such nonzero linear forms in logarithms of algebraic numbers, due to Matveev, to
bound n polynomially in terms of k. When k ≤ 730, we use the reduction algorithm
due to Baker-Davenport to reduce the upper bounds to a size that can be more easily
handled. When k > 730, we use some estimates from [4, 17] based on the fact that
the dominant root of the k-Lucas sequence is exponentially close to 2. Therefore,
one can replace this root by 2 in future calculations with linear forms in logarithms
and end up with absolute upper bounds for all the variables, which we then reduce
using the Baker-Davenport reduction method again.

2. Preliminaries and known results

This section is devoted to collecting a few definitions, notations, proprieties and
results which will be used in the remaining part of this paper.
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2.1. Linear forms in logarithms

For any nonzero algebraic number η of degree d over Q, whose minimal polynomial
over Z is a

∏d
j=1

(
X − η(j)

)
, we denote by

h(η) =
1

d

log |a|+
d∑
j=1

log max
(

1, |η(j)|
)

the usual absolute logarithmic height of η. In particular, if η = p/q is a rational
number with gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}. The following
properties of the function logarithmic height h, which will be used in the next sections
without any special reference, are also known:

h(η ± γ) ≤ h(η) + h(γ) + log 2, (4)

h(ηγ±1) ≤ h(η) + h(γ), (5)

h(ηs) = |s|h(η) (s ∈ Z). (6)

In [2] (see also p. 73 of [4]), Bravo et al. proved that the logarithmic height of fk(α)
satisfies

h(fk(α)) < log(k + 1) + log 4, k ≥ 2. (7)

With this notation, Matveev proved the following theorem (see [10]).

Theorem 2. Let η1, . . . , ηs be real algebraic numbers and let b1, . . . , bs be nonzero
rational integers. Let dK be the degree of the number field Q(η1, . . . , ηs) over Q and
let Aj be a positive real number satisfying

Aj = max{dKh(ηj), | log ηj |, 0.16}, for j = 1, . . . , s.

Assume that
B ≥ max{|b1|, . . . , |bs|}.

If ηb11 · · · ηbss − 1 6= 0, then

|ηb11 · · · ηbss − 1| ≥ exp(−1.4 · 30s+3 · s4.5 · d2K(1 + log dK)(1 + logB)A1 · · ·As).

2.2. Reduction algorithms

Here, we present a variant of the reduction method of Baker and Davenport due to
Dujella and Pethő [9].

Lemma 1. Let M be a positive integer, p/q a convergent of the continued fraction
of the irrational γ such that q > 6M , and let A,B, µ be some real numbers with
A > 0 and B > 1. Let

ε = ||µq|| −M · ||γq||,

where || · || denotes the distance from the nearest integer. If ε > 0, then there is no
solution of the inequality

0 < |uγ − v + µ| < AB−w
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in positive integers u, v and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

Note that Lemma 1 cannot be applied when µ = 0 (since then ε < 0) or when
µ is a multiple of γ. For this case, we use the following well-known technical result
from Diophantine approximations, known as Legendre’s criterion.

Lemma 2 (see [7]). Let η be an irrational number.

(i) If n,m are integers such that m ≥ 1 and∣∣∣η − n

m

∣∣∣ < 1

2m2
,

then n/m is a convergent of η.

(ii) Let M be a positive real number and p0/q0, p1/q1, . . . all the convergents of the
continued fraction [a0, a1, a2, . . . ] of η. Let N be the smallest positive integer
such that qN > M . Put a(M) := max{ak : k = 0, 1, . . . , N}. Then, the
inequality ∣∣∣η − n

m

∣∣∣ > 1

(a(M) + 2)m2

holds for all pairs (n,m) of integers with 0 < m < M .

3. The proof of Theorem 1

This section is devoted to showing Theorem 1. This will be done in four main steps.

