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Classifications coarser than shape∗

Nikica Uglešić
†

Abstract. About thirty years ago, in the time of an intensive study
of the shape theory, several classifications of metric compacta coarser
than shape were introduced. Two of them have been of a special in-
terest: The quasi-equivalence (K. Borsuk, 1976) and S-equivalence (S.
Mardešić, 1978). In the last decade a much deeper view into these rela-
tions has been achieved. In attempt to characterize or, at least, describe
them in a category framework on purpose of easier operative studying,
several new classifications and new “shape” theories occurred. The most
interesting among them are the coarse and weak shape theory. This pa-
per is intended to be an exhaustive survey of new classifications and
corresponding theories, their mutual relations and the most important
results.
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1. Introduction

About thirty years ago, in the time of intensive studying of the shape theory, several
classifications of metric compacta coarser than shape were introduced. Two of
them have been of a special interest: The quasi-equivalence (K. Borsuk, 1976,
[2]) and S-equivalence (S. Mardešić, 1978, [10]). The first one was based on idea
of a quantitative estimation of a difference between the shape types of a pair of
very “alike” compacta. A recent result, however, has shown that this relation,
in general, is not a classification (it is not transitive, [6]). Nevertheless, it still
generates an important and useful equivalence relation on compacta. The second
one was introduced relating to the problem of the shape types of fibres of a shape
fibration, [3], [11], [12]. The fact is that all the fibres of a shape fibration (over a
continuum) are mutually S-equivalent [10], while they need not to be of the same
shape type, [7], [5]. Let us briefly recall the basic facts concerning the both relations.

The quasi-equivalence was originally defined and studied in [2] by means of
fundamental sequences [1] and neighbourhoods in a pair of AR ambient spaces.
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Afterwards, it was characterized by means of sequences of morphisms of compact
ANR inverse sequences ([15], Section 4). Let X and Y be compact metric spaces,
and let X and Y be associated with them compact ANR inverse sequences, re-
spectively (limX = X and limY = Y ). Let (f, fj), (f ′, f ′

j) : X → Y be mor-
phisms of (cANR)N. Then, (f, fj) is said to be n-homotopic to (f ′, f ′

j), denoted by
(f, fj) �n (f ′, f ′

j), provided

fnpf(n)i � f ′
npf ′(n)i.

Clearly, (f, fj) �n (f ′, f ′
j) is equivalent to (f, fj) �j (f ′, f ′

j) for every j ≤ n. Fur-
ther, (f, fj) � (f ′, f ′

j) if and only if (f, fj) �n (f ′, f ′
j) for every n ∈ N Being

n-homotopic is an equivalence relation on each set (cANR)N(X,Y ). However, it
is not compatible with composition (from the left), so there is no appropriate quo-
tient category. It is sometimes convenient to consider X and Y having homotopy
classes as bonding morphisms , i.e. being objects of (HcANR)N. Then �n induces
the appropriate equivalence relation on each set (HcANR)N(X ,Y ), which may be
written as

(f, [fj ]) =n (f ′, [f ′
j ]).

Further, by passing to the quotient category

tow-HcANR = (HcANR)N/(�),
the relation =n induces the corresponding equivalence relation on each set tow-
HcANR(X,Y ), which can be denoted by f =n f ′, where f = [(f, [fj ])] and
f ′ = [(f ′, [f ′

j ])].

Now, X is said to be quasi-equivalent to Y , denoted by X
q� Y , provided there

exists a pair of sequences (fn), (gn), where fn ∈ HcANR(X,Y ) and gn ∈
HcANR(Y ,X) such that, for every n,

gnfn=n1X and fngn =n 1Y .

Then, X is quasi-equivalent to Y , denoted by X
q� Y , provided X

q� Y for some
(equivalently, any) associated pair X,Y ). In [2], Borsuk proved that the quasi-
equivalence is strictly coarser than the shape type, and that on the class of all
compacta having the homotopy types of ANR’s (or polyhedra), it reduces to the
shape (thus, to the homotopy) type classification. Further, the movability and
Betti numbers are invariants of the quasi-equivalence. However, Borsuk stated
the following question ([2], Problem (7.13)): “Is the relation of quasi-equivalence
transitive?”. The question is recently answered in the negative, [6].

The S-equivalence was defined and studied in [10]. Two compact ANR inverse
sequencesX and Y are said to be S-equivalent, denoted by S(X) = S(Y ), provided,
for every n ∈ N, the following condition is fulfilled:

(∀j1)(∃i1)(∀i′1 ≥ i1)(∃j′1 ≥ j1)(∀j2 ≥ j′1)(∃i2 ≥ i′1) · · ·
· · · (∀i′n−1 ≥ in−1)(∃j′n−1 ≥ jn−1)(∀jn ≥ j′n−1)(∃in ≥ i′n−1)

and there exist mappings fk ≡ fn
jk
: Xik

→ Yjk
, k = 1, . . . , n, and gk ≡ gn

i′k
: Yj′k →

Xi′k , k = 1, . . . , n− 1, making the following diagram
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(∗)
Xi1 ← Xi′1 ← · · · ← Xi′n−1

← Xin

↓ f1 ↑ g1 · · · ↑ gn−1 ↓ fn

Yj1 ← Yj′1 ← · · · ← Yj′n−1
← Yjn

commutative up to homotopy.
Two compacta X and Y are said to be S-equivalent, denoted by S(X) = S(Y ),

provided S(Y ) = S(X) for some (equivalently, any) associated X and Y respec-
tively ([10], Remarks 1.,2. and Definition 2.). Obviously, the S-equivalence is an
equivalence relation which is coarser than the shape type classification, while on
the class cHANR it reduces to the shape (thus, homotopy) type classification. In
[10], Mardešić proved that all the fibres of a shape fibration, with the base space
connected, have the same S-type. Further, he proved that the following shape in-
variants: connectedness, shape triviality, shape dimension ≤ n, n-shape connected-
ness, movability, n-movability and strong movability (being an FANR) are actually
properties of the S-type. Is the S-equivalence strictly coarser than shape remained,
at that time, an open problem. Soon afterwards, J. Keesling and Mardešić proved
that it is the case, [7]. They, namely constructed a certain shape fibration having
fibres of different shape types. Moreover, R. Goodearl and T. B. Rushing proved
in [5] that its fibres belong to uncountable many different shape types. Finally, in
attempt to relate the quasi-equivalence and S-equivalence, N. Uglešić proved that
they are mutually independent relations, [15].

The study of the above mentioned relations has followed the next general pro-
cedure. When a class of mathematical objects has to be considered, the main task
is to classify them by a given equivalence relation (∼). If the equivalence relation
admits a description in terms of a category (A), then the work becomes somewhat
easier. If, in addition, a reinterpretation of ∼ by an equivalence relation (≈) on
each A-morphism set is possible, then one usually says that the equivalence re-
lation ∼ (on ObA) admits a category characterization by ≈ (on MorA). More
precisely, X ∼ Y if and only there exist an f : X → Y and a g : Y → X such
that gf ≈ 1X and fg ≈ 1Y . The best possible case occurs when ≈ is compatible
with the composition in A. Then, namely, there exists the corresponding quotient
category A/(≈), implying that X ∼ Y if and only there exist an f = [f ] : X → Y
and a g = [g] : Y → X such that gf = 1X and fg = 1Y , i.e. X ∼= Y (isomorphic)
in A/(≈), which is a full category characterization of the starting equivalence rela-
tion. In such a case one says that an object equivalence relation admits a theory
modeled on an appropriate category. The standard examples are the classifications
of topological spaces by homeomorphisms, by homotopy types and by shape types.

