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Fitting two concentric spheres to data by

orthogonal distance regression

I. A. Al-Subaihi
∗

Abstract. The problem of this research tackles the process of fitting
two concentric spheres to data, which arises in computational metrology.
There are also many fitting criteria that could be used effectively, and
the most widely used one in metrology, for example, is that of the sum
of squared minimal distance. However, a simple and robust algorithm
assigned for using the orthogonal distance regression will be proposed in
this paper. A common approach to this problem involves an iteration
process which forces orthogonality to hold at every iteration and steps of
Gauss-Newton type.
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1. Introduction

To find measured points in space two concentric spheres of the minimum differ-
ence in radii that contain all points between them is a problem in computational
metrology [6, 9]. Let data xi = (xi, yi, zi), i = 1 . . . , m, be available. In order to
make the problem of this paper more evident, it is recommended to assume that all
points have errors. Moreover, to find two concentric spheres, it is suggested that
such suitable criteria goes to its minimum level, where simultaneously each point
has to be associated with one of the spheres [6].

The two concentric spheres are given in parametric representation as

x(ap, t) = c+ r



cos t1 sin t2
sin t1 sin t2

cos t2


 , 0 ≤ t1 < 2π, 0 < t2 ≤ π (1)

out of the smaller sphere, where ap = (c, r)T , c = (c1, c2, c3)T is the common centre,
and r is the radius. Replacing ap by aq = (c, R)T in (1) gives the larger parametric
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sphere. The parametric representations are dependent upon the location parameter
t, which are independent of any coordinate system [11].

Fitting two concentric spheres to data is interpreted as a problem of orthogonal
distance regression (ODR) in [6], which seems to have been the first suggested.
The problem, in brief, is to find two subsets V and W of 1, . . . , m with V ∩ W =
φ, V ∪ W = {1, . . . , m}, |V | ≥ 4, |W | ≥ 4 such that the sum of squared minimal
distances

S(V, W, a) =
∑
i∈V

min
t

p2
i (ap, t) +

∑
i∈W

min
t

q2
i (aq, t) (2)

is minimized, where a = (c, r, R)T , V and W are the sets of given points associated
with the smaller and larger spheres respectively, and where

p2
i (ap, t) = (a + r cos t1 sin t2 − xi)2 + (b+ r sin t1 sin t2 − yi)2

+ (c + r cos t2 − zi)2,

and q2
i (aq, t) represent the larger sphere. The necessary condition, ∂S

∂a = 0, needs
to solve a linear system of 5×5 equations for a at each iteration, until the tolerance
is reduced to a sufficient small number. The algorithm of minimizing (2) for t is
considered in section 4.

The purpose in this paper, is to fit two concentric spheres to data by an equiva-
lent problem to [6], which becomes more appropriate when the data have indepen-
dent identically distibuted errors [11]. The orthogonal distance regression problem,
which is a nonlinear least squares problem, will be defined in next section. Further,
the Jacobian matrix for the Gauss-Newton iteration and the starting points are de-
fined in section 3. Furthermore, an algorithm and numerical results are considered
in sections 4 and 5 respectively. In all cases in this paper, ‖.‖ denotes the l2 vector
or matrix norm.

2. The ODR problem

The orthogonal distances vector represented in the following form

pi = xi − x(ap, ti), i ∈ V,

refers to the smaller parametric sphere. Also, qi, i ∈ W is used for the large one,
which came as a result of replacing ap by aq . Then the problem given in this paper
is to find two subsets V , and W by minimizing

F (V, W, a, t) =
∑
i∈V

‖pi(ap, ti)‖2 +
∑
i∈W

‖qi(aq, ti)‖2, (3)

with respect to a = (c, r, R)T ∈ R5 and ti, i = 1, . . . , m.
Let ti(ap), i ∈ V be such that for any ap, ‖xi − x(ap, ti)‖ is minimized with

respect to ti, i ∈ V , and similarly for ti(aq), i ∈ W . Then the equivalent problem
to (3) is the minimization with respect to a = (c, r, R)T ∈ R5 alone of

F (V, W, a) =
∑
i∈V

‖pi(ap, ti(ap))‖2 +
∑
i∈W

‖qi(aq , ti(aq))‖2. (4)
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If we define, for simplicity, the vector δ ∈ Rm which has ith component

δi(a) = ‖xi − c − rαi − Rαi‖,

and r = 0 if i ∈ W , R = 0 if i ∈ V , where

αi =



cos(t1i) sin(t2i)
sin(t1i) sin(t2i)

cos(t2i)


 .