3.1. Preliminary considerations

We start our study of (3) for 2 ≤ m < n ≤ k. In this case, we have L
(k)
n = 3 · 2n−2

and L
(k)
m = 3 · 2m−2, so that equation (3) becomes

2m−2(2n−m − 1) = 2 · 3a−1. (8)

If m ≥ 4, the left-hand side of equation (8) is divisible by 4, while the right-hand
side is not. Therefore, equation (3) has no solutions for 4 ≤ m < n ≤ k. When
m = 2, the left-hand side of equation (8) is odd, but the right-hand side is even;
hence the equation has no solutions for 2 = m < n ≤ k. For m = 3, Catalan’s result
(see [11]) shows that equation (8) has no solutions, and thus there are no solutions
of (8) for 3 = m < n ≤ k. Hence, we can assume that n ≥ k+ 1, which implies that
n ≥ 4. Furthermore, we have a < n. Indeed, using inequality (2), one has

2 · 3a = L(k)
n − L(k)

m < L(k)
n ≤ 2αn,

which yields a < n.
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3.2. An inequality for n versus k

Now, we show the following lemma.

Lemma 3. If (n,m, k, a) is a solution in integers of equation (3) with k ≥ 3 and
n ≥ k + 1, then the inequality

n < 2.4 · 1028k7 log5 k (9)

holds.

Proof. Equation (3) can be reorganized as

(2α− 1)fk(α)αn−1 − 2 · 3a = L(k)
m − ek(n),

where

ek(n) =

k∑
i=2

(2α(i) − 1)fk(α(i))α(i)n−1.

Hence, estimate (1) and the above equation give us∣∣(2α− 1)fk(α)αn−1 − 2 · 3a
∣∣ ≤ 2αm +

3

2
.

Dividing both sides by (2α− 1)fk(α)αn−1, we obtain

|Γ1| ≤
2α

(2α− 1)fk(α)αn−m
+

3α

2(2α− 1)fk(α)αn
<

3.2

αn−m
+

2.4

αn
<

5.6

αn−m
, (10)

where

Γ1 := 1−
(

(2α− 1)fk(α)

2

)−1
· α−(n−1) · 3a. (11)

Now, we need to show that Γ1 6= 0. Indeed, if Γ1 = 0, then we would get

2 · 3a = (2α− 1)fk(α)αn−1.

By conjugating with a Galois automorphism which sends α to αi, where i ≥ 2, and
taking the absolute value of both sides of the resulting equation, we obtain

6 ≤ 2 · 3a ≤ (2 |αi|+ 1) · |fk(αi)| · |αi|n−1 ≤ 3,

which leads to a contradiction. Thus, Γ1 6= 0. To apply Theorem 2 to Γ1, given by
(11), we choose the parameters as

(η1, b1) := (((2α− 1)fk(α))/2,−1), (η2, b2) := (α,−(n− 1)), (η3, b3) := (3, a).

We have η1, η2, η3 ∈ K := Q(α) and dK = k. Since h(η2) = (logα)/k < (log 2)/k
and h(η3) = log 3, then we can take A2 := log 2 and A3 := k log 3. Next, we estimate
A1. By using estimate (7) and the proprieties (5) and (6), for k ≥ 3, it results that

h(η1) ≤ 2h(2) + h(α) + h(fk(α)) + log 2
< 6 log 2 + log(k + 1)
< 5.2 log k.



136 B. Kourouma, S. E. Rihane, and A. Togbé

Moreover, since 7/4 < α < 2 and 1/2 < fk(α) < 3/4, then we have

η1 =
(2α− 1)fk(α)

2
<

9

8
and η−11 =

2

(2α− 1)fk(α)
<

8

5
.

Hence, we can choose A1 := 5.2k log k. Finally, the fact that a < n implies that
we can take B := n. Therefore, applying Theorem 2 and using the facts that
1 + log k < 2 log k and 1 + log n < 1.8 log n, which hold for k ≥ 3 and n ≥ 4, we
deduce that

|Γ1| > exp
(
−2.1 · 1012 · k4 log2 k log n

)
. (12)

Comparing the lower bound (12) and the upper bound (10) of |Γ1| yields

(n−m) logα < 2.2 · 1012k4 log2 k log n. (13)

We go back to equation (3) and rewrite it as

(2α− 1)fk(α)(1− αm−n)αn−1 − 2 · 3a = −ek(n) + ek(m),

where

ek(m) =

k∑
i=2

(2α(i) − 1)fk(α(i))α(i)m−1.

Hence, we obtain ∣∣(2α− 1)fk(α)(1− αm−n)αn−1 − 2 · 3a
∣∣ < 3.