Our first aim was to investigate whether the quasi-equivalence and S-equivalence
admit (full) category characterizations. In the last decade a much deeper view into
these relations has been achieved. It is proved that they admit category characteri-
zations, [15] and [4], which are not full. It is also proved that the quasi-equivalence
is not transitive on the whole class of compacta, [6]. However, in attempt to char-
acterize or, at least, describe them in a category framework on purpose of easier
operative studying, several new classifications and new “shape” theories occurred.
The significant ones are as follows:
- q-equivalence and q∗-equivalence (of compacta and of any category sequences)
together with the appropriate theories modeled on the constructed categories and
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functors, [15], [16] and [18];
- S∗-equivalence (of compacta) with the corresponding theory - a category and a
functor related to the shape category, [14];
- S∗-equivalence (of compacta), with a graded sequence of categories and functors,
[18];
- coarse shape theory - abstract and standard (for topological spaces), [9];
- weak shape theory - abstract and standard, [20];
- sequence S0 ⇐ S+

0 ⇐ · · · ⇐ Sn ⇐ S+
n ⇐ · · · ⇐ S of classifications (of compacta

and of any category sequences) including category descriptions and characteriza-
tions, [19] and [4].

This paper is intended to be an exhaustive survey of the above classifications,
their mutual relations and the most important results.

2. Quasi-shapes

In [15] is proved that the quasi-equivalence is transitive on the class of all quasi-
stable compacta (including all 0-dimensional compacta). However, it is recently
proved that the quasi-equivalence is not transitive in general, [6]. The example is
as follows. Let X be an infinite countable one-point union of pointed tori converging
to the limit torus, let Y be an infinite countable one-point union of pointed tori
converging to the base point, and let Z be the one-point union of the pointed space
X and a pointed circle. Observe that X , Y and Z are metric continua embedable
in the Euclidean space R3. Then X

q� Y and Y
q� Z hold, while X is not quasi-

equivalent to Z.
Recall now the category characterization of the quasi-equivalence obtained in

[15].
A morphism of inverse sequences (f, ([fj ])) : X → Y in (HcANR)N is said to

be special, provided f increases and, for every j ∈ N,

[fj][pf(j)f(j+1)] = [qj,j+1][fj+1].

Consider the collection K consisting of the class Ob(HcANRN) ≡ ObK of objects
and of the class MorK of all the sets

{F = ((fn, [fn
j ])) | (fn, [fn

j ]) : X → Y special, n ∈ N } ≡ K(X ,Y )

of morphisms, where X,Y are inverse sequences in HcANR, together with the
coordinatewise compositions, i.e.

GF = ((gn, [gn
k ]))((f

n, [fn
j ])) = ((fngn, [gn

k f
n
gn(k)])).

By putting 1X = (1n
X), where 1n

X = 1X for each n, to be the identity morphism on
every X, one easily verifies that K is a category.

A morphism F = ((fn, [fn
j ])) ∈ K(X ,Y ) is said to be quasi-homotopic to a

morphism F ′ = ((f ′n, [f ′n
j ])) ∈ K(X ,Y ), denoted by F

q� F ′, provided there exists
an increasing unbounded sequence (sn) in {0} ∪ N such that

(∀n ∈ N)sn ≥ 1 ⇒ (fn, [fn
j ]) =sn (f ′n, [f ′n

j ]).
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Clearly, if F = ((fn, [fn
j ])), F

′ = ((f ′n, [f ′n
j ])) ∈ K(X,Y) such that (fn, [fn

j ])) �
((f ′n, [f ′n

j ]) in (HcANR)N for almost all n, then F
q� F ′. The following facts are

the immediate consequences of the definition.
- the quasi-homotopy relation

q� is an equivalence relation on each set K(X ,Y );
- if F

q� F ′ then FH
q� F ′H for every H ∈ K(W ,X);

- F
q� F ′ does not imply GF

q� GF ′, G ∈ K(Y ,Z).
The main fact is that X

q� Y if and only if there exist an F ∈ K(X,Y) and a
G ∈ K(Y,X) such that GF

q� 1X and FG
q� 1Y ([15], Theorem 3). Consequently,

the quasi-equivalence of compacta is characterized in the same way by using any
pair of associated compact ANR sequences.

In order to get a better view into the quasi-equivalence, recently is defined a
complete (ultra)metric structure on a pro-morphism set, [16]. First, by exploiting
the previous idea, given a category A, a pair of morphisms (f, fµ), (f ′, f ′

µ) : X → Y
of inv-A and a µ ∈ M , (f, fµ) is said to be µ-homotopic to (f ′, f ′

µ), denoted by
(f, fµ) �µ (f ′, f ′

µ), provided there is a λ ≥ f(µ), f ′(µ) such that

fµpf(µ)λ = f ′
µpf ′(µ)λ.

Further, if Y (M) is cofinite, given an n ∈ N, (f, fµ) is said to be n-homotopic to
(f ′, f ′

µ), denoted by (f, fµ) �n (f ′, f ′
µ), provided (f, fµ) �µ (f ′, f ′

µ) for every µ ∈M
with |µ| < n. (Hereby |µ| denotes the number of all strict predecessors of µ in M .)

Let X and Y be inverse systems in a category A, where Y is cofinite. Then the
function

ρ : inv−A(X ,Y )× inv−A(X ,Y ) → R

is well defined by putting

ρ((f, fµ), (f ′, f ′
µ)) =

{
inf{ 1

n+1 | (f, fµ) �n (f ′, f ′
µ), n ∈ N}

1, otherwise
.

It is readily seen that ρ is a pseudo(ultra)metric on inv-A(X,Y ). Since (f, fµ) �
(g, gµ) and (f ′, f ′

µ) � (g′, g′µ) imply ρ((f, fµ), (f ′, f ′
µ)) = ρ((g, gµ), (g′, g′µ)), we infer

that ρ induces an (ultra)metric

d : Y X × Y X → R, d(f , g) = ρ((f, fµ), (f ′, f ′
µ)),

on the set Y X ≡ pro-A(X ,Y ). Moreover, the following fact holds ([16], Theorem
1):

For every X and every cofinite Y , the ordered pair (Y X , d) is a complete (ultra)
metric space.

Applying this fact and the appropriate technique, one can estimate how far is
the quasi-equivalence from the shape type ([16], Theorem 7 and Corollary 4):
Two inverse sequences X, Y in a category A are isomorphic, X ∼= Y in tow-A,
if and only if X

q� Y and there exists a pair of Cauchy sequences realizing this
quasi-equivalence.

Consequently, two metrizable compacta X, Y have the same shape, Sh(X) =
Sh(Y ), if and only if X

q� Y and there exists a pair of Cauchy sequences realizing
this quasi-equivalence via a pair of associated compact ANR inverse sequences.
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2.1. The q-shape

In order to obtain a better result, one can strengthen the quasi-equivalence, accord-
ing to its category characterization, in the following way ([15], Section 5). First,
consider the subcategory K ⊆ K on the same object class such that K(X,Y ) ⊆
K(X ,Y ) consists of all morphisms F = ((fn, [fn

j ])), where all (fn, [fn
j ]) have a

unique common index function f = fn, n ∈ N. Then the quasi-homotopy relation
F

q� F ′ on K is an equivalence relation, which is compatible with the category
composition. Thus, there exists the corresponding quotient category K/( q�) ≡ Q.

