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A tiling involution for the Sury’s identity
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Abstract. We study integer sequences defined by the recurrence Un+2 = pUn+1 + Un

and the initial values U0 = a, U1 = 1, for n ≥ 0. We find families of identities of these
sequences, some of which Sury’s identities are a special case. We prove these identities by
using a combinatorial interpretation by means of tiling. In particular, we present a tiling
involution of the alternating sign dual of the first Sury’s identity.
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1. Introduction

Recently, Kuhapatanakul and Thongsing [6] have defined a refined two parametric
integer sequence denoted as Un(a, p), briefly Un, by the following relation:

Un+2(a, p) = pUn+1(a, p) + Un(a, p) (n ≥ 0), (1)

with the initial values U0(a, p) = a and U1(a, p) = 1, where a is a nonnegative and
p is a positive integer. This family of sequences encounters some well-known integer
sequences. Note that Un(0, 1) = Fn and Un(2, 1) = Ln are the Fibonacci numbers
and the Lucas numbers, respectively, while for Un(2, 3) we get a generalized Pellian
sequence.

Martinjak [7] gave an algebraic proof for an interesting relation involving Fi-
bonacci and Lucas numbers:

n∑
k=0

(−1)k 2n−k Lk+1 = (−1)n Fn+1, (2)

for which Kuhapatanakul and Thongsing found a generalized version using Un. This
Fibonacci–Lucas identity came in a couple with the identity

n∑
k=0

2k Lk = 2n+1Fn+1 (3)
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that can be found in the paper by Sury [9]. Relations (2) and (3) are called Sury’s
identities (and we shall call (3) the first Sury’s identity, and its alternating companion
the second Sury’s identity).

Let us recall that an n-board consists of n cells (a 1×1 square), and when all cells
of the board are covered by tiles, we have an n-tiling. A well-known combinatorial
interpretation of Fibonacci number Fn is that it enumerates the number of tilings of
an (n−1)-board with 1×1 tiles (monomios) and 1×2 tiles (dominoes). Furthemore,
the number of tilings with m colors of monomios and m2 colors of dominoes is equal
to mnFn. For details, see the book by Benjamin and Quinn [3], and the paper by
Brigham et al. [4].

It is worth mentioning integer sequence identities that are proved by means of
tiling found by Benjamin et al. [2] and K. Edwards and M. A. Allen [5]. Furthermore,
there are a few results involving generalized Fibonacci numbers. Let us mention
that Ait-Amrane and Behloul extended Cassini’s formula to generalized Fibonacci
numbers [1].

Motivated by these results, here we aim at finding a combinatorial interpretation
for the numbers Un. Once we have such an interpretation, we use it to prove a family
of identities involving these numbers. In addition, since a combinatorial proof for
Sury’s identity (3) is already known [8], we were curious to find a combinatorial
proof for Sury’s identity with alternating sign (2).

2. Identities for the sequence (Un)n≥0

We begin with a few relations for the sequence (Un)n≥0, which we prove by strong
induction. After that, we use one of these results for proving an identity that is a
generalization of relation (2).

Proposition 1. Let n be a nonnegative integer. Then for the sequence (Un)n≥0 we
have

Un+1(a, p) = Un+2(0, p)− (p− 1)Un+1(0, p) + (a− 1)Un(0, p). (4)

Proof. We argue by strong induction on n and use relation (1) to complete the
inductive step.

Relation (4) holds true for n = 0, since the right-hand side of the equation gives
p− (p− 1) = 1, which is equal to U1(a, p) (= 1). Moreover, for n = 1, the left-hand
side of the equation gives U2(a, p) = p + a by relation (1), and the right-hand side
of the equation gives p2 + 1− (p− 1)p+ a− 1 = p+ a since U3(0, p) = p2 + 1. Thus,
this relation holds true for n = 1.

Furthermore, we have

Uk+1(a, p) = pUk(a, p) + Uk−1(a, p)

= p (Uk+1(0, p)− (p− 1)Uk(0, p) + (a− 1)Uk−1(0, p))

+ Uk(0, p)− (p− 1)Uk−1(0, p) + (a− 1)Uk−2(0, p)

=Uk+2(0, p)− (p− 1)Uk+1(0, p) + (a− 1)Uk(0, p).
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In particular, when a = 2 and p = 1, Proposition 1 gives the basic Fibonacci–
Lucas relation

Ln+1 = Fn+2 + Fn.

Lemma 1. Let n be a nonnegative integer. Then for the sequence (Un)n≥0 we have

Un+1(a, p) = Un+1(0, p) + aUn(0, p). (5)

Proof. Again, we use relation (1) to complete the inductive step. Relation (5)
obviously holds true for n = 0 since U1(a, p) = 1, U1(0, p) = 1 and U0(0, p) = 0. This
relation holds true for n = 1 since U2(a, p) = p + a, U2(0, p) = p and U1(0, p) = 1.

