Generalization of some inequalities for the Gamma function

ARMEND SH. SHABANI*

Abstract. An inequality involving the Euler gamma function is presented. This result generalizes several recently published results by Alsina and Tomás, Sándor, Bougoffa, and the author.

Key words: Euler gamma function, inequalities

AMS subject classifications: 33B15

Received May 13, 2008 Accepted August 1, 2008

1. Introduction

The Euler gamma function $\Gamma(x)$ is defined for x > 0 by

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt.$$

Psi or digamma function, the logarithmic derivative of the gamma function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}, x > 0.$$

C. Alsina and M. S. Tomás in [1], using a geometrical method, proved the following double inequality:

$$\frac{1}{n!} \le \frac{\Gamma(1+x)^n}{\Gamma(1+nx)} \le 1, \quad x \in [0,1], n \in \mathbb{N}.$$
(1)

Using the series representation of $\psi(x)$ J. Sándor [3] extended that result to obtain the following double inequality:

$$\frac{1}{\Gamma(1+a)} \le \frac{\Gamma(1+x)^a}{\Gamma(1+ax)} \le 1, \quad x \in [0,1], a \ge 1.$$
(2)

In [2] L. Bougoffa proved that if 1 + ax > 0, 1 + bx > 0 then for all $a \ge b > 0$ the function

$$f(x) = \frac{\Gamma(1+bx)^a}{\Gamma(1+ax)^b}, \quad x \ge 0$$
(3)

*Department of Mathematics, University of Prishtina, Prishtinë 10000, Republic of Kosova, e-mail: armend_shabani@hotmail.com

is decreasing on $[0,\infty)$ so for $x \in [0,1]$ the following double inequality is true:

$$\frac{\Gamma(1+b)^a}{\Gamma(1+a)^b} \le \frac{\Gamma(1+bx)^a}{\Gamma(1+ax)^b} \le 1.$$
(4)

Note: He also proved that under the conditions 1 + ax > 0, 1 + bx > 0 the function given in (3) is also decreasing on $[0, \infty]$ if $0 > a \ge b$ and increasing on $[0, \infty]$ if a > 0 and b < 0.

In [4] the following result is presented.

Theorem 1. Let f be a function defined by

$$f(x) = \frac{\Gamma(a+bx)^c}{\Gamma(b+ax)^d},$$

where $x \in [0,1]$, $a \ge b > 0$, c and d are real numbers such that $bc \ge ad > 0$ and $\psi(b + ax) > 0$. Then f is increasing function on [0,1] and the following double inequality holds:

$$\frac{\Gamma(a)^c}{\Gamma(b)^d} \le \frac{\Gamma(a+bx)^c}{\Gamma(b+ax)^d} \le \frac{\Gamma(a+b)^c}{\Gamma(a+b)^d}.$$
(5)

Equivalently under the conditions of the Theorem 1 the function

$$f_1(x) = \frac{1}{f(x)} = \frac{\Gamma(b+ax)^d}{\Gamma(a+bx)^c}$$

is decreasing on [0, 1] so

$$\frac{\Gamma(a+b)^d}{\Gamma(a+b)^c} \le \frac{\Gamma(b+ax)^d}{\Gamma(a+bx)^c} \le \frac{\Gamma(b)^d}{\Gamma(a)^c}.$$
(6)

The idea of this paper is to consider the function

$$f(x) = \frac{\Gamma(a+bx)^c}{\Gamma(d+ex)^f}, \quad x \ge 0$$

and to establish some generalizations of the above results.

2. Main results

In order to establish the proofs of the theorems, we need the following lemmas: Lemma 1. Let $0 < x \le y$. Then

$$\psi(x) \le \psi(y). \tag{7}$$

Proof. In [5], page 21, we have the following:

$$\psi(x) - \psi(y) = (x - y) \cdot \sum_{n=0}^{\infty} \frac{1}{(x + n)(y + n)}.$$

Hence, if $x \le y$ then clearly $\psi(x) - \psi(y) \le 0$. **Lemma 2.** Let a, b, c, d, e be real numbers such that a + bx > 0, d + ex > 0 and $a + bx \le d + ex$. Then

$$\psi(a+bx) - \psi(d+ex) \le 0. \tag{8}$$

Proof. Based on Lemma 1. \Box **Lemma 3.** Let a, b, c, d, e, f be real numbers such that $a + bx > 0, d + ex > 0, a + bx \le d + ex$ and $ef \ge bc > 0$. If (i) $\psi(a + bx) > 0$ or (ii) $\psi(d + ex) > 0$ then

$$bc\psi(a+bx) - ef\psi(d+ex) \le 0.$$
(9)

Proof. (i) Let $\psi(a+bx) > 0$. From Lemma 2 we have $\psi(d+ex) \ge \psi(a+bx) > 0$. Multiplying both sides of inequality $ef \ge bc$ with $\psi(d+ex)$ we obtain.

$$ef\psi(d+ex) \ge bc\psi(d+ex) \ge bc\psi(a+bx),$$

or

$$bc\psi(a+bx) - ef\psi(d+ex) \le 0.$$

(ii) If $\psi(d + ex) > 0$, considering (8) we see that there are two possibilities for $\psi(a + bx)$.