Then the orthogonal distance regression problem is to find two subsets V , and W
such as minimizing the objective function

F (V, W, a) = ‖δ‖2. (5)

This is a nonlinear problem which can be solved through the application of the
Gauss-Newton method, or on of its variants, see for example [3, 4, 5, 10, 11, 12].
Then the subsets V and W can be determined by calculating, for each i, ‖pi‖ and
‖qi‖. If ‖pi‖ < ‖qi‖, then i ∈ V , otherwise in W .

3. A Gauss-Newton step

The Gauss-Newton step d for minimizing (5) is given by finding

min
d

‖δ +∇aδd‖2,

where ∇aδ ∈ Rm×5 a Jacobian matrix has ith row, for any δi = 0

∇aδi =




− pT
i

‖pi‖
[
I αi 0

]
for i ∈ V,

− qT
i

‖qi‖
[
I 0 αi

]
for i ∈ W,

(6)

by definition of ti(a), and I signifies the identity matrix of order 3. Using the
expression in the right-hand side of (6), the correct vector of partial derivatives of
δi is easily calculated.

It is necessary to provide primary values for any iterative algorithm. Actually,
it is preferable to minimize the procedures of determining the initial values of a(0),
which is considered in [6], in order to cut the long story short. The initial centre c
can be determined by the data mean. The primary values assigned for radii can be
found in the following equations

r(0) =
1
f

h, R(0) = fH, 0 < f < 1, (7)

where h, H are the minimal and maximal distance of the data points to the starting
centre, respectively. The scalar f is used on the basis of the assumption that not
all points with errors are estimated to be lying between the inner and outer sphere,
and for R(0) > r(0).
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4. An algorithm

The contents of the last two sections give the ingredients of algorithms which can
be used to solve the orthogonal distance regression problem. For example, we could
consider an algorithm as follows

STEP 0. Input: The data xi,V (0),W (0), and a tolerance (Tol).

STEP 1. Determine: the initial values of a(0).

STEP 2. Determine:

• ti(a), i = 1, . . . , m.
• The nearest points on the two concentric spheres.
• δ(a).
• The objective function: F .
• The Jacobian matrix:∇aδ(a).

STEP 3. Solve: ‖δ(a) +∇aδ(a)d‖2 for d.

• if ‖d‖∞ < Tol , Then Go to STEP 7.

STEP 4. Use line search.

STEP 5. Determine: V (k) and W (k).

STEP 6. Go to STEP 2.

STEP 7. The process of fitting the two concentric spheres using ODR has been
completed.

The least squares solution is used to determine the values of ti(a), i = 1, . . . , m,
see for example [6, 7], the algorithm [1]

ti1 = arctan | yi − c2

xi − c1
|.

• If xi − c1 < 0, then ti1 = ti1 + π.

• If xi − c1 = 0, then

– ti1 = π
2 , if yi − c2 ≥ 0.

– ti1 = 3
2π, if yi − c2 < 0.

ti2 = arctan | (xi − c1) cos(ti1) + (yi − c2) sin(ti1)
zi − c3

|

• If zi − c3 < 0, then ti2 = ti2 + π,.

• If zi − c3 = 0, then

– ti2 = π
2 , if (xi − c1) cos(ti1) + (yi − c2) sin(ti1) > 0.

– ti2 = 3
2π, if (xi − c1) cos(ti1) + (yi − c2) sin(ti1) < 0.
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5. Numerical results

In order to verify the performance of the proposed algorithm, it is applied to some
examples. Therefore, the plan adopted in this regard, is to compute a Gauss-Newton
step d as indicated in the section 3, to be used as an approach to reduce the value
of the objective function F , taking full steps, if possible. The performance shown in
the examples is typical, with a second order rate of convergence usual. The factor
f = 0.8 has been used to determine the initial radii, see (7). The symbol γ used in
the following tables refers to the Gauss-Newton step d’s length, and k refers to the
iteration number.