Let X and Y be inverse sequences inHcANR. Then X is said to be q-equivalent

to Y , denoted by X
q� Y , provided X

q� Y and there exists a pair F = ((fn, [fn
j ])),

G = ((gn, [gn
i ])) of morphisms realizing this relation in the category K such that,

for all i, j ∈ N, the sequences (fn(j)) and (gn(i)) are bounded. Given a pair X ,

Y of compacta, we define X
q� Y provided X

q� Y for some (equivalently: any)
associated pair X, Y .

The main benefit of the defined strenghtening is this fact:
The q-equivalence of inverse sequences, as well as of compacta, is an equivalence

relation which admits a full category characterization. More precisely, X
q� Y if

and only if X ∼= Y in Q, and similarly for compacta and the corresponding category
Q.

To complete this new “shape” theory for compacta, called q-shape theory (mod-
eled on the q-shape category Q), we add the fact concerning the corresponding
functors ([15], Theorem 7]):

There exists the q-shape functor Q : HcM → Q (keeping the objects fixed) and
there exists the quotient functor Γ : Sh → Q such that ΓS = Q, where S : HcM →
Sh is the standard shape functor. Thus, the following diagram commutes:

HcM
S ↙ ↘ Q
Sh →

Γ
Q

.

Finally, the complete (ultra)metric structure of (Y X , d) admits to relate the
shape type and q-equivalence ([16], Theorem 10):

Two inverse sequences X and Y in HcANR are isomorphic, X ∼= Y in tow-

HcANR, if and only if X
q� Y and there is a pair of realizing sequences (mor-

phisms) such that one of them is a Cauchy sequence.
Further ([16], Corollary 7), being an FANR is an invariant of the q-equivalence, i.e.

if X
q� Y and X is an FANR, then Y is an FANR and Sh(X) = Sh(Y ).

Remark 1. There exists an equivalence relation on compacta, which is strictly
finer than the quasi-equivalence and strictly coarser than q-equivalence. It is char-
acterized by by requirement that at least one of realizing sequences admits a unique
index function. In order to verify this, first observe that in such a case the quasi-
equivalence is transitive ([16], Remark 4). However, it is not sufficient to become
the q-equivalence. Namely, there exist quasi-equivalent compacta X and Y , that
are not q-equivalent, which admit only one realizing sequence having a unique index
function ([16], Example 3).
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2.2. The q∗-shape

Let us observe that the definition of being quasi-homotopic admits a slight strength-
ening in the category K as follows. A morphism F ∈ K(X,Y ) is said to be uni-

formly quasi-homotopic to a morphism F ′ ∈ K(X,Y ), denoted by F
q∗
� F ′, provided

F
q� F ′ and there exists a sequence (ij) in N, ij ≥ f(j), f ′(j), such that

(∀n ∈ N)(∀j ∈ [1, sn]N) [fn
j ][pf(j)ij

] = [f ′n
j ][pf ′(j)ij

].

It is easy to verify that
q∗
� is an equivalence relation on MorK, which is compatible

with the composition. Let [F ]∗ and Q∗
denote the corresponding class of F and

the quotient category K/(q
∗
�) respectively. Let Q∗ be the category on compacta

represented by the categoryQ∗
, which may be called the q∗-shape category. Further,

in the same way as for the category Q, one can obtain the q∗-shape functor Q∗ :
HcM → Q∗ (keeping the objects fixed) and the quotient functor Γ∗ : Sh → Q∗

such that Γ∗S = Q∗. Since [F ]∗ ⊆ [F ], for every F ∈ K(X,Y ), there exists the
appropriate quotient functor Π : Q∗ → Q, Π(X) = X and Π([F ]∗) = [F ]. Then
the functor Π induces the functor Π : Q∗ → Q, Π(X) = X and Π(φ∗) = φ, where
φ∗ is represented by [F ]∗, φ is represented by [F ] and F = ((f, [fn

j ])) ∈ K(X,Y ).
Moreover, the q-shape functor Q factorizes through Q∗, Q = ΠQ∗ and the quotient
functor Γ : Sh → Q factorizes through Γ∗, Γ = ΠΓ∗. Thus, the following diagram
commutes:

HcM
S ↙ ↓ Q∗ ↘ Q

Sh →
Γ∗

Q∗ →
Π

Q
.

Consequently, there exists a certain q∗-shape theory for metrizable compacta, lying
between shape and q-shape. We do not know yet whether the q∗-shape (q-shape)
is indeed strictly coarser than shape (q∗-shape).

3. S-shapes

In this section we bring a review of several “shape” theories arisen from the S-
equivalence.

3.1. The S∗-shape

In attempt to provide a category characterization of the S-equivalence, Mardešić
and Uglešić considered in [14] a slight strengthening of the S-equivalence, called
S∗-equivalence, which is defined by requiring that the choice of indices ik and j′k
does not depend on a given n ∈ N (while the mappings fn

jk
: Xik

→ Yjk
and

gn
i′k

: Yj′
k
→ Xi′

k
still depend on n). Thus, an equivalent definition may be as

follows:
Given X,Y ∈ Ob(tow-HcANR), we define S∗(X) = S∗(Y ) provided

(∀j1 ∈ N)(∃i1 ∈ N)(∀i′1 ≥ i1)(∃j′1 ≥ j1)(∀j2 ≥ j′1)(∃i2 ≥ i′1) · · ·
· · · (∀i′k ≥ ik)(∃j′k ≥ jk)(∀jk+1 ≥ j′k)(∃i′k+1 ≥ ik) · · ·
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and, for every n ∈ N, there exist mappings fn
jk

: Xik
→ Yjk

, k = 1, · · · , n, and
gn

i′k
: Yj′

k
→ Xi′

k
, k = 1, · · · , n− 1, such that the diagram

Xi1 ← Xi′1 ← Xi2 ← · · · ← Xi′n−1
← Xin

[fn
j1
] ↓ [gn

i′1
] ↑ ↓ [fn

j2
] · · · [gn

i′n−1
] ↑ ↓ [fn

jn
]

Yj1 ← Yj′1 ← Yj2 ← · · · ← Yj′n−1
← Yjn

commutes. The S∗-equivalence retains all the properties already proved for the S-
equivalence. For instance, all the fibres of a shape fibration (base connected) have
the same S∗-type. So, we do not know yet whether the S∗-equivalence is indeed
strictly finer than S-equivalence. However, we shall show that the S∗-equivalence
yields infinitely (countable) many appropriate “shape” theories. The first one is
obtained by Mardešić and Uglešić for compact metric spaces as follows, [14].

Let X,Y ∈ Ob(tow-HcANR). An S∗-mapping (f, [fn
j ]) : X → Y consists of

an increasing unbounded function f : N → N and of a family of homotopy classes
of mappings fn

j : Xf(j) → Yj , n ∈ N, j ∈ N, such that there exists an increasing
unbounded function γ : N → N (the commutativity radius), which has the property
that, for every n ∈ N, the following diagram is commutative:

Xf(1) ← Xf(2) ← · · · ← Xf(γ(n))

[fn
1 ] ↓ ↓ [fn

2 ] · · · ↓ [fn
γ(n)]

Y1 ← Y2 ← · · · ← Yγ(n)

.