Dividing through by (2α− 1)fk(α)(1− αm−n)αn−1, we get

|Γ2| ≤
3

(2α− 1)fk(α)(1− α−1)αn
<

9.6

αn
, (14)

where

Γ2 := 1−
(

(2α− 1)fk(α)(1− αm−n)

2

)−1
· α−(n−1) · 3a.

We can show that Γ2 6= 0 by a similar method used to show that Γ1 6= 0. Now, we
will apply Theorem 2 to Γ2 by putting

(η1, b1) := (((2α− 1)fk(α)(1− αm−n))/2,−1),

(η2, b2) := (α,−(n− 1)), (η3, b3) := (3, a).

Obviously, η1, η2, η3 belong to K := Q(α) and dK = k. As calculated before, we take

A2 := log 2, A3 := k log 3, and B := n.

We need to compute A1. For k ≥ 3, estimates (7), (13) and the proprieties (4) - (6)
give

h(η1) ≤ 2h(2) + h(α) + h(fk(α)) + (n−m)h(α) + 2 log 2

< 7 log 2 + log(k + 1) + 2.2 · 1012k3 log2 k log n

< 2.3 · 1012k3 log2 k log n.
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So, we can take

max{kh(η1), |log η1| , 0.16} < 2.3 · 1012k4 log2 k log n := A1.

Applying Theorem 2 and comparing the resulting inequality with (14), we conclude
that

n

log2 n
< 1.7 · 1024k7 log3 k,

where we have used the facts 1 + log k < 2 log k and 1 + log n < 1.8 log n, which hold
for k ≥ 3 and n ≥ 4.

First, we use the fact that the inequality n/ log2 n < A implies n < 4A log2A,
whenever A > 162 and the fact that 55.8 + 7 log k+ 3 log log k < 58.5 log k holds, for
k ≥ 3. Then, we take A := 1.7 · 1024k7 log3 k to obtain

n < 4(1.7 · 1024k7 log3 k)(log(1.7 · 1024k7 log3 k))2

< 6.8 · 1024k7 log3 k · (55.8 + 7 log k + 3 log log k)2

< 6.8 · 1024k7 log5 k.

This establishes (9) and finishes the proof of the lemma.

3.3. The proof of Theorem 1 for 3 ≤ k ≤ 730

In this subsection, we treat the cases where k ∈ [3, 730]. Setting

Λ1 := log(1− Γ1) = a log 3− (n− 1) logα+ log

(
2

(2α− 1)fk(α)

)
.

Suppose that n−m ≥ 10. Then, by (10), we have |Γ1| < 0.5. Thus, we obtain

|Λ1| < 2 · |Γ1| < 11.2 · αn−m,

which gives

0 <

∣∣∣∣a( log 3

logα

)
− (n− 1) +

log(2/(2α− 1)fk(α))

logα

∣∣∣∣ < 20.1 · α−(n−m). (15)

In order to apply Lemma 1 to (15), we set

γ :=
log 3

logα
, µ :=

log(2/(2α− 1)fk(α))

logα
, A := 20.1, B := α.

For each k ∈ [3, 730], we find a good approximation of α and a convergent p`/q` of
the continued fraction of γ such that q` > 6M , where M = b2.4·1028k7 log5 kc, which
is an upper bound of n− 1 from Lemma 3. After doing this, we apply Lemma 1 to
inequality (15). A computer search using Mathematica revealed that the maximum

value of
log(Aq/ε)

logB
over all k ∈ [3, 730] is 727, which, according to Lemma 1, is an

upper bound on n−m.
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Now, we take 1 ≤ n−m ≤ 727 and consider

Λ2 := log |Γ2 − 1| = a log 3− (n− 1) logα+ log(2/((2α− 1)fk(α)(1− α)m−n)).

For n ≥ 10, by (10), we have |Γ2| < 0.5. Hence, one gets

|Λ2| < 19.2 · α−n,

which gives

0<

∣∣∣∣a( log 3

logα

)
−(n− 1)+

log(2/(2α− 1)fk(α)(1− α)m−n)

logα

∣∣∣∣<34.4 · α−(n−m). (16)

We apply Lemma 1 to (16) with

γ :=
log 3

logα
, µ :=

log(2/(2α− 1)fk(α)(1− α)m−n)

logα
, A := 34.4, B := α.

