Generalization of some inequalities for the Gamma function

Armend Sh. Shabani*

Abstract

An inequality involving the Euler gamma function is presented. This result generalizes several recently published results by Alsina and Tomás, Sándor, Bougoffa, and the author.

Key words: Euler gamma function, inequalities
AMS subject classifications: 33B15
Received May 13, 2008
Accepted August 1, 2008

1. Introduction

The Euler gamma function $\Gamma(x)$ is defined for $x>0$ by

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t
$$

Psi or digamma function, the logarithmic derivative of the gamma function is defined by

$$
\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}, x>0
$$

C. Alsina and M. S. Tomás in [1], using a geometrical method, proved the following double inequality:

$$
\begin{equation*}
\frac{1}{n!} \leq \frac{\Gamma(1+x)^{n}}{\Gamma(1+n x)} \leq 1, \quad x \in[0,1], n \in \mathbb{N} \tag{1}
\end{equation*}
$$

Using the series representation of $\psi(x)$ J. Sándor [3] extended that result to obtain the following double inequality:

$$
\begin{equation*}
\frac{1}{\Gamma(1+a)} \leq \frac{\Gamma(1+x)^{a}}{\Gamma(1+a x)} \leq 1, \quad x \in[0,1], a \geq 1 \tag{2}
\end{equation*}
$$

In [2] L. Bougoffa proved that if $1+a x>0,1+b x>0$ then for all $a \geq b>0$ the function

$$
\begin{equation*}
f(x)=\frac{\Gamma(1+b x)^{a}}{\Gamma(1+a x)^{b}}, \quad x \geq 0 \tag{3}
\end{equation*}
$$

*Department of Mathematics, University of Prishtina, Prishtinë 10000 , Republic of Kosova, e-mail: armend_shabani@hotmail.com
is decreasing on $[0, \infty)$ so for $x \in[0,1]$ the following double inequality is true:

$$
\begin{equation*}
\frac{\Gamma(1+b)^{a}}{\Gamma(1+a)^{b}} \leq \frac{\Gamma(1+b x)^{a}}{\Gamma(1+a x)^{b}} \leq 1 \tag{4}
\end{equation*}
$$

Note: He also proved that under the conditions $1+a x>0,1+b x>0$ the function given in (3) is also decreasing on $[0, \infty]$ if $0>a \geq b$ and increasing on $[0, \infty]$ if $a>0$ and $b<0$.

In [4] the following result is presented.
Theorem 1. Let f be a function defined by

$$
f(x)=\frac{\Gamma(a+b x)^{c}}{\Gamma(b+a x)^{d}}
$$

where $x \in[0,1], a \geq b>0, c$ and d are real numbers such that $b c \geq a d>0$ and $\psi(b+a x)>0$. Then f is increasing function on $[0,1]$ and the following double inequality holds:

$$
\begin{equation*}
\frac{\Gamma(a)^{c}}{\Gamma(b)^{d}} \leq \frac{\Gamma(a+b x)^{c}}{\Gamma(b+a x)^{d}} \leq \frac{\Gamma(a+b)^{c}}{\Gamma(a+b)^{d}} \tag{5}
\end{equation*}
$$

Equivalently under the conditions of the Theorem 1 the function

$$
f_{1}(x)=\frac{1}{f(x)}=\frac{\Gamma(b+a x)^{d}}{\Gamma(a+b x)^{c}}
$$

is decreasing on $[0,1]$ so

$$
\begin{equation*}
\frac{\Gamma(a+b)^{d}}{\Gamma(a+b)^{c}} \leq \frac{\Gamma(b+a x)^{d}}{\Gamma(a+b x)^{c}} \leq \frac{\Gamma(b)^{d}}{\Gamma(a)^{c}} \tag{6}
\end{equation*}
$$

The idea of this paper is to consider the function

$$
f(x)=\frac{\Gamma(a+b x)^{c}}{\Gamma(d+e x)^{f}}, \quad x \geq 0
$$

and to establish some generalizations of the above results.