The identity S∗-mapping is defined to be (1N, [1Xi ]). If (f, [fn
j ]) : X → Y and

(g, [gn
k ]) : Y → Z are S∗-mappings, then their composition is defined by (fg, [gn

kf
n
g(k)]),

which is an S∗-mapping of X to Z. All the S∗-mappings on Ob(tow-HcANR) make
a category.
Two S∗-mappings (f, [fn

j ]), (f
′, [f ′n

j ]) : X → Y are said to be equivalent (homo-
topic), (f, [fn

j ]) � (f ′, [f ′n
j ]), provided there exists an increasing function σ : N → N

(shift function) and there exists an increasing unbounded function χ : N → {0}∪N
(homotopy radius) such that, for every n ∈ N and every 1 ≤ j ≤ χ(n),

[fn
j ][pf(j)σ(j)] = [f ′n

j ][pf ′(j)σ(j)].

This homotopy relation is an equivalence relation on the sets of S∗-mappings, and it
is compatible with the category composition. Let S∗ be the corresponding quotient
category, i.e. ObS∗ = Ob(tow-HcANR) and

S∗(X,Y ) = {f∗ | f∗ = [(f, [fn
j ])] : X → Y }.

The corresponding category on compacta (via appropriate expansions p : X → X)
is denoted by S∗. Now, the main fact is ([14], Theorem 2 and Corollary 1):

Two inverse sequences X and Y of tow-HcANR (two metric compacta X and
Y ) are S∗-equivalent if and only if they are isomorphic objects of S∗ (S∗).
To complete the obtained S∗-shape theory for compacta (modeled on the category
S∗), let us mention the corresponding functors:

There exists the S∗-shape functor S∗ : HcM → S∗ (keeping the objects fixed)
and there exists the “quotient” functor J : Sh → S∗ such that JS = S∗, i.e. the
following diagram commutes:
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HcM
S ↙ ↘ S∗

Sh →
J

S∗
.

3.2. The coarse shape

Recently N. Koceić Bilan and the author succeeded to generalize the S∗-shape
theory for compacta to arbitrary topological spaces and, moreover, to any abstract
case (C,D), where D ⊆ C is a dense subcategory (in the sense of D-expansions of
the C-objects), [9]. The key facts are the next characterizations of an S∗-mapping
and of the homotopy relation ([9], Theorem 3.1 and Theorem 3.2).
(i) Let X,Y ∈ Ob(tow-HcANR), let f : N → N be an increasing and unbounded
function and let, for every n ∈ N and every j ∈ N, fn

j : Xf(j) → Yj be a mapping.
Then (f, [fn

j ]) : X → Y is an S∗-mapping if and only if the following condition is
fulfilled:

(∀j, j′ ∈ N, j ≤ j′)(∃n ∈ N)(∀n′ ≥ n)[fn′
j ][pf(j)f(j′)] = [qjj′ ][fn′

j′ ],

Xf(j) ← Xf(j′)

[fn′
j ] ↓ ↓ [fn′

j′ ]
Yj ← Yj′

(ii) An S∗-mapping (f, [fn
j ]) : X → Y is homotopic to an S∗-mapping (f ′, [f ′n

j ]) :
X → Y if and only if

(∀j ∈ N)(∃i ∈ N, i ≥ f(j), f ′(j))(∃n ∈ N)(∀n′ ≥ n), [fn′
j ][pf(j)i] = [f ′n′

j ][pf ′(j)i],

Xf(j) Xf ′(j) ← Xi

[fn′
j ] ↓ ↙ [f ′n′

j ]
Yj

This admits to construct an abstract analogue of the category S∗, denoted by
tow∗-A, for any category A and the corresponding tow-A. Clearly, tow∗-HcANR
is isomorphic to S∗. Since there exists a faithful functor J : tow-A → tow∗-A
keeping the objects fixed, one may consider tow-A to be a subcategory of tow∗-A.

The next step was to generalize the construction of tow∗-A to the corresponding
“pro”-category pro∗-A. Briefly, an S∗-morphism of inverse systems (f, fn

µ ) : X →
Y is subjected to the requirement

(∀µ, µ′ ∈M,µ ≤ µ′)(∃λ ∈ Λ, λ ≥ f(µ), f(µ′))(∃n ∈ N)(∀n′ ≥ n)

fn′
µ pf(µ)λ] = qµµ′fn′

µ′ pf(µ′)λ,

while the equivalence (“homotopy”) relation (f, fn
µ ) ∼ (f ′, f ′n

µ ) means:

(∀µ ∈M)(∃λ ∈ Λ, λ ≥ f(µ), f ′(µ))(∃n ∈ N)(∀n′ ≥ n)

fn′
µ pf(µ)λ = f ′n′

µ pf ′(µ)λ].

Again, one may consider that J : pro-A → pro∗-A is an “inclusion” functor. From
now on, given a category pair (C,D) such that D ⊆ C is dense, the construction
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follows the well known procedure of constructing the (abstract) shape category
Sh(C,D) and shape functor S : C → Sh(C,D). Hereby, of course, the role of pro-D
takes pro∗-D. As a resume:

There exists a category Sh∗(C,D), called coarse shape category, and there exists a
functor S∗ : C → Sh∗(C,D), called coarse shape functor, such that S∗ = JS, i.e. the
following diagram commutes :

C
S ↙ ↘ S∗

Sh(C,D) →
J
Sh∗(C,D)

.

The underlying theory is called the abstract coarse shape theory. The most im-
portant example is C = HTop and D = HPol (or HANR). In that case, we
speak about the standard (or ordinary) coarse shape theory modeled on the stan-
dard coarse shape category Sh∗ ≡ Sh∗(HTop,HPol). The restriction to metrizable
compacta yields the coarse shape theory modeled on Sh∗(cM) ≡ Sh∗(HcM,HcPol)

∼=
Sh∗(HcM,HcANR). Recall that coarse shape classification on compacta and the S∗-
equivalence coincide. Thus, according to [7] or [9] (Examples 7.1 and 7.2), the coarse
shape type classification is indeed strictly coarser than the shape type classification.

3.3. The subshape spectrum

In [18], B. Červar and the author have fully characterized the S∗-equivalence in a
quite different manner comparing to [14]. They constructed a new kind of mor-
phisms of inverse sequences started with the notion of an n-ladder, n ∈ N. Given
any j1 < · · · < jn+1 in N, let us denote the corresponding (n+1)-tuple (j1, . . . , jn+1)
by jn, and the set of all such jn by J(n). The limit case n → ∞, jω ∈ J(ω), holds
as well. For instance,

J(1) = {j1 = (j1, j2) | j1, j2 ∈ N, j1 < j2},
while every jω is a strictly increasing sequence (jl) in N. Given any X,Y ∈ Ob(tow-
HcANR), a 1-ladder fj1 = (f, [fj ]) of X to Y over a j1 ∈ J(1), denoted by
fj1 : X → Y , consists of an increasing function f whose domain is either empty
or an initial segment [j1, α1]N ⊆ [j1, j2 − 1]N, j1 ≤ α1 < j2,

f : [j1, α1]N → [j1, j2 − 1]N,

and, in the later case, of homotopy classes of mappings

fj : Xf(j) → Yj , j = 1, . . . , α1,

such that
(∀j ≤ j′) [fj ][pf(j)f(j′)] = [qjj′ ][fj′ ].