Example 1 Consider the xi, i = 1, . . . , 16 values given in Table 1, which has
been considered in [6]. The Gauss-Newton method is applied with the line searching
for fitting 16 points with two concentric spheres. The initial value of a(0) was

a(0) = (1.6875, 2.1875, 1.3125, 2.9263, 5.5125)T .

Table 2 shows the characterization of V and W , where an integer vector f with
fi = 1 if i ∈ V and fi = 2 if i ∈ W . This method gives V = {1, 2, . . . , 8} and
W = {11, 12, . . . , 16} in 2 iterations, and converge to the global minimum in 6
iterations. Results are shown in Table 3. In the same time, the final sets of V and
W by [6] take 35 iterations to determine, and 135 iterations to converge to the same
minimum of applying the Gauss-Newton method with line search.

1 -1 0 -1 2 2 4 5 1 -1 0 -1 3 2 5 6
x 2 1 3 4 2 3 1 1 2 1 3 5 2 3 1 1

-1 0 -1 6 -1 -1 6 4 -2 -1 -2 7 -2 -2 6 5

Table 1: Example 1 data points

k f
0 1 1 1 2 1 1 2 2 1 1 1 2 1 1 2 2
1 1 1 1 1 1 1 2 1 2 2 2 2 2 2 2 2
2-6 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

Table 2: f within the iterations process

Example 2 The first subset, of size |V |, data points are generated, by taking
a particular sphere. The second subset |W | also generated in the same idea and
same centre, but R > r, where |V | = |W | = 50. In other word, the data has been
generated from the spheres a = (−2, 3, 1, 6, 7)T . Then random perturbations are
introduced for these data. The initial subsets V (0) with |V (0)| = 70 and W (0) with
|W (0)| = 30 have been determined by taking a random permutation of the integers
from 1 to m, and the Matlab command ”randperm” is used for this procedure. The
initial approximation to a(0) gives

a(0) = (−2.3853, 2.8976,−0.3254, 5.5841, 6.7438)T.
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k a b c r R F ‖d‖∞ γ

1 1.4967 2.9712 2.6177 4.1826 4.7537 4.3229 1.3052 1
2 1.4439 3.0142 2.8949 4.1108 5.0542 0.59699 3.0056×10−1 1
3 1.4480 2.7394 3.0126 4.1463 5.1282 0.18462 2.7484×10−1 1
4 1.4452 2.7358 3.0125 4.1550 5.1357 0.18345 8.7263×10−3 1
5 1.4452 2.7357 3.0125 4.1550 5.1357 0.18345 1.1021×10−5 1
6 1.4452 2.7357 3.0125 4.1550 5.1357 0.18345 6.5115×10−8

Table 3: Example 1.

Results for fitting two concentric spheres to 100 points are shown in Table 4.
The subsets V and W have been, as expected, with V = {1, 2, . . . , 50} and W =
{51, 52, . . . , 100} in the second iteration. Other choices for V (0) and W (0) either
sizes or data indexes give a similar behaviour.

k a b c r R F ‖d‖∞ γ

1 -1.8617 3.0984 1.0791 6.3409 6.4127 25.498 1.4045 1
2 -1.8632 3.1113 1.1265 6.0087 6.9787 0.49438 5.6606×10−1 1
3 -1.8633 3.1114 1.1266 6.0088 6.9789 0.49437 1.5797×10−4 1
4 -1.8633e 3.1114 1.1266 6.0088 6.9789 0.49437 1.4517×10−7

Table 4: Example 2.

6. Conclusion

Fitting two concentric spheres to data by orthogonal distance regression is consid-
ered in this paper. One of the main differences between applying the Gauss-Newton
method to the problem and the method which was applied by [6] is the number of
linear equations need to solve at each iteration. Using the Gauss-Newton method
needs to solve m × 5 linear equations at each iteration. However, 5 × 5 linear
equations at each iteration need to solve for applying [6].

Nevertheless, all the numerical results show that the use of the Gauss-Newton
method with line search is very rigorous for solving ODR of two concentric spheres.
It is worth noting that the number of iterations using the Gauss-Newton method
with line search has proven to be small, when compared to [6] method. Moreover,
The number of iterations on the orthogonal distance regression and the Gauss-
Newton method with line search have been not generally affected by the value of
m. The use of the results of [6] for starting point has proved to be crucial for the
initial values of the problem.
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