Again, for each (k, n − m) ∈ [3, 730] · [1, 727], we find a good approximation of α
and a convergent p`/q` of the continued fraction of γ such that q` > 6M , where
M = b2.4 · 1028k7 log5 kc, which is an upper bound of n − 1 from Lemma 3. After
doing this, again we apply Lemma 1 to inequality (16). A computer search using

Mathematica revealed that the maximum value of
log(Aq/ε)

logB
over all k ∈ [3, 730] is

730, which, according to Lemma 1, is an upper bound on n.
Hence, we deduce that the possible solutions (a,m, n, k) of equation (3) for which

k ∈ [3, 730] have 0 ≤ m < n ≤ 730 and a < 730.

Finally, we used Mathematica to compare L
(k)
n −L(k)

m and 2 · 3a, for k ∈ [3, 730],
0 ≤ m < n ≤ 730 with a < n, and checked that the only solutions of equation (3)
are (a,m, n, k) ∈ {(2, 1, 5, 3), (3, 5, 7, 3), (3, 7, 8, 3)}.

3.4. The proof of Theorem 1 for k > 730

The goal of this subsection is to prove the following proposition.

Proposition 1. Equation (3) has no solution when k > 730.

The proof of the above proposition will be done in two steps.

3.4.1. An absolute upper bound on k

The aim of this sub-subsection is to find the absolute bounds of k and n by proving
the following lemma.

Lemma 4. If (n,m, k, a) is a solution of Diophantine equation (3) with k > 730
and n ≥ k + 1, then k and n are bounded as

k < 1.9 · 1026 and n < 1.8 · 10221.
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Proof. For k > 730, it is easy to check that

n < 2.4 · 1028k7 log5 k < 2k/2.

In [17], it was proved that L
(k)
n can be rewritten as

L(k)
n = 3 · 2n−2(1 + ζ), where |ζ| < 1

2k/2
. (17)

Replacing (17) in (3), one gets

∣∣3 · 2n−2 − 2 · 3a
∣∣ ≤ 2αm +

3 · 2n−2

2k/2
.

Consequently, we get∣∣∣1− 2−(n−3) · 3a−1
∣∣∣ ≤ 8/3

2n−m
+

1

2k/2
<

3

2λ
, (18)

where λ := min{n−m, k/2}.
We will apply Theorem 2 to obtain a lower bound to the left-hand side of in-

equality (18). We take

s := 2, (η1, b1) := (2,−(n− 3)), (η2, b2) := (3, a− 1),

and
Γ3 := 1− 2−(n−3) · 3a−1.

If Γ3 = 0, then 3a−1 = 2n−3, which is false for n ≥ 4. Therefore, we have Γ3 6= 0.
Since η1, η2 ∈ K := Q, then dK = 1. Furthermore, we can choose B := n because

a ≤ n. On the other hand, since h(η1) = log 2 and h(η2) = log 3, we can take
A1 := log 2 and A2 := log 3. Therefore, by applying Theorem 2, we obtain

|Γ3| > exp
(
−1.1 · 109 log n

)
, (19)

where we used the fact that 1 + log n < 1.8 log n, for n ≥ 4. Putting (18) together
with (19) gives

λ < 1.6 · 109 log n. (20)

Now, we distinguish two cases with respect to λ.

Case 1: λ = k/2. In this case, from (20) and Lemma 3, it follows that

k < 3.2 · 109 log
(
2.4 · 1028k7 log5 k

)
.

Solving the above equation gives

k < 8.8 · 1011.

Case 2: λ = n−m. In this case, from (20), we deduce that

n−m < 1.6 · 109 log n. (21)
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We go back to equation (3) and use properties of type (17) to obtain

3 · 2n−2(1− 2m−n)− 2 · 3a = 3 · 2m−2ζ ′ − 3 · 2n−2ζ;

thus, we get ∣∣3 · 2n−2(1− 2m−n)− 2 · 3a
∣∣ ≤ 3 · 2n−1

2k/2
.

Hence, after dividing both sides by 3 · 2n−2(1− 2m−n), we get

∣∣1− (1− 2m−n)−1 · 2−n+3 · 3a−1
∣∣ ≤ 2

(1− 2m−n) · 2k/2
<

4

2k/2
. (22)

We apply Theorem 2 with the parameters

s := 3, (η1, b1) := (1− 2m−n,−1), (η2, b2) := (2,−n+ 3), (η3, b3) := (3, a− 1),

and

Γ4 := 1− (1− 2m−n)−1 · 2−n+3 · 3a−1.