A more general is the notion of an n-ladder which is obtained by fitting together n
1-ladders. Thus, an n-ladder f jn = (f, [fj ]) : X → Y over a jn ∈ J(n) consists of
an increasing (index) function

f :
n∪

l=1
[jl, αl]N → [j1, jn+1 − 1]N, jl ≤ αl < jl+1,
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and of a set of the homotopy classes of mappings

fj : Xf(j) → Yj , j ∈ n∪
l=1

[jl, αl]N,

such that the following two conditions are satisfied:
(L(n)1) (∀l ∈ [1, n]N) f(jl) ≥ jl ∧ f(αl) < jl+1;

(L(n)2) (∀j, j′ ∈ n∪
l=1

[jl, αl]N) j ≤ j′ ⇒ [fj ][pf(j)f(j′)] = [qjj′ ][fj′ ].

An n-ladder fjn having an empty l-block, i.e. with no mapping for any j ∈ [jl, jl+1−
1]N, is allowed. We also admit the empty n-ladder of X to Y over a jn, i.e. the
empty set of homotopy classes of mappings for a given jn.

Observe that every special mappings of inverse sequences f = (f, [fj ]) : X → Y ,
with f ≥ 1N, induces an appropriate n-ladder fjn for each n ∈ N ∪ {ω} and each
jn ∈ J(n). Especially, the identity mapping 1X : X → X induces the identity
n-ladder 1Xin : X → X over in ∈ J(n).

If fjn : X → Y and gkn = (g, [gk]) : Y → Z are n-ladders, then we compose
them only in the case jn = kn by using the ordinary rule, i.e.

gknfkn ≡ ukn = (u, [uk]),

such that u = fg (wherever it is defined) and uk = gkfg(k), k ∈ n∪
l=1

[kl, γl]N, γl ≤ βl.

Clearly, gknfkn : X → Z is an n-ladder of X to Z over kn. Notice that its l-block
is empty whenever the corresponding block of fkn or gkn is empty, or g(kl) > αl.
It is obvious that the composition of n-ladders is associative, and that

fjn1Xjn = fjn ,

1Xingin = gin

hold for all n-ladders f jn : X → Y and gin : Z → X. Therefore, for each jn ∈
J(n), there exists a certain category whose class of objects is Ob(tow-HcANR),
and the sets of morphisms consist of all the corresponding n-ladders.

Let f j1 ,f ′
j1 = (f ′, [f ′

j ]) : X → Y be 1-ladders over the same j1. Then fj1

is said to be homotopic to f ′
j1 provided they both are empty or there exists a

j∗1 ∈ [j1,min{α1, α
′
1}]N such that

(∀j ∈ [j1, j∗1 ]N)(∃i = i(j) ∈ [max{f(j), f ′(j)}, j2 − 1]N)
[fj][pf(j)i] = [f ′

j ][pf ′(j)i].

In the general case of a pair of n-ladders, the definition of being m-homotopic,
m ≤ n, is as follows:

Let n,m ∈ N ∪ {ω}, m ≤ n, and let fjn ,f ′
jn : X → Y be n-ladders over the

same jn. Then, fjn is said to be m-homotopic to f ′
jn , denoted by f jn �m f ′

jn ,
provided, for every l ∈ [1,m]N, the both fjn and f ′

jn have the l-block empty or
there exists a j∗l ∈ [jl,min{αl, α

′
l}]N) such that

(∀j ∈ [jl, j∗l ]N)(∃i = i(j) ∈ [max{f(j), f ′(j)}, jl+1 − 1]N)
[fj ][pf(j)i] = [f ′

j ][pf ′(j)i].
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Notice that fjn �m′ f ′
jn implies f jn �m f ′

jn whenever m ≤ m′. Clearly, the
m-homotopy relation of n-ladders is an equivalence relation on the corresponding
set. In the case of m = n, we simply write fjn � f ′

jn and say that fjn and f ′
jn

are homotopic.
Let us now recall the main notion. First the simplest case n = 1. A 1-hyperladder

of X to Y is a certain family F1 of 1-ladders (of X to Y ) indexed by all pairs
j1 = (j1, j2) ∈ J(1). We require that every two elements j1 ≤ j′1 of N admit an
i1 ∈ N, i1 ≥ j′1, such that, for every j2 > i1, the 1-ladder fj1 = (f, [fj ]) ∈ F1,
assigned to the pair j1 = (j1, j2) ∈ J(1), has the following two properties:
- the domain [j1, α1]N of the index function f contains [j1, j′1]N;
- the image f [j1, j′1]N is contained in [j1, i1]N.
Briefly, a family F1 = (fj1) of 1-ladders fj1 : X → Y , j1 ∈ J(1), is said to be a
1-hyperladder of X to Y , provided

(∀j1 ∈ N)(∀j′1 ≥ j1)(∃i1 ≥ j′1)(∀j2 > i1)

the index function of the corresponding f j1 = (f, [fj ]) ∈ F1 fulfills the following
two conditions:

α1 ≥ j′1 and f(j′1) ≤ i1.

Notice that, since f increases, the second condition implies f(j) ≤ i1 for every
j ∈ [j1, j′1]N.

A family Fn = (fjn) of n-ladders f jn : X → Y , indexed by all jn ∈ J(n), is
said to be an n-hyperladder of X to Y , denoted by Fn : X → Y , provided

(∀m ≤ n)
(∀j1 ∈ N)(∀j′1 ≥ j1)(∃i1 ≥ j′1)(∀j2 > i1) · · ·
(∀jm > im−1)(∀j′m ≥ jm)(∃im ≥ j′m)(∀jm+1 > im)
(∀jm+2 > jm+1) . . . (∀jn+1 > jn)

the index function of the corresponding f jn = (f, [fj ]) ∈ Fn fulfills the following
two conditions:
(S(n,m)1) (∀l ∈ [1,m]N) αl ≥ j′l ;
(S(n,m)2) (∀l ∈ [1,m]N) f(j′l) ≤ il.
The set of all n-hyperladders Fn : X → Y is denoted by Ln(X,Y ).

Notice that every special mapping of inverse sequences f = (f, [fj ]) : X → Y ,
with f ≥ 1N, induces an appropriate n-hyperladder Fn = (f jn), for each n ∈
N∪{ω}. In particular, the identity mapping 1X = (1N, ([1Xi ])) induces the identity
n-hyperladder 1Xn = (1Xin) : X → X, in ∈ J(n).

If Fn = (f jn) : X → Y and Gn = (gkn) : Y → Z, kn ∈ J(n), are n-
hyperladders, then we compose them by composing the appropriate n-ladders fjn

and gkn such that jn = kn. Hence,

GnFn ≡ Un = (ukn),

where ukn ≡ gknfkn , kn ∈ J(n). One straightforwardly proves that the composi-
tion of two n-hyperladders is an n-hyperladder, that it is associative and that the
identities are the induced ones. Thus, for every n ∈ N∪{ω}, there exists a category
L(n) consisting of the object class ObL(n) = Ob(tow-HcANR) and of the class
MorL(n) of all the morphism sets Ln(X ,Y ).
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In order to define a certain equivalence (homotopy) relation on each set Ln(X ,Y ),
let us first consider the simplest case n = 1. Let F1 = (f j1), F ′

1 = (f ′
j1) : X → Y

be a pair of 1-hyperladders. Then F1 is said to be homotopic to F ′
1, provided

every two elements j1 ≤ j′1 of N admit an i1∗ ∈ N, i1∗ ≥ j′1, such that, for every
j2 > i1∗, the corresponding 1-ladders fj1 ∈ F1 and f ′

j1 ∈ F ′
1 (assigned to the pair

j1 = (j1, j2) ∈ J(1)) are homotopic, fj1 � f ′
j1 and, in addition, the occurring

j∗1 ≥ j′1 and i = i(j′1) ≤ i1∗.
Briefly, F1 � F ′

1 provided

(∀j1 ∈ N)(∀j′1 ≥ j1)(∃i1∗ ≥ j′1)(∀j2 > i1∗)

the corresponding fj1 ∈ F1 and f ′
j1 ∈ F ′

1 are homotopic, f j1 � f ′
j1 , such that

j∗1 ≥ j′λ and i = i(j′1) ≤ i1∗. Notice that the last condition implies that i = i(j) ≤ i1∗
for every j ∈ [j1, j′1]N. The definition in general is as follows.

