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The orbit containing the point 'U is 
e,. = {ilcc' I c e SL (3, R)}. (2.2) 

The most convenient description of the orbit is given by its identification with the coset space of SL (3, R), SL (3, R)/isotropy subgroup. Recall that SL (3, R) acts transitively on V, i. e. as g ranges over SL (3, R), an initial point, for example v =
= I, the identity matrix, is transformed into every other point of V, I -+ ggt, i. e.the entire space V is a single orbit of SL (3, R). The isotropy subgroup at the identity matrix in V is the rotation group. Hence, the orbit e). is identified with SL (3, R)/ SO (3, R) and the dimension of the orbit is dim e). = 5.In Ref. 15, it was observed that almost every element of SL (3, R) can uni­quely be written as the product of an element of SO (3, R) and element of Z, 

SL (3, R) = SO (3, R) · Z (2.3) 

where Z is the group of upper triangular matrices with unit determinant and positive diagonal entries. Since this decomposition is almost everywhere unique, we can identify 
SL (3, R)I SO (3, R) with the group Z. The physically important invariant of SL (3, R) assumes constant values on the orbit : det v = .P, (2.4) 

where it is a measure for the volume of the affine system. 
3 . . SL ( 3, R) quantization

In Ref. 16 we have discussed the quantum models for different types of affine systems using the ordinary Schrodinger-Dirac quantization of the corresponding classical phase spaces. Because of the physical importance of such systems (in particular the homogeneously deformable rotator as an appropriate model for even-even nuclei), we apply in this paper the Kostant-Souriau theory to a special affine model based on SL (3, R). Notice that this quantization scheme of a sym­plectic manifold is defined provided the phase space meets the generalized Bohr­-Sommerfeld quantization condition. Hence, the first step in the quantization structure is to determine whichorbits meet the Bohr-Sommerfeld conditions and find the unitary characters z. Consider an orbit eY � SL (3, R)/ SO (3, R) of SL (3, R), containing the point
y e sl (3), R, the corresponding Lie algebra of SL (3, R). Let so (3, R) be the cor­responding Lie algebra of SO (3, R), the isotropy subgroup of SL (3, R). The quantization condition is given on the maximal compact subalgebra so (3, R) such that the Lie algebra homomorphism 
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so (3, R) � iR (3. 1 )  
Z � 2.ni < F, Z >, Z e so (3, R) 

is the derived representation of a unitary character x of SO (3, R): 
X : S0 (3, R) � U (l ). (3.2) 

Hence, if 1. exists, then it is given by x (exp (8Z)) = exp (2.ni e <,F, Z >) = 1 with Z e so (3, R), e e R}. 
(3.3)Thus, the orbit eF is quantizable.There is a natural representation .n of SL (3, R), known as prequantization, on the space 

Q = {V' : SL (3, R) � C 1 11'  (gh) = x- 1 (It) 1P (g), g e SL (3, R), h e  SO (3, R)}with (3.4) (n (g') ,p) (g) = 'f/J (g'- 1 g), g', g e SL (3, R) and 'f/J e Q. This prequantization does not yield an irreducible representation of SL (3, R). Notice that the functions in Q are essentially defined on the coset space 
SL (3, R)/ SO (3, R). Thus, if we choose canonical coordinates for the phase space e,, for example (q 1 • • •  , qn, p1 . . .  , Pn), then the elements of Q are given by 'f/J (q1, . . .  , pn). Hence, although the unitary character has allowed us to define a representation on the phase space, we haven't got a quantization in which the wave functions v, depend only on n variables. Therefore, in order to quantize, it is necessary to restrict the wavefunctions. This can be done by introducing a polarization. Thus, the next step is to select a polarization. In analogy to Ref. 13, the Poisson bracket is given by (3.5) where y e so (3, R) is a point contained in an orbit as above. Since the Poisson bracket is non-degenerate on the orbit, it is clear that there exists a polarization which has the following form: 

p = so (3, R). (3.6) Then, in general, the quantum state space Q.P is defined to be QP = {1P e Q I  Lx 'f/J = 2 .ni < y, X >  for all X e p}. (3.7) In the special case of SL (3, R), the Lie derivative Lx v, = 0. 
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The quantum Hilbert space is given by 
HP = L2 (SL (3, R)/SO (3, R), µ) = 

(3.8a) 
= {1P : SL (3, R)/SO (3, R) ""7" C I J dµ (gr) I 1P (gr) 1 2 < oo}

SL (3.R)/SO (3,R) where g e SL (3, R), r e  SO (3, R) and µ the invariant measure on SL (3, R)/ SO (3, R). On this Hilbert space, the action of SL (3, R) is determined to be 
n :  SL (3, R) � U (L2 (SL (3, R)/SO (3, R)) 

(n (g') tp) (gr) = 1P (g'- 1 gr) 
(3.9a) 

where g' e SL (3, R), gr e SL (3, R)/ SO (3, R) and 1P e L 2 ( SL (3, R)/ SO (3, R)). r '. Such wave functions on the coset space' SL (3, R)/ SO (3, R) may be regarded as functions on SL (3, R) which are right invariant under SO (3, R), i. e. 
Hn = L2 (SL (3, R)/SO (3, R, -v)
= {1P : SL (3, R) � C I (1) 1P (gr.) ·= 1/J (g) for all g E SL_ (3, -R), r e SO (3, R)(2) S d-v Cc) "" I Cc) 1 2 < oo}

SL(3,R) where v is the invariant measure on SL (3, R). 

The inner product on Hn is given by 
(1P1 1P2 > = f d-v (g) (1P1 (g), "1'2 (g)),

SL(3,,R) and the action SL (3, R) on the Hilbert space Hn has the form : 
; ,; . 

(nA (g') 1/J) (g) = 1P (g'' - 1  g)for g'; g e SL (3, R) and 1P e H". 

(3.8b) 

(3.10) 

(3.9b) 

Observe that there is an obvious isomorphism of HP with the carrier space Hn for the irreducible representations of SL (3, R) given by the inducing con­struction. It is easily found that n" is unitarily equivalent to nA. Moreover, the physical admissible models are just those irreducible unitary representations that occur in the decomposition of the representation of SL (3, R) 1>. 
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As we have seen in this paper, the geometric quantization . is a more relevant construction in nuclear theory, in p�rticular in t�� formulation of affine (collective) models, than the Schrodinger-Dirac quantization. In fact, the latter one takes full account of the 3N degrees of freedom, although. not all of these degrees of freedom are necessary for the description of collective rotational and vibrational motion. Hence, geometric quantization plays a fundaµiental rule not only in the usual quantum mechanics but also -in the formulation ·of approximate theories of physi­cal phenomena like the nuclear structure physics. Moreover, this concept can be applied to a theory quite different from the. �ne models, · namely the t{artree­-Fock theory, which can be understood most naturally in terms of geometric quantization ideas 1 7>. 
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Originalni znanstveni rad 

Pokazano je da je kvantnomehanicke modele kolektivnih gibanja moguce izvesti geometrijskom kvantizacijom odgovarajucih klasicnih faznih prostora. Ta procedura kvantizacije primjenjena je na afine s{steme, specija4lo na rotor koji se moze ho­mogeno deformirati. Taj rotor baziran je na SL (3, R), te je u stvari algebarska formulacija odgovarajuceg modela parno-parne jezgre. 
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