- SU(6) Hamiltonian with Spherical Quadrupole Phonons in the Rotational Limit for Even Nuclei
- S. Brant, V. Paar, Prirodoslovno-matematički fakultet, University of Zagreb and "Rudjer Bošković" Institute, Zagreb, Yugoslavia
- G. Leander, NORDITA, Copenhagen, Denmark

The SU(6) Hamiltonian in the rotational limit was diagonalized in the basis of spherical quadrupole phonons. Fig. 1 shows the results of the calculation for the parameters h_1 =0.0225, h_2 =-0.0100, h_3 =-0.0265, h_4 0=-0.1175, h_4 2=-0.0362, h_4 2=0.0950. In fact, there are only two free parameters, α and β , which uniquely determine the parameters h: α =0.01, β =0.02. The maximal number of phonons in the calculation is N=7. We point out that rotational bands do arise, althourh there is no static deformation, but the spherical quadrupole phonons appear as basis states.

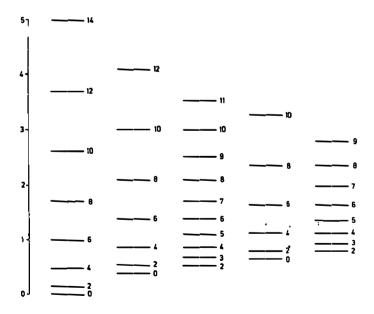


Fig. 1