 $\begin{array}{ll} Case \ 1. \ \psi(a+bx) \leq 0, & Case \ 2. \ \psi(a+bx) > 0. \\ \text{So we have:} \\ Case \ 1. \ bc\psi(a+bx) \leq 0 \ \text{and} \ ef\psi(d+ex) > 0 \ \text{so clearly (9) holds.} \\ Case \ 2. \ \text{The possibility} \ \psi(a+bx) > 0 \ \text{was proved in (i).} & \Box \\ \textbf{Lemma 4.} \ Let \ a, b, c, d, e, f \ be \ real \ numbers \ such \ that \ a+bx > 0, d+ex > \\ 0, a+bx \leq d+ex \ and \ bc \geq ef > 0. \ If \\ (i) \ \psi(d+ex) < 0 \ or \\ (ii) \ \psi(a+bx) < 0 \\ then \end{array}$

$$bc\psi(a+bx) - ef\psi(d+ex) \le 0.$$
(10)

Proof. (i) Let $\psi(d+ex) < 0$. From Lemma 2 we have $\psi(a+bx) \le \psi(d+ex) < 0$. Multiplying both sides of inequality $bc \ge ef$ with $\psi(a+bx)$ we obtain.

$$bc\psi(a+bx) \le ef\psi(a+bx) \le ef\psi(d+ex),$$

or

$$bc\psi(a+bx) - ef\psi(d+ex) \le 0.$$

ii) If $\psi(a + bx) < 0$, considering (8) we see that there are two possibilities for $\psi(d + ex)$.

Case 1. $\psi(d + ex) \ge 0$, Case 2. $\psi(d + ex) < 0$.

Now we proceed in the same way as in Lemma 3

Theorem 2. Let f_1 be a function defined by

$$f_1(x) = \frac{\Gamma(a+bx)^c}{\Gamma(d+ex)^f}, \quad x \ge 0$$
(11)

where a, b, c, d, e, f are real numbers such that: $a + bx > 0, d + ex > 0, a + bx \le d + ex, ef \ge bc > 0$. If $\psi(a + bx) > 0$ or $\psi(d + ex) > 0$ then the function f_1 is decreasing for $x \ge 0$ and for $x \in [0, 1]$ the following double inequality holds:

$$\frac{\Gamma(a+b)^c}{\Gamma(d+e)^f} \le \frac{\Gamma(a+bx)^c}{\Gamma(d+ex)^f} \le \frac{\Gamma(a)^c}{\Gamma(d)^f}.$$
(12)

Proof. Let g_1 be a function defined by $g_1(x) = \log f_1(x)$ for $x \in [0, \infty)$. Then:

$$g_1(x) = c \log \Gamma(a + bx) - f \log \Gamma(d + ex).$$

 So

$$g_1^{'}(x) = bc\frac{\Gamma^{'}(a+bx)}{\Gamma(a+bx)} - ef\frac{\Gamma^{'}(d+ex)}{\Gamma(d+ex)} = bc\psi(a+bx) - ef\psi(d+ex).$$

Using (9), we have $g'_1(x) \leq 0$. It means that g_1 is decreasing on [0, 1]. This implies that f_1 is decreasing on [0, 1].

Hence for $x \in [0,1]$ we have $f_1(1) \leq f_1(x) \leq f_1(0)$ or

$$\frac{\Gamma(a+b)^c}{\Gamma(d+e)^f} \le \frac{\Gamma(a+bx)^c}{\Gamma(d+ex)^f} \le \frac{\Gamma(a)^c}{\Gamma(d)^f}.$$

This concludes the proof of Theorem 2.

In a similar way, using Lemma 4, it is easy to prove the following theorem.
Theorem 3. Let
$$f_1$$
 be a function defined by

$$f_1(x) = \frac{\Gamma(a+bx)^c}{\Gamma(d+ex)^f}, \quad x \ge 0,$$
(13)

where a, b, c, d, e, f are real numbers such that: $a + bx > 0, d + ex > 0, a + bx \le d + ex, bc \ge ef > 0$. If $\psi(d + ex) < 0$ or $\psi(a + bx) < 0$ then the function f_1 is decreasing for $x \ge 0$ and for $x \in [0, 1]$ the inequality (12) holds.

It is easy to verify by Theorem 2 and Theorem 3 that the following remarks hold.

Remark 1. Considering (12) with $a = 1, b = 1, c = n, n \in \mathbb{N}, d = 1, e = n, n \in \mathbb{N}, f = 1$ we obtain inequality (1).

Remark 2. Considering (12) with $a = 1, b = 1, c = a, a \ge 1, d = 1, e = a, f = 1$ we obtain inequality (2).

Remark 3. If in (12) we take a = 1, c = a, d = 1, e = a, f = b, with $c \ge f > 0$ we obtain inequality (4).

Remark 4. If in (12) we take a = b, b = a, c = d, d = a, e = b, f = c $ef \ge bc > 0$, with $a \ge b > 0$ and $\psi(b + ax) > 0$, we obtain inequality (6).

Acknowledgments

The author would like to thank the referees for their detailed and valuable comments and suggestions.

References

- C. ALSINA, M. S. TOMÁS, A geometrical proof of a new inequality for the gamma function, J. Ineq. Pure Appl. Math. 6(2005), Article 48. http://jipam.vu.edu.au/article.php?sid=517
- [2] L. BOUGOFFA, Some inequalities involving the Gamma Function, J. Ineq. Pure Appl. Math. 7(2006), Article 179. http://jipam.vu.edu.au/article.php?sid=796
- [3] J. SÁNDOR, A note on certain inequalities for the gamma function, J. Ineq. Pure Appl. Math. 6(2005), Article 61. http://jipam.vu.edu.au/article.php?sid=534
- [4] A. SH. SHABANI, Some inequalities for the Gamma Function, J. Ineq. Pure Appl. Math. 8(2007), Article 49. http://jipam.vu.edu.au/article.php?sid=852
- [5] M. A. CHAUDHRY, S. M. ZUBAIR, A class of incomplete Gamma function with applications, CRC Press, 2002.