Furthermore, we have

Uk+1(a, p) = pUk(a, p) + Uk−1(a, p)

= p (Uk(0, p) + aUk−1(0, p)) + Uk−1(0, p) + aUk−2(0, p)

=Uk+1(0, p) + aUk(0, p).

Now, we are ready to prove the announced generalization of the second Sury’s
identity.

Theorem 1. Let n be a nonnegative integer. Then for the sequence (Un)n≥0 we
have

n∑
k=0

(−1)k an−k Uk+1(a, p) = (−1)nUn+1(0, p).

Proof. For purpose of proving it, we use Lemma 1. For an even n we have

n∑
k=0

(−1)kan−kUk+1(a, p) =

n∑
k=0

(−1)kan−k (Uk+1(0, p) + aUk(0, p))

= an (U1(0, p) + aU0(0, p))− an−1 (U2(0, p) + aU1(0, p))

+· · ·− a (Un(0, p) + aUn−1(0, p))+Un+1(0, p)+aUn(0, p)

=Un+1(0, p).

We deal with an odd n in the same fashion, which completes the proof.

In particular, when p = 1 and a = 2, Theorem 1 gives Sury’s identity with
alternating sign (2).

3. A combinatorial interpretation of the sequence (Un)n≥0

Definition 1. A tiling with monomios and dominoes such that

(i) there are p colors for monomios, except the ones covering the first cell of a
board which remain uncolored,
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(ii) dominoes that cover the first two cells in a tiling come in a phases, while the
other dominoes are in one color,

is called a phased tiling. In particular, for a = 0, the number of domino phases is
zero and there are no tilings starting with a domino.

We let un be the number of distinct phased tilings of an n–board. Note that a
tiling can start either with a monomio or a domino (in a phases). These tiles can be
followed by a monomio in p colors or by a domino. Thus, there are four possibilities
for the first two tiles in a tiling, as illustrated in Figure 1.

p

· · · · · ·
a p

· · ·
a

· · ·
Figure 1: Possibilities of the first two tiles

The total number of phased tilings of an (n+2)-board beginning with monomio–
monomio and those beginning with domino–monomio is equal to pun+1. In order to
prove this, we establish a 1 : p correspondence between the set of such tilings (both
beginning with monomio–monomio and domino–monomio) of an (n + 2)-board and
the set of all tilings of an (n + 1)-board. The correspondence is done by adding
(removing) a monomio after the first tile in a tiling.

Similarly, dealing with a domino instead of a monomio, one can see that the
total number of phased tilings of the remaining two possibilities (monomio-domino
and domino-domino) is equal to un. Thus, for the number of phased tilings of an
(n + 2)-board we obtain the recurrence

un+2 = pun+1 + un.

Since the initial values u0 = a and u1 = 1 correspond with those of the sequence
(Un)n≥0, we get

un = Un(a, p).

This proves the following

Lemma 2. There are Un distinct phased tilings of an n–board.

As an example, one can easily check that there are 7 phased tilings of a 4–board
for p = 1 and a = 2 (see Figure 2). Furthermore, there are 11 such tilings of a
5–board, 18 tilings of a 6–board, etc. In general, there are Un(2, 1) = Ln such tilings
of an n–board.

Figure 2: Phased tilings of the 4–board
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Now, we are able to prove Proposition 1 in another way this time, using phased
tilings. Let us write relation (4) as

Un(a, p) + (p− 1)Un(0, p) = Un+1(0, p) + (a− 1)Un−1(0, p),

and let us consider phased tilings of p n–boards beginning with a monomio and
phased tilings of an n–board beginning with a domino in a phases; for the purpose
of counting them in two ways. Take tilings of a board beginning with a monomio and
all those tilings beginning with a domino. By Lemma 2, the number of such tilings
is equal to Un(a, p) and the number of remaining tilings is equal to (p− 1)Un(0, p),
which is left-hand side of the identity above.

On the other hand, take tilings beginning with a domino in one of a phases and
all those tilings beginning with a monomio. By adding a monomio at the beginning
of each tiling we establish correspondence with the set of phased tilings of an (n+1)–
board for a = 0. So, the number of those tilings is equal to Un+1(0, p). As for the
rest of tilings beginning with a domino (in a−1 phases), we replace the first domino
with a monomio and in this way we obtain phased tilings of a − 1 (n − 1)–boards
beginning with a monomio. Thus, in total, we have Un+1(0, p) + (a − 1)Un−1(0, p)
tilings as desired.