If Γ4 = 0, then 3a−1 = 2n−3 − 2m−3. According to the discussion in Subsection 3.1,
this equation is impossible for any integers n,m, and a ≥ 4. Therefore, Γ4 6= 0. As
calculated before, we take

dK := 1, A2 := log 2, A3 := log 3, and B := n.

Furthermore, using (21), we get

h(η1) ≤ (n−m) log 2 + log 2 ≤ 1.2 · 109 log n.

Hence, we take A1 := 1.2 · 109 log n. By Theorem 2 and inequality (22), one gets

exp(−2.4 · 1020(log n)2) <
4

2k/2
.

Thus, we obtain

k < 7.3 · 1020(log n)2.

From this and Lemma 3, it follows that

k < 1.9 · 1026. (23)

So, in both cases, inequality (23) holds. Thus, we obtain

n < 2.4 · 1028(1.9 · 1026)7(log(1.9 · 1026))5 < 1.8 · 10221.

Hence, the result is obtained.
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3.4.2. The proof of Proposition 1

To show Proposition 1, we will use the reduction algorithms described in Subsection
2.2. Let

Λ3 := (a− 1) log 3− (n− 3) log 2 = log(1− Γ3).

Assume that n−m ≥ 3. Thus, from (18), we have |Γ3| < 1/2. Hence, we get

|Λ3| < 6 · 2−λ. (24)

Dividing both sides of (24) by (n− 3) log 3, we obtain∣∣∣∣a− 1

n− 3
− log 2

log 3

∣∣∣∣ < 6 · 2−λ

(n− 3) log 3
< 5.5 · 2−λ. (25)

Let [a0, a1, . . .] be the continued fraction expansion of
log 2

log 3
and let pk/qk be its k-th

convergent. We can see that q425 > 1.8 · 10221. Furthermore, one can see that

max{ak : 0 ≤ k ≤ 425} = a331 = 2436.

Thus, according to Lemma 2, we have∣∣∣∣a− 1

n− 3
− log 2

log 3

∣∣∣∣ > 1

2438(n− 3)2
. (26)

Comparing (25) and (26), we deduce that

λ <
log(5.5 · 2438 · (1.8 · 10221)2)

log 2
< 1484.

Case 1 : λ = k/2. In this case, we get

k ≤ 2968.

Case 2 : λ = n−m. Consider the linear form in logarithms

Λ4 := (a− 1) log 3− (n− 3) log 2 + log((1− 2m−n)−1) = log(Γ4 + 1).

Since k > 730, from (22), we have |Γ4| < 1/2. Hence, we obtain

|Λ4| < 8 · 2−k/2.

Thus, we deduce that

0 <

∣∣∣∣(a− 1)
log 3

log 2
− (n− 3) +

log((1− 2m−n)−1)

log 2

∣∣∣∣ < 11.6 · 2−k/2.

For 2 ≤ n−m ≤ 1484, we take

γ :=
log 3

log 2
, µ :=

log((1− 2m−n)−1)

log 2
, A := 11.6, B := 2, M := 1.8 · 10221,
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in Lemma 1. Using Mathematica, we find that q640 satisfies the hypotheses of Lemma
1, and we obtain k < 2974. For n−m = 1 or 2, Λ4 turns into

Λ4 =

{
(a− 1) log 3− (n− 4) log 2, if n−m = 1;
(a− 1) log 3− (n− 5) log 2, if n−m = 2.

Therefore, one can see that∣∣∣∣a− 1

n− t
− log 2

log 3

∣∣∣∣ < 8 · 2−k/2

(n− 3) log 3
< 7.3 · 2−k/2,

where t = n − 4 if n −m = 1 and t = n − 5 if n −m = 2. In this case, we apply
Lemma 2 with the same parameters given above to have

k <
2 · log(7.3 · 2438 · (1.8 · 10221)2)

log 2
< 1499.

So, k < 2974 always holds. With this new upper bound on k, we get

n < 1.7 · 1057.

Now, we repeat the reduction process but with this new bound on n, and obtain
that k ≤ 782. Hence, we get

n < 5.7 · 1052.

In the third application with the above bound on n, we get that k < 724, which
contradicts our assumption k > 730. This completes the proof of Theorem 1 for
k > 730 and the entire proof of the theorem.
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