Let n ∈ N ∪ {ω} and let Fn = (fjn), F ′
n = (f ′

jn) : X → Y be n-hyperladders.
Then Fn is said to be homotopic to F ′

n, denoted by Fn � F ′
n, provided

(∀m ≤ n)
(∀j1 ∈ N)(∀j′1 ≥ j1)(∃i1∗ ≥ j′1)(∀j2 > i1∗) · · ·
(∀jm > im−1

∗ )(∀j′m ≥ jm)(∃im∗ ≥ j′m)(∀jm+1 > im∗ )
(∀jm+2 > jm+1) . . . (∀jn+1 > jn)

the corresponding n-ladders fjn ∈ Fn and f ′
jn ∈ F ′

n satisfy the following condition:
(H(n,m)) fjn �m fjn ,
i.e. for every l ∈ [1,m]N there exists a j∗l ∈ [jl,min{αl, α

′
l}]N) for which

(∀j ∈ [jl, j∗l ]N)(∃i = i(j) ∈ [max{f(j), f ′(j)}, jl+1 − 1]N)
[fj ][pf(j)i] = [f ′

j ][pf ′(j)i],
such that, in addition,

(∀l ∈ [1,m]N), j∗l ≥ j′l and
(∀l ∈ [1,m]N) i = i(j′l) ≤ il∗.
Observe that the last condition implies that i = i(j) ≤ il∗, for every l and every

j ∈ [jl, j′l ]N. Further, for the indices il∗ in this definition and for the indices il, i′

(for Fn, F ′
n respectively),

(∀l ∈ [1,m]N) il∗ ≥ max{il, i′l}
must hold. A very nontrivial fact is that the homotopy of n-hyperladders is an
equivalence relation which is compatible with the category composition. So, finally,
we have got the sequence of quotient categories (originally denoted by S(n))

S∗(n) = L(n)/(�), n ∈ N ∪ {ω},

on the object class Ob(tow.HcANR) such that

S∗(n)(X ,Y ) = {F n = [Fn] | Fn ∈ Ln(X,Y )} = L(n)(X ,Y )/(�)

and GnF n = [Gn][Fn] = [GnFn] ([18], Theorem 2.9).
Notice that this sequence of categories yields a “sequential” category S∗(N) on

the same object class, where

S∗(N)(X ,Y ) = {F ≡ (F n) | F n = [Fn] ∈ S∗(n)(X ,Y ), n ∈ N},
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and GF = (Gn)(F n) = (GnF n).
All the constructed categories are related by appropriate functors, which keep

the objects fixed and mutually commute according to the indices ([18], Theorems
2.11, 2.12, and 2.13). Moreover, the isomorphism classification in the category
S∗(ω) coincides with that of tow-HcANR ([18], Theorem 3.4 (i)).

In the same way as the shape category of compacta Sh(cM) is defined via tow-
HcANR, there exists, for each n ∈ N ∪ {ω}, the “∗-shape” category of compacta
S∗(n) which is defined (realized) via S∗(n), i.e.

Ob(S∗(n)) = Ob(cM) and S∗(n)(X,Y ) ≈ S∗(n)(X ,Y ).

Further, every functor relating a pair of S∗(n), S∗(n
′), S∗(N), tow-HcANR in-

duces the corresponding functor relating the pair of S∗(n), S∗(n′), S∗(N), Sh(cM)
respectively ([18], Corollary 2) .The isomorphism classification in S∗(ω) coincides
with the shape type classification. The corresponding commutative diagrams are
given below.

Sh
Tn ↙ ↘ Tn′

S∗(n) ←
Rnn′

S∗(n′)
,

Sh
Tn ↙ ↘ T
S∗(n) ←

Pn

S∗(N)

HcM
Sn ↙ ↘ S
S∗(n) ←

Tn

Sh
,

HcM
Σ ↙ ↘ S
S∗(N) ←

T
Sh

.

The obtained graded family of categories and functors (S∗(n);Sn, Tn, Rnn′), n ≤
n′ ∈ N ∪ {ω}, was called the subshape spectrum for compacta.

As the main application of this “∗-shape” theory we mention the following two
facts:
(i) Two metrizable compacta X and Y are S∗-equivalent if and only if they are
isomorphic objects of S∗(N) ([18], Theorem 4.7);
(ii) The q∗-equivalence strictly implies S∗-equivalence, i.e. the q∗-shape is strictly
finer than S∗-shape ([18], Corollary 5.7).

3.4. The weak shape

In the very recent paper [20], Červar and the author succeeded to generalize the
above “subshape” theory to arbitrary topological spaces, and moreover, to any cat-
egory pair (C,D), whenever D ⊆ C is dense. However, the generalization is made
only in the case n = 1, because it is proved ([20], Remark 2) that, although the cate-
gories S∗(n) and S∗(n′), n %= n′, are not equivalent, the isomorphism classifications
in all the categories S∗(n) (and S∗(N) as well) coincide with the S∗-equivalence.

Notice that a generalization of a ladder (and of a hyperladder as well) to inverse
systems supposes the same index set. Hence, the first problem was the passage from
the index set N (positive integers) to an arbitrary common index set Λ (directed,
ordered, infinite, cofinite, having no maximal element). Further, since a C-object
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admits many D-expansions, the second problem was the independence of a chosen
index set.

The first step was to pull out the reduced inv- and pro-categories, which are sub-
categories of inv- and pro-categories respectively. Given a category A, the category
inv∼-A is defined by requirement (based on [13], Theorem I.1.3)

inv∼ −A(X ,Y ) =
{
inv-A(X,Y ), Λ =M

∅, Λ %=M.

Clearly, for every Λ, there exists the full subcategory invΛ-A ⊆ inv∼-A. Especially,
for Λ = N, invN-A = AN. The corresponding reduced pro-category is the quotient
category, i.e.

pro∼ −A = (inv∼ −A)/(�).
For a fixed Λ, there is the full subcategory proΛ-A ⊆ pro∼-A, and in the case
Λ = N, proN-A = tow-A.

A ladder of an X = (Xλ, pλλ′ ,Λ) to a Y = (Yµ, qµµ′ ,M), with M = Λ, over a
segment

µ = [µ1, µ2] = {µ ∈ Λ | µ1 ≤ µ ≤ µ2} ⊆ Λ,

denoted by fµ : X → Y , consists of an increasing (index) function

f : J → λ = µ,

where J is an initial subset of µ, and of A-morphisms

fµ : Xf(µ) → Yµ, µ ∈ J ,

such that, for every related pair µ ≤ µ′,

fµpf(µ)f(µ′) = qµµ′fµ′ .