4. A tiling involution

Here, we shall present a combinatorial proof for identity (2) using phased tilings.
Since identity (2) is a special case of Theorem 1, we shall also see how to modify our
combinatorial approach to Theorem 1.

For n a nonnegative even integer, we consider phased tilings of boards of con-
secutive lengths for parameters a = 2 and p = 1. Additionally, let us assign a
color to the first tile: if we have a (k + 1)–board, we choose among 2n−k colors for
the first tile. We let Pk+1 be the set consisting of such tilings of a (k + 1)–board,
k = 0, . . . , n. The number of tilings of a (k + 1)–board for parameters a = 2 and
p = 1 is Uk+1(2, 1), which is equal to Lk+1. The total number of tilings in Pk+1 is
2n−kLk+1.

We let On and En denote the sets of such tilings of odd and even lengths, respec-
tively. More precisely,

On :=
⋃

0≤k≤n
1≡(k+1) (mod 2)

Pk+1

and

En :=
⋃

0≤k≤n
0≡(k+1) (mod 2)

Pk+1.

Then we have

|On| = 2nL1 + 2n−2L3 + · · ·+ 22Ln−1 + Ln+1 =
n∑

k even

2n−kLk+1
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and

|En| = 2n−1L2 + 2n−3L4 + · · ·+ 2Ln =
n∑

k odd

2n−kLk+1.

Thus,

|On| − |En| =
n∑

k=0

(−1)k 2n−k Lk+1.

c1 c1 c1 c1 c1

c1 c1

c1 c2

c1 c1

c1 c2

c1 c1

c1 c2

c1 c1 c1 c1

c2 c2 c1 c1

c3 c3 c2 c2

c4 c4 c2 c2

c1 c2 c3 c4 c1 c3 c5 c7

c1 c2 c3 c4 c2 c4 c6 c8

c1 c3 c5 c7 c9 c11 c13 c15 c1 c2 c3 c4 c5 c6 c7 c8

c2 c4 c6 c8 c10 c12 c14 c16 c1 c2 c3 c4 c5 c6 c7 c8

Figure 3: The sets O4 and E4

The first domino comes in two phases, p1 and p2. Colors for the first tile of a
(k+1)–board are denoted by ci, 1 ≤ i ≤ 2n−k. We establish correspondence between
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tilings described above of even and odd boards in the following way. We replace the
first tiles, a monomio with a domino and vice versa, as follows:

• a monomio in color c2i−1 and a domino in color ci and in phase p1,

• a monomio in color c2i and a domino in color ci and in phase p2.

When replacing the first tile, we change the parity of the length of a tiling.
Since we consider tilings of lengths 1, 2, . . . , n + 1, it is not possible to perform

such replacement among all tilings. The only exceptions are tilings with maximum
length n+1 starting with a monomio. For these unpaired tilings a = 0 and the total
number of such tilings is Un+1(0, 1), which is equal to Fn+1. Thus, for an even n,
we have

|On| − |En| = Fn+1.

We deal with an odd n in the same fashion. Thus, for the odd n we have

|En| − |On| = Fn+1,

which completes the proof.
Figure 3 illustrates this involution. Tilings in the first rectangle together with

tilings on the left of the rest of rectangles form the set O4, while the rest of tilings
that are on the right form the set E4. A color of the first tile in each tiling is indicated
above it. Vertical lines are for phase p1 and horizontal lines are for phase p2. Tilings
are put in an appropriate rectangle based on the values of i and on replacements we
perform on the first tile. So, when we replace the first tile in some tiling on the left
(right), we get a tiling on the right (left) of the same row of the same rectangle. The
only tilings we could not match are those in the rectangle on the top. They begin
with a monomio (all in the same color) and represent all phased tilings for a = 0
and p = 1 of length 5. Hence in the first rectangle we have U5(0, 1) = F5 tilings,
and we can conclude,

|O4| − |E4| = F5

in this particular case.
In the same manner as in the proof of Sury’s identity one can expand this proof

in order to prove Theorem 1. The changes in the proof above are as follows. The
first domino comes in a phases, denoted by p1, p2, . . . , pa. For a (k + 1)–board, one
chooses among an−k colors for the first tile. We replace the first tiles, a monomio
with a domino and vice versa, according to pairs:

• a monomio in color cia+j and a domino in color ci+1 and in phase pj ,

• a monomio in color cia and a domino in color ci and in phase pa.

The only exceptions that occur are those tilings of an (n+ 1)–board beginning with
a monomio. Thus, for an even n we have

|On| − |En| = Un+1(0, p),

and for an odd n we have

|En| − |On| = Un+1(0, p),
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which together gives

n∑
k=0

(−1)k an−k Uk+1(a, p) = (−1)nUn+1(0, p).

This completes the proof of Theorem 1.
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