2. Main results

In order to establish the proofs of the theorems, we need the following lemmas:
Lemma 1. Let $0<x \leq y$. Then

$$
\begin{equation*}
\psi(x) \leq \psi(y) \tag{7}
\end{equation*}
$$

Proof. In [5], page 21, we have the following:

$$
\psi(x)-\psi(y)=(x-y) \cdot \sum_{n=0}^{\infty} \frac{1}{(x+n)(y+n)}
$$

Hence, if $x \leq y$ then clearly $\psi(x)-\psi(y) \leq 0$.
Lemma 2. Let a, b, c, d, e be real numbers such that $a+b x>0, d+e x>0$ and $a+b x \leq d+e x$. Then

$$
\begin{equation*}
\psi(a+b x)-\psi(d+e x) \leq 0 \tag{8}
\end{equation*}
$$

Proof. Based on Lemma 1.
Lemma 3. Let a, b, c, d, e, f be real numbers such that $a+b x>0, d+e x>$ $0, a+b x \leq d+e x$ and $e f \geq b c>0$. If
(i) $\psi(a+b x)>0$ or
(ii) $\psi(d+e x)>0$
then

$$
\begin{equation*}
b c \psi(a+b x)-e f \psi(d+e x) \leq 0 \tag{9}
\end{equation*}
$$

Proof. (i) Let $\psi(a+b x)>0$. From Lemma 2 we have $\psi(d+e x) \geq \psi(a+b x)>0$. Multiplying both sides of inequality $e f \geq b c$ with $\psi(d+e x)$ we obtain.

$$
e f \psi(d+e x) \geq b c \psi(d+e x) \geq b c \psi(a+b x)
$$

or

$$
b c \psi(a+b x)-e f \psi(d+e x) \leq 0 .
$$

(ii) If $\psi(d+e x)>0$, considering (8) we see that there are two possibilities for $\psi(a+b x)$.

Case 1. $\psi(a+b x) \leq 0, \quad$ Case 2. $\psi(a+b x)>0$.
So we have:
Case 1. $b c \psi(a+b x) \leq 0$ and $e f \psi(d+e x)>0$ so clearly (9) holds.
Case 2. The possibility $\psi(a+b x)>0$ was proved in (i).
Lemma 4. Let a, b, c, d, e, f be real numbers such that $a+b x>0, d+e x>$ $0, a+b x \leq d+e x$ and $b c \geq e f>0$. If
(i) $\psi(d+e x)<0$ or
(ii) $\psi(a+b x)<0$
then

$$
\begin{equation*}
b c \psi(a+b x)-e f \psi(d+e x) \leq 0 \tag{10}
\end{equation*}
$$

Proof. (i) Let $\psi(d+e x)<0$. From Lemma 2 we have $\psi(a+b x) \leq \psi(d+e x)<0$. Multiplying both sides of inequality $b c \geq e f$ with $\psi(a+b x)$ we obtain.

$$
b c \psi(a+b x) \leq e f \psi(a+b x) \leq e f \psi(d+e x)
$$

or

$$
b c \psi(a+b x)-e f \psi(d+e x) \leq 0
$$

ii) If $\psi(a+b x)<0$, considering (8) we see that there are two possibilities for $\psi(d+e x)$.

Case 1. $\psi(d+e x) \geq 0, \quad$ Case 2. $\psi(d+e x)<0$.
Now we proceed in the same way as in Lemma 3

Theorem 2. Let f_{1} be a function defined by

$$
\begin{equation*}
f_{1}(x)=\frac{\Gamma(a+b x)^{c}}{\Gamma(d+e x)^{f}}, \quad x \geq 0 \tag{11}
\end{equation*}
$$

where a, b, c, d, e, f are real numbers such that: $a+b x>0, d+e x>0, a+b x \leq$ $d+e x, e f \geq b c>0$. If $\psi(a+b x)>0$ or $\psi(d+e x)>0$ then the function f_{1} is decreasing for $x \geq 0$ and for $x \in[0,1]$ the following double inequality holds:

$$
\begin{equation*}
\frac{\Gamma(a+b)^{c}}{\Gamma(d+e)^{f}} \leq \frac{\Gamma(a+b x)^{c}}{\Gamma(d+e x)^{f}} \leq \frac{\Gamma(a)^{c}}{\Gamma(d)^{f}} \tag{12}
\end{equation*}
$$

Proof. Let g_{1} be a function defined by $g_{1}(x)=\log f_{1}(x)$ for $x \in[0, \infty)$. Then:

$$
g_{1}(x)=c \log \Gamma(a+b x)-f \log \Gamma(d+e x)
$$

So

$$
g_{1}^{\prime}(x)=b c \frac{\Gamma^{\prime}(a+b x)}{\Gamma(a+b x)}-e f \frac{\Gamma^{\prime}(d+e x)}{\Gamma(d+e x)}=b c \psi(a+b x)-e f \psi(d+e x)
$$

Using (9), we have $g_{1}^{\prime}(x) \leq 0$. It means that g_{1} is decreasing on $[0,1]$. This implies that f_{1} is decreasing on $[0,1]$.

Hence for $x \in[0,1]$ we have $f_{1}(1) \leq f_{1}(x) \leq f_{1}(0)$ or

$$
\frac{\Gamma(a+b)^{c}}{\Gamma(d+e)^{f}} \leq \frac{\Gamma(a+b x)^{c}}{\Gamma(d+e x)^{f}} \leq \frac{\Gamma(a)^{c}}{\Gamma(d)^{f}}
$$

This concludes the proof of Theorem 2.
In a similar way, using Lemma 4, it is easy to prove the following theorem.
Theorem 3. Let f_{1} be a function defined by

$$
\begin{equation*}
f_{1}(x)=\frac{\Gamma(a+b x)^{c}}{\Gamma(d+e x)^{f}}, \quad x \geq 0 \tag{13}
\end{equation*}
$$

where a, b, c, d, e, f are real numbers such that: $a+b x>0, d+e x>0, a+b x \leq$ $d+e x, b c \geq e f>0$. If $\psi(d+e x)<0$ or $\psi(a+b x)<0$ then the function f_{1} is decreasing for $x \geq 0$ and for $x \in[0,1]$ the inequality (12) holds.

It is easy to verify by Theorem 2 and Theorem 3 that the following remarks hold.

Remark 1. Considering (12) with $a=1, b=1, c=n, n \in \mathbb{N}, d=1, e=n, n \in$ $\mathbb{N}, f=1$ we obtain inequality (1).

Remark 2. Considering (12) with $a=1, b=1, c=a, a \geq 1, d=1, e=a, f=1$ we obtain inequality (2).

Remark 3. If in (12) we take $a=1, c=a, d=1, e=a, f=b$, with $c \geq f>0$ we obtain inequality (4).

Remark 4. If in (12) we take $a=b, b=a, c=d, d=a, e=b, f=c$ $e f \geq b c>0$, with $a \geq b>0$ and $\psi(b+a x)>0$, we obtain inequality (6).

Acknowledgments

The author would like to thank the referees for their detailed and valuable comments and suggestions.

References

[1] C. Alsina, M. S. Tomás, A geometrical proof of a new inequality for the gamma function, J. Ineq. Pure Appl. Math. 6(2005), Article 48. http://jipam.vu.edu.au/article.php?sid=517
[2] L. Bougoffa, Some inequalities involving the Gamma Function, J. Ineq. Pure Appl. Math. 7(2006), Article 179.
http://jipam.vu.edu.au/article.php?sid=796
[3] J. SÁndor, A note on certain inequalities for the gamma function, J. Ineq. Pure Appl. Math. 6(2005), Article 61.
http://jipam.vu.edu.au/article.php?sid=534
[4] A. Sh. Shabani, Some inequalities for the Gamma Function, J. Ineq. Pure Appl. Math. 8(2007), Article 49. http://jipam.vu.edu.au/article.php?sid=852
[5] M. A. Chaudhry, S. M. Zubair, A class of incomplete Gamma function with applications, CRC Press, 2002.