In the case J = ∅ (i.e. µ1 /∈ J), fµ is said to be the empty ladder. The identity
ladder on an X over a λ, denoted by 1Xλ, is given by 1λ and 1Xλ

, λ ∈ λ. An
fµ : X → Y and a gν : Y → Z admit composition provided µ = ν.

We say that two ladders fµ, f
′
µ : X → Y , over the same µ = λ, are equivalent

(homotopic), denoted by fµ � f ′
µ, provided they both are empty or there exists an

initial subset J∗ ⊆ J ∩ J ′ of µ such that

(∀µ ∈ J∗)(∃λ(µ) ∈ µ, λ ≥ f(µ), f(µ′)) fµpf(µ)λ = f ′
µpf ′(µ)λ.

The homotopy relation fµ � f ′
µ is an equivalence relation on the set of all ladders

of X to Y .
A hyperladder of X to Y , denoted by (fµ) : X → Y , is a family of ladders

fµ : X → Y , indexed by all the segments µ = [µ1, µ2] in Λ = M , such that every
related pair µ1 ≤ µ′

1 in Λ admits a λ1 ∈ Λ, λ1 ≥ µ′
1, such that, for every µ2 ≥ λ1,

the ladder fµ ∈ (fµ), assigned to µ = [µ1, µ2], fulfills the requirement that µ′
1 ∈ J

(the domain of f) and f(µ′
1) ≤ λ1. Briefly,

(∀µ1 ∈ Λ)(∀µ′
1 ≥ µ1)(∃λ1 ≥ µ′

1)(∀µ2 ≥ λ1)
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the index function f : J → λ = µ = [µ1, µ2] of the corresponding fµ ∈ (fµ) fulfills
the following two conditions:

µ′
1 ∈ J and f(µ′

1) ≤ λ1.

The identity hyperladder on an X, denoted by (1Xλ), is given by the family of all the
identity ladders. A hyperladder (fµ) : X → Y and a hyperladder (gν) : Y → Z =
(Zν , rνν′ , N), where Λ = M = N , are composing coordinatewise. All the inverse
systems in a category A and all the appropriate hyperladders form a category,
denoted by inv∼∗ -A. Clearly, for each fixed Λ, there exists the corresponding full
subcategory invΛ

∗ -A ⊆ inv∼∗ -A.
Let (fµ), (f ′

µ) : X → Y be a pair of hyperladders. Then (fµ) is said to be
equivalent (homotopic) to (f ′

µ), denoted by (fµ) � (f ′
µ), provided

(∀µ1 ∈ Λ)(∀µ′
1 ≥ µ1)(∃λ1

∗ ≥ µ′
1)(∀µ2 ≥ λ1

∗)

the corresponding fµ ∈ (fµ) and f ′
µ ∈ (f ′

µ), µ = [µ1, µ2], are homotopic, fµ � f ′
µ,

such that, in addition, µ′
1 ∈ J∗ ⊆ J ∩ J ′ and λ(µ′

1) ≤ λ1∗.
The homotopy relation (fµ) � (f ′

µ) is an equivalence relation on each set inv∼∗ -
A(X ,Y ), and it is compatible with the category composition. The homotopy class
[(fµ)] of an (fµ) : X → Y is denoted by f∗ : X → Y , and these classes are
composing by the rule g∗f∗ = [(gν)][(fµ)] = [(gνfν)]. Therefore, the resume may
be as follows ([20], Theorem 1):

For every category A, there exists a quotient category (“∗-reduced pro-category”)
pro∼∗ -A ≡ (inv∼∗ -A)/(�).

Further, for each fixed Λ, there exists the corresponding quotient category

proΛ∗ −A ≡ (invΛ
∗ −A)/(�),

which is a full subcategory of pro∼∗ -A.
Especially, in the case A = HcANR and Λ = N, the category proN

∗ -HcANR ≡
tow∗-HcANR is equal to the before constructed category S∗(1). In this way, the
first problem is solved: For every admissible index set Λ and the subcategory CΛ ⊆ C
determined by all the C-objects admitting a D-expansion over Λ, there exists so
called (abstract) Λ-weak shape category ShΛ

∗(C,D), defined via proΛ∗ -D in the usual
manner, i.e.

Ob(ShΛ
∗(C,D)) = ObCΛ,

ShΛ
∗(C,D)(X,Y ) ≈ proΛ∗ −D(X ,Y ),

whenever X, Y are D-expansions over Λ of X and Y respectively. There also exists
the (abstract) Λ-weak shape functor SΛ∗ : CΛ → ShΛ

∗(C,D) such that TΛSΛ = SΛ∗ , i.e.

CΛ

SΛ ↙ ↘ SΛ∗
ShΛ

(C,D) →
TΛ

ShΛ
∗(C,D),
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where SΛ is the corresponding (abstract) shape functor, and TΛ is a faithful functor
which keeps the objects fixed ([20], Section 5).

The index set changing problem is solved in [20], Section 6. Briefly, for every
pair of admissible index sets Λ, Λ′, there exists a functor

HΛ,Λ′
: ShΛ

∗(C,D) → ShΛ′
∗(C,D),

which is a category isomorphism keeping the objects fixed. As a resume:
There exists a category Sh∗(C,D), called the (abstract) weak shape category, such

that

Ob(Sh∗(C,D)) = ObC,
Sh∗(C,D)(X,Y ) ≈ ShΛ

∗(C,D)(X,Y ) ≈ proΛ∗ −D(X,Y ),

whenever X, Y are D-expansions over the same Λ of X and Y respectively. There
also exists the (abstract) weak shape functor S∗ : C → ShΛ

∗(C,D) such that TS = S∗,
i.e.

C
S ↙ ↘ S∗

Sh(C,D) →
T
Sh∗(C,D)

,

where S is the corresponding (abstract) shape functor, and T is a faithful functor
which keeps the objects fixed.
The most interesting is the standard case C = HTop and D = HANR (or HPol).
Then the notation is simplified to Sh∗. Further, in the special case C = HcM
and D = HcANR (or HcPol), the index set N suffices. Therefore, the weak shape
category for compacta Sh∗(cM) can be realized via tow∗-HcANR or tow∗-HcPol.

3.5. Weak shape versus coarse shape

Let us briefly recall only the main results of [20], Section 7, where the weak and
coarse shape are compared:
(1) There exists a functor W : Sh∗(C,D) → Sh∗(C,D), which keeps the objects fixed,
and the following diagram commutes:

C
↙ S ↓ S∗ ↘ S∗

Sh(C,D) →
J

Sh∗(C,D) →
W

Sh∗(C,D)

, WJ = T .

(2) If every C-object admits a countable D-expansion, then the functor W is faith-
ful; especially, the functor W : Sh∗(cM) → Sh∗(cM) is faithful. Furthermore, in
such a case there exists a converse functor U : Sh∗(C,D) → Sh∗(C,D), which is not
faithful in general.
(3) For every pair of metrizable compacta X , Y , the following are equivalent:

(i) Sh∗(X) = Sh∗(Y );
(ii) Sh∗(X) = Sh∗(Y );
(iii) S∗(X) = S∗(Y ).
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There exists a metric continuum X such that its shape type is strictly finer than
the above three (coinciding) types of X.
(4) Let X be a topological space which does not admit any countable HPol-expansion,
and let Q be a polyhedron consisting of two points. Then

(i) card(Sh(X,Q) = 2;
(ii) card(Sh∗(X,Q)) = 2ℵ0 ;
(iii) card(Sh∗(X,Q)) > 2ℵ0 .

Consequently, in order to provide a pair of spaces belonging to different coarse shape
types and to the same weak shape type, one has to consider a class of spaces which
do not admit any countable polyhedral (or ANR) expansion.

Let us finally mention some important shape invariants which are invariants of
the weak and coarse shape as well ([20], Section 9 ; [8]; [17]). Those are as follows:
(1) In all (abstract) cases: movability, D0-movability (D0 ⊆ D), semi-stability,
strong movability, stability.
(2) Moreover, for topological spaces: connectedness, triviality of shape, shape di-
mension ≤ n, n-shape connectedness, n-movability.
(3) For pointed pro-sets and pro-groups: the Mittag-Leffler property.

4. The Sn-equivalence

Hereby we demonstrate how the S-equivalence is “decomposed” into a sequence of so
called Sn- and S+

n -equivalences, n ∈ {0}∪N, providing also the category descriptions
of these equivalences as well as a category characterization of the S-equivalence,
which is not a full one, [19] and [4]. In [14], Remark 1, the authors had noticed that
it makes sense and it could be useful to “decompose” the S-equivalence into “finite
parts”, called the Sn-equivalences, n ∈ N. Following this idea, Červar and the
author first, in [19], defined and studied those equivalence relations. Afterwards, in
[4], they provide a category description for each Sn-equivalence as well as a category
characterization of the S-equivalence. Let us briefly recall the definition (Definitions
2.1 and 2.2 of [19] are slightly refined by Definition 1 of [4]).

For every n ∈ N, the condition relating Y to X given by diagram (∗) (of our
Section 1) is denoted by (D2n−1). Further, by (D2n) is denoted the extension of
(D2n−1) by adding one rectangle (with a mapping gn) preserving commutativity up
to homotopy.

Given any X ,Y ∈ Ob(tow-HcANR) and n ∈ {0} ∪ N, let Sn(X,Y ) denote
condition (D2n+1) relating Y to X. Further, let S+

n (X ,Y ) denote condition
(D2n+2) relating Y to X. Then Y is said to be Sn-dominated by X, denoted by
Sn(Y ) ≤ Sn(X), provided condition Sn(Y ,X) holds; Y is said to be Sn-equivalent
to X, denoted by Sn(Y ) = Sn(X), provided the both conditions Sn(Y ,X) and
Sn(X,Y ) are fulfilled. Similarly and dually, Y is said to be S+

n -dominated by X,
denoted by S+

n (Y ) ≤ S+
n (X), provided condition S+

n (X,Y ) holds; Y is said to be
S+

n -equivalent to X, denoted by S+
n (Y ) = S+

n (X), provided the both conditions
S+

n (X,Y ) and S+
n (Y ,X) are fulfilled.

If X and Y are compacta, then we define Sn(Y ) ≤ Sn(X) and Sn(Y ) = Sn(X)
(S+

n (Y ) ≤ S+
n (X) and S+

n (Y ) = S+
n (X)) provided Sn(Y ) ≤ Sn(X) and Sn(Y ) =
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Sn(X) (S+
n (Y ) ≤ S+

n (X) and S+
n (Y ) = S+

n (X)) respectively, for some (equiva-
lently, any) compact ANR inverse sequences X, Y associated with X , Y respec-
tively.

It is obviously, by definition, that
(Sn+1(Y ) ≤ Sn+1(X)) ⇒ (S+

n (Y ) = S+
n (X)),

(S+
n (Y ) ≤ S+

n (X)) ⇒ (Sn(Y ) = Sn(X)),
(S(Y ) = S(X)) ⇔ ((∀n ∈ {0}∪N), Sn(Y ) = Sn(X) (or, equivalently, S+

n (Y ) =
S+

n (X)).
Analogous statements hold for compacta as well. Consequently, the following se-
quence of implications (of equivalences on compacta strictly coarser than the shape
type classification) is established:
(∗∗) S0 ⇐ S+

0 ⇐ S1 ⇐ · · · ⇐ Sn ⇐ S+
n ⇐ Sn+1 ⇐ · · · ⇐ S ⇐ S∗.

Here are the main facts obtained in [19]:
- the S0-equivalence is the trivial equivalence relation (all nonempty compacta are
mutually S0-equivalent);
- the S+

0 -equivalence is not trivial (S
+
0 ({∗}) ≤ S+

0 ({∗}({∗}) and S+
0 ({∗}({∗}) �

S+
0 ({∗}));

- the implications S0 ⇐ S+
0 ⇐ S1 ⇐ S+

1 and S1 ⇐ S are strict;
- if the S∗-equivalence is strictly finer than S-equivalence, then the sequence (∗∗)
admits a strict subsequence and, moreover, it can be realized by a single compactum

In [4] is followed the same basic idea of [18]. However, in this setting the strong
“uniformity” conditions for the hyperladders and their homotopy relation had to
be abandoned. Only a slight control over the index functions is possible. A mor-
phism set, denoted by Ln(X ,Y ), of each constructed category An consists of the
the corresponding, so called, free n-hyperladders. There exists a certain equivalence
(“homotopy”) relation on Ln(X,Y ). Unfortunately, there is not any quotient cat-
egory because the equivalence relation is not compatible with the composition.
These categories are related by the “restriction” functors (which are not unique)
Rnnn′ : An′ → An, for all pairs n ≤ n′, such that Rnn′Rn′n′′ = Rnn′′ . The following
are main results of [4] (X , Y denote compact metrizable spaces, while X, Y are
any with them associated inverse sequence of tow-HcANR respectively):
- for each n ∈ {0} ∪ N, if S3n+1(Y ) ≤ S3n+1(X) (or S3n+1(X) ≤ S3n+1(Y )), then
there exist an F ∈ L2n+1(X,Y ) and a G ∈ L2n+1(Y ,X) such that FG � 1Y and
GF � 1X in A2n+1;
- for each n ∈ {0} ∪ N, if S+

3n+2(Y ) ≤ S+
3n+2(X) (or S+

3n+2(X) ≤ S+
3n+2(Y )), then

there exist an F ∈ L2n+2(X,Y ) and a G ∈ L2n+2(Y ,X) such that FG � 1Y and
GF � 1X in A2n+2;
- for each n ∈ {0}∪N, if there exist an F ∈ L2n+1(X ,Y ) and a G ∈ L2n+1(Y ,X)
such that FG � 1Y and GF � 1X in A2n+1, then Sn(Y ) = Sn(X);
- for each n ∈ N, if there exist an F ∈ L2n(X,Y ) and a G ∈ L2n(Y ,X) such that
FG � 1Y and GF � 1X in A2n, then S+

n−1(Y ) = S+
n−1(X).

Finally, let A be the sequential category determined by all the An, i.e. the
morphisms of A are sequences F = (Fn) of morphisms Fn of An, while the com-
position and the homotopy relation are defined coordinatewise. Then the following
characterization holds ([4], Theorem 7):
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S(X) = S(Y ) if and only if there exist an F ∈ A(X,Y ) and a G ∈ A(Y ,X)
such that GF � 1X and FG � 1Y .
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[4] B. Červar, N.Uglešić, Category descriptions of the Sn- and S-equivalence,
Math. Comm. 13(2008), 1-19.

[5] R.Goodearl, T. B.Rushing, Direct limit groups and the Keesling-Mardešić
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[8] N.Koceić Bilan, On some coarse shape invariants, Topology and its Appl.,
submitted.
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