The Effective Potential Energy Surface for the CVM G. Leander, NORDITA, Copenhagen, Denmark V. Paar, S. Brant, Prirodoslovno-matematički fakultet, University of Zagreb and "Rudjer Bošković" Institute, Zagreb, Yugoslavia

A method is proposed for calculating the effective potential-energy surface (PES) which corresponds to each wave function calculated in the cluster-vibration model (CVM) 1). This method would enable us to see to what extent clusters act as "rocks in the sea which smooth out the neighbouring waves" 2), generating in this way effective anharmonicities. Our method is based on the decomposition of the total quadrupole operator \overline{B}

$$\overline{B} = \overline{\alpha} + \overline{q}$$

where $\overline{\alpha}$ presents the collective and \overline{q} the cluster quadrupole operator. Then the expectation values of the following operators are needed³⁾: B², B⁴, B⁶, B³ cos 3G, B⁶ cos²3G, with respect to the CVM wave functions. Then, for example, $\langle \text{CVM} | | \text{B}^2 | | \text{CVM} \rangle = \langle | | (\overline{\alpha} \times \overline{\alpha})^O + (\overline{q} \times \overline{q})^O + 2 (\overline{\alpha} \times \overline{q})^O | | \rangle$. Each matrix element is factorized into the collective and clusterfactor. In order to carry out this factorization, the mixed operators are rewritten in the form

$$(\overline{\alpha} \times \overline{\mathbf{q}})^{\circ} (\overline{\alpha} \times \overline{\mathbf{q}})^{\circ} = \sum_{\ell} c_{1} |(\overline{\alpha} \times \overline{\alpha})^{\ell} (\overline{\mathbf{q}} \times \overline{\mathbf{q}})^{\ell}|^{\circ}.$$

In this way, all matrix elements can be decomposed by a completeness relation.

- G. Alaga, Rendiconti Scuola Internazionale, 40 Corso, Varenna 1967, p. 28.
- 2) S.G. Nilsson, private communication.
- 3) B.R. Mottelson